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Abstract 37 
Humans engage with music for various reasons that range from emotional regulation and 38 
relaxation to social bonding. While there are large inter-individual differences in how much 39 
humans enjoy music, little is known about the origins of those differences. Here, we 40 
disentangled the genetic factors underlying such variation. We collected behavioural data on 41 
several facets of music reward sensitivity, music perceptual ability, and general reward 42 
sensitivity from a large sample of Swedish twins (N = 9,169). We found that genetic factors 43 
substantially explain variance in music reward sensitivity above and beyond genetic 44 
influences shared with music perception and general reward sensitivity. Furthermore, 45 
multivariate analyses showed that genetic influences on the different facets of music reward 46 
sensitivity are partly distinct, uncovering distinct pathways to music enjoyment and different 47 
patterns of genetic associations with objectively assessed music perceptual abilities. These 48 
results paint a complex picture in which partially distinct sources of genetic variation 49 
contribute to different aspects of musical enjoyment and open up new possibilities for using 50 
inter-individual differences to gain insights into the biology of a key aspect of human 51 
behaviour. 52 
 53 

Introduction 54 

Music can evoke intense pleasure and induce various emotions  1–4, leading individuals from 55 
different cultures 5 to actively seek out and engage with it. This human attraction to music 56 
has always been considered somewhat baffling 6 and mysterious 7, leading many to ask why 57 
music has such power over humans 8,9. Oliver Sacks highlighted this conundrum in the opening 58 
of his beautifully written commentary, The Power of Music: “What an odd thing it is”, he wrote 59 
“, to see an entire species—billions of people—playing with listening to meaningless tonal 60 
patterns, occupied and preoccupied for much of their time by what they call ‘music’” 9. 61 
Despite the widespread power of music, however, it should also be noted that many people 62 
do not occupy themselves with music. Within human populations, there is indeed ample 63 
evidence that music-related cognition, from perceptual to affective-related processes, varies 64 
from one person to another 10–13.  65 

Over the last decade, several studies have explored such differences between individuals in 66 
music-related traits and states to better understand the basis of human musicality 14. These 67 
studies show that differences in the ways individuals perceive, produce, or enjoy music 68 
correlate with neurobiological differences 15–17. For example, the study of individuals with 69 
lifelong musical pitch deficits underscores the relevance of brain connectivity patterns in 70 
distributed neural networks for conscious perception of music 17. Similarly, studies of 71 
differences in musical enjoyment highlight how interactions between cortical and subcortical 72 
brain regions support perceptual and affective processes that are fundamental for the 73 
experience of musical pleasure 15,16,18–20. Moreover, recent studies have started to uncover 74 
the roles of genetic factors in perceptual-motor processing of music 21 (e.g., the ability to 75 
synchronise with an external beat or recognise a melody) as well as in music production, such 76 
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as levels of musical achievement 22,23. In general, these studies highlight complex gene-77 
environment interplay 24,25 and the involvement of many DNA variants 21, each with a small 78 
effect (see 26). 79 

Despite the many studies that have examined differences in music-related traits, still little is 80 
known about the genetic sources of differences in affective aspects of music processing and, 81 
in particular, the ability to enjoy music 27,28. A better understanding of such genetic effects 82 
will allow us to highlight how the ability to enjoy music is passed from one generation to the 83 
other and clarify the mechanisms linking genotypes, brains, and affect, providing a needed 84 
complementary perspective to resolve the conundrum of how “meaningless tonal patterns” 85 
can have such powerful effects on humans.  86 

Here, we study individual differences in musical enjoyment, focusing on music reward 87 
sensitivity, a phenotype capturing how much individuals derive pleasure from music, as 88 
measured by the Barcelona Music Reward Questionnaire (BMRQ) 12,16. We used the BMRQ as 89 
it is a validated and reliable (e.g., one-year test-retest reliability, RXX(25) = .94, see 12)  90 
instrument that provides a fine-grained characterisation of individual differences in emotion 91 
evocation, mood regulation, music seeking, sensory-motor, and social reward facets of music 92 
enjoyment 11. Furthermore, it is a well-established psychometric tool in the music science 93 
literature, showing robust associations with affective experiences 29–31, cognition 32–34, 94 
physiology 12, and neurobiology 15,16,35,36.  More specifically, we addressed the following three 95 
research questions:  96 

1. To what extent are differences in music reward sensitivity explained by genetic variation?  97 

2. To what extent do genetic effects influence music reward sensitivity above and beyond 98 
genetic effects shared with music perceptual ability and general reward sensitivity?  99 

3. To what extent are genetic effects shared between the different facets of music reward 100 
sensitivity? 101 

To address these questions, we utilised a large sample of deeply phenotyped monozygotic 102 
(MZ) and dizygotic (DZ) twins with available musicality data. We addressed the first question 103 
by estimating the heritability of music reward sensitivity using the classical twin design. We 104 
addressed the second question by applying multivariate twin modelling to estimate the 105 
genetic overlap between music reward sensitivity (BMRQ), music perceptual abilities based 106 
on a composite score of the melody, pitch, and rhythm scales of the Swedish Musical 107 
Discrimination Test (SMDT) 13, and general reward sensitivity, measured with the Behavioral 108 
Approach System Reward Responsiveness (BAS-RR) sub-scale 37, which has previously been 109 
shown to correlate with the BMRQ 11,12,38. The third question was assessed by testing if 110 
genetic effects are shared across facets of music reward sensitivity, consistent with a common 111 
genetic factor of music enjoyment, or whether, alternatively, genetic influences are distinct 112 
for each facet. Finally, we further extended the multivariate analyses at the facet level to 113 
explore associations with music perceptual abilities and general reward sensitivity. 114 

 115 
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Results 116 

Sample and BMRQ descriptives. We utilised self-reported BMRQ data in a sample of 9,169 117 
monozygotic (MZ) and same-sex and opposite-sex dizygotic (DZ) Swedish twins, with a mean 118 
(M) age of 51 years (standard deviation (σ)  = 8 years, range from 37 to 64 years; see Table 1 119 
for sample size split by sex and zygosity; see Methods for details on the cohort and zygosity 120 
identification). BMRQ total scores ranged from 20 to 100, with M = 71.20 and σ = 13.95. In 121 
line with previous studies, the BMRQ distribution was negatively skewed (skew = - 0.58; i.e., 122 
long tail of individuals with lower BMRQ total scores; see Supplementary Fig. 1). A 123 
confirmatory factor model showed acceptable fit for a model with a single latent music 124 
reward sensitivity factor capturing correlations between the five facets (CFI = .96, SRMR = 125 
.035).  126 

Table 1. Numbers of monozygotic (MZ) and dizygotic (DZ) twin pairs for each trait. 127 

Trait Measure  MZ 
women 

MZ 
men 

DZ 
wom
en 

DZ 
men 

DZ  
os 

Total 
twins 

Music    
perceptual 
abilities+ 

Swedish Musical 
Discrimination Test 
(SMDT) 

n 
(n pairs) 

1012 
(357) 

632 
(200) 

705 
(201) 

525 
(128) 

1162 
(280) 

4036 
(716) 

         
General reward 
sensitivity+  

Behavioral Approach 
System Reward 
Responsiveness (BAS-RR) 

n 
(n pairs) 

1954 
(629) 

1383 
(379) 

1510 
(363) 

1192 
(244) 

2680 
(556) 

8719 
(2171) 

         
Music reward 
sensitivity          

Barcelona Music Reward 
Questionnaire (BMRQ) 

n 
(n pairs) 

2025 
(659) 

1459 
(400) 

1595 
(386) 

1258 
(268) 

2832 
(592) 

9169 
(2305) 

 128 
Note. We collected the two measures for general perceptual-affective phenotypes (top two rows) and one 129 
measure for music reward sensitivity (bottom rows) in a sample of twins from the Swedish twin registry. The 130 
number of pairs with data available for both twins (n pairs) is shown in parenthesis. The measures used to 131 
quantify each trait are shown in the second column. n: number of individual twins; MZ: Monozygotic, DZ: 132 
Dizygotic; os: opposite-sex; + The total sample size for these traits is shown only for twins in which music reward 133 
sensitivity data were available.  134 

Genetic factors play a substantial role in music reward sensitivity. To estimate to what 135 
extent genetic effects (A: additive; D: dominance), the family environment shared between 136 
members of a family (C: common environment), and residual experiences unique to each 137 
individual (E: non-shared environment, including measurement error) influence music reward 138 
sensitivity, we use Structural Equation Modeling (SEM), informed by the Classical Twin Design 139 
(CTD). First, as a baseline for further model comparisons, we fit a univariate model to 140 
individuals’ BMRQ total scores (Fig. 1A; age and sex were accounted for). Assumptions of 141 
equality of means and variance across zygosities, twins within a pair, and sex were met (see 142 
Supplementary Table 1), except for the equality of means across sex: Consistent with previous 143 
literature 39,  BMRQ scores were higher in women (M = 76.26) than in men (M = 71.20) (sex-144 
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constrained σ = 13.72; χ2(30)Δdf  = 300.54, p < 0.001). We, therefore, did not constrain means 145 
in subsequent models. Also consistent with previous results 11,40, age was negatively 146 
associated with overall BMRQ scores, although the effect was small, βage = -0.03, (95% CI [-147 
.05, -.01]), p = 0.004. Since the skewness of BMRQ scores was below 2 (see 41), all SEM 148 
analyses used the full-information maximum likelihood estimator. Analyses using alternative 149 
estimators, robust to departures from multivariate normality, did not change the findings; the 150 
results of these analyses are provided in Supplementary Note 1.  151 

By comparing within-pair MZ and DZ correlations of BMRQ scores, we estimated the narrow-152 
sense heritability (h2

twin) of music reward sensitivity, i.e. the proportion of phenotypic 153 
variance in this trait which is explained by genetic variation 42. Twin correlations for music 154 
reward sensitivity were higher for MZ (rMZ = .55, 95% CI [.51, .59]) than DZ (rDZ = .24, 95% CI 155 
[.19, .29]) twins (Fig. 1B, see Supplementary Fig. 2). As the rMZ was more than twice the rDZ, a 156 
model with additive and dominance genetics components (ADE) was fit (Fig. 1C). The ADE 157 
model reasonably fitted the data, as indicated by comparison against the baseline model 158 
(χ2(33) = 41.13, p =.16). However, a more parsimonious AE model, from which the D 159 
component was dropped, showed a better fit to the data (χ2(1)Δdf = 1.63, p = .20). Therefore, 160 
the AE model was deemed the best fit for the data. The heritability for the BMRQ total score 161 
was substantial: h2

twin = .54 (95% CI [.51, .58]; Fig. 1D; see Supplementary Table 2 for details).  162 

 163 
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 164 
Fig. 1. Music reward sensitivity is substantially heritable. (A) Baseline SEM to test for assumptions 165 
and further compare CTD-informed models fit; for simplicity only one group (MZ women) is shown.  166 
(B) Twin pair correlations grouped by zygosity and sex (women, w;  men, m) extracted from the 167 
saturated model; note that MZ twin pairs are more than twice as similar in their music reward 168 
sensitivity as DZ twin pairs. The error bars represent 95% confidence intervals (CI). (C) The ADE model; 169 
note that we identified only A and E components as significant contributors to music reward sensitivity 170 
variability. α is the expected additive genetic relationship, and δ is the expected dominant genetic 171 
relationship between pairs (i.e., α = 1 or .5  δ =1 or .25, for MZ and DZ, respectively). (D) Estimated 172 
variance components from the final AE model indicated substantial heritability for music reward 173 
sensitivity. The left bar plot shows the estimates obtained from the full ADE model. Notes on structural 174 
equation models: For simplicity, age is not included in the graphical representation of the model but is 175 
included as a covariate; Squares represent the measured phenotypes; Circles are the latent component; 176 
Double-headed arrows within circles, the variances associated with the latent components; double-177 
headed arrows between circles covariances; the triangle, the phenotypic mean grouped by twin order 178 
(baseline model) and sex (ADE model) already adjusted for age; dashed elements, the component 179 
dropped after model comparison.  180 
 181 
Music reward sensitivity is influenced by genetic factors above and beyond genetic 182 
influences shared with music perceptual abilities and general reward sensitivity. To better 183 
understand the nature of genetic effects contributing to music reward sensitivity, we tested 184 
whether the genetic influences on BMRQ were partly shared with other related traits, such 185 
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as music perceptual abilities and general reward sensitivity. For this purpose, we used a 186 
multivariate sequential decomposition approach, which allowed us to discriminate between 187 
three possible outcomes, as illustrated in Figure 2. Genetic effects on music reward sensitivity 188 
could be either fully (Fig. 2A) or partly (Fig. 2B), separate from genetic effects on music 189 
perceptual abilities or general reward sensitivity. Alternatively, they could be fully shared (Fig. 190 
2C) and hence entirely accounted for.  191 
 192 

 193 
 194 
Fig. 2. Schematic illustration of the sequential decomposition approach. The sequential 195 
decomposition of phenotypic associations employed to study unique and shared genetic influences. 196 
(A) The heritability (h2) of the second phenotype (orange bar) is fully separate from the genetic effect 197 
shared with the first. (B) In this case, after controlling for the h2 explained by the genetic effect shared 198 
with the first phenotype (black bar), an adjusted estimate (adj-h2, remaining orange bar) is still 199 
substantial. (C) Here, h2 is completely shared (shr-h2) between the two phenotypes. For simplicity, 200 
only two traits are shown. 201 
 202 
First, we revealed and confirmed that there were significant phenotypic correlations between 203 
music reward sensitivity and music perceptual abilities and general reward sensitivity 11,12,38, 204 
respectively (p <.001;  Fig. 3A; correlations were estimated from a sample of only one twin 205 
per pair, to avoid sample dependence; estimates were similar in the other twins, see 206 
Supplementary Fig. 3 for details). To simultaneously accommodate the three phenotypes, we 207 
employed a tri-variate sequential decomposition. This analysis indicated partial separation of 208 
genetic (and environmental) factors influencing the three variables (Fig. 3B; see 209 
Supplementary Table 3 for coefficient estimates). The h2

twin of music reward sensitivity 210 
adjusted for music perceptual abilities and general reward sensitivity was adj-h2

twin = .38 (95% 211 
CI [.33,.43], Fig. 3C). Thus, of the total variance in music reward sensitivity explained by 212 
genetic factors (h2

twin = .54), around 70% (95% CI σ!":!$%  = [.63,.78]) was unique to this trait. 213 
Only the remaining 30% was shared with genetic effects on music perceptual abilities and 214 
general reward sensitivity, explaining 12% and 18% of the total genetic variance in music 215 
reward sensitivity, respectively. Environmental influences shared across phenotypes, which 216 
reached significance only for general reward sensitivity (p <.001), explained only 2% of the 217 
total variance in music reward sensitivity (see Supplementary Note 2).  218 
 219 
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 220 
 221 

Fig. 3. Genetic effects on music reward sensitivity are partly separate from music perceptual abilities 222 
and general reward sensitivity. (A) All cross-phenotypic correlations with music reward sensitivity 223 
were significant (all p<.001). On the diagonal, the standard deviations (σ). (B) Sequential 224 
decomposition of the significant contributions to music reward sensitivity; note that the 225 
environmental path from music perceptual abilities to music reward sensitivity is not significant, 226 
indicating only common genetic causes. Between parentheses, the significant path from the E 227 
component to general reward sensitivity (p = .03) (C) Variance decomposition shows that genetic 228 
factors explain individual differences in music reward sensitivity (in orange) well beyond shared 229 
genetic factors associated with known general perceptual and affective processes (in red and yellow, 230 
respectively). The variance components here indicate the proportion of variance explained by the 231 
respective components.  mpa: music perceptual abilities; grs: general reward sensitivity; mrs: music 232 
reward sensitivity. Notes on structural equation models: one-headed arrow represents regression 233 
paths partitioned in additive genetics and unique environmental paths; dashed one-headed arrows 234 
represent non-significant paths. Other abbreviations and symbols are as in Fig. 1.  235 
 236 
Genetic pathways to the different facets of music-reward sensitivity are partly distinct. 237 
Having shown that music reward sensitivity has substantial heritability and is partly 238 
genetically separate from relevant general perceptual-affective processes, we went on to test 239 
whether the pattern of genetic correlations across facets is consistent with an overarching 240 
one-genetic-factor solution for music reward sensitivity (Fig. 4 A-C). If largely distinct genetic 241 
pathways influence the different facets of music enjoyment, a one-genetic-factor solution 242 
would not be supported.  This scenario can be modelled as a multivariate correlated factor 243 
solution, which solely allows for genetic and environmental pairwise correlations (Fig. 4B). If, 244 
on the other hand, there is a common genetic source of different aspects of musical 245 
enjoyment, we would expect underlying genetic sources of variability to be mostly shared 246 
across different facets (Fig. 4C, see 43). This latter scenario can be instead modelled as a 247 
multivariate hybrid independent pathway model (see 44). Here, along with distinct genetic 248 
effects over single facets, an extra additive genetic common factor is modelled to capture 249 
shared genetic effects across all facets. For ease of interpretation, we will hereafter refer to 250 
the model depicted in Fig. 4B as the distinct factor solution and the model depicted in Fig. 4C 251 
as the common-genetic factor solution.  252 
 253 
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 254 
 255 
Fig. 4 Schematic illustration of multivariate models employed to quantify distinct and common 256 
genetic factors. (A) The phenotype is decomposed into its constituent facets. (B) The first solution 257 
includes distinct genetic factors with a simple description of all possible genetic and environmental 258 
covariances. (C) A common-genetic factor solution is applied by assuming a genetic factor that 259 
captures the genetic covariances across facets. The common latent genetic factor (in orange) could 260 
explain all the genetic variance associated with one facet (e.g., dashed circle).  (Double-headed arrows 261 
are compressed to avoid cluttering.) Figure inspired by 45. 262 
 263 

Since the common-genetic factor solution is a constrained version of the distinct factor 264 
solution, model comparisons can be used to test whether a common-genetic factor of music 265 
reward sensitivity facets shows a better fit to the data. While both models fit the data well 266 
(CFI= .988, SRMR = .048,  and CFI = .981, SRMR = .061, respectively; See Supplementary Table 267 
4), the common-genetic factor worsened the fit of the distinct factor solution (χ2(5)Δdf = 268 
129.61, p < 0.001;). This implies that the distinct factor solution is a more appropriate 269 
description of the structure of the genetic effects compared to the common-genetic factor 270 
solution. (Fig. 5A-B; See Supplementary Note 3 for more details).  271 
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 272 
 273 
Fig. 5. Genetic heterogeneity between distinct musical affective phenotypes. (A) Simplified distinct 274 
factor solution of music reward sensitivity facets. (B) Genetic effects on music reward sensitivity are 275 
partially heterogeneous. Matrix extracted from the correlated factor model. Additive genetic (rA) and 276 
environmental correlations (rE) are shown below (red) and above (blue) the diagonal, respectively; 277 
numbers on the diagonal show heritability estimates. Numbers in parentheses are 95% confidence 278 
intervals. Note that genetic correlations are far from 1, suggesting that music reward sensitivity has 279 
multiple genetic sources. Phenotypic correlations can be found in Supplementary Fig. 4. Notes on 280 
structural equation models: double-headed arrows between circles represent A and E covariance 281 
between facets. Other abbreviations and symbols are as in Fig. 1 and 3. 282 
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Exploratory analyses reveal that social reward shares substantially more genetic variance 283 
with music perceptual abilities than the other facets. Having shown that genetic influences 284 
are partially distinct between music-reward sensitivity facets, we further explored such 285 
genetic heterogeneity by fitting two additional multivariate distinct factor solutions to data 286 
on music reward sensitivity facets, with music perceptual abilities and general reward 287 
sensitivity added to the models (Fig. 6A). Additive genetic correlations (rA) between music 288 
reward sensitivity facets and music perceptual abilities varied widely (range rA = .15 to rA =.49; 289 
Fig. 6B), with differences between the rA values (ΔrA) being significant (Supplementary Table 290 
5). Specifically, the ΔrA estimates were significantly higher for the social-reward facet of music 291 
reward (rA = .49, 95% CI [.42; 56]) than for any other facet (range ΔrA from .19 to .39, all p < 292 
.001). In comparison, rA obtained from the model fit to general reward sensitivity data were 293 
similar across facets (range rA = .29 to rA =.36; Fig. 6C) and did not significantly differ (all p > 294 
.05). These observations further strengthen the evidence that different aspects of music 295 
reward show functionally relevant genetic heterogeneity.   296 

 297 

 298 
 299 
 300 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.04.588094doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588094
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 6. Genetic heterogeneity between distinct musical affective phenotypes. (A) The correlated 301 
factor model extended to estimate genetic correlations with music perceptual abilities and general 302 
reward sensitivity. (B-C) Magnitude of the genetic correlations (rA) between facets of music reward 303 
sensitivity and music perceptual abilities (B) and general reward sensitivity (C). Error bar represents 304 
95% CI. Notes on structural equation models:  For simplicity, all pairwise covariances are not included 305 
but are present in the model—other abbreviations and symbols are as in previous Figures. 306 
 307 

Discussion 308 

Our understanding of why “meaningless tonal patterns” 9 have such powerful effects on 309 
humans can benefit tremendously from the study of inter-individual differences. Here, by 310 
exploiting a large and deeply phenotyped Swedish twin sample, we found that music reward 311 
sensitivity has substantial heritability. Most of this genetic variance influences music reward 312 
sensitivity independently of music perceptual abilities and general reward sensitivity, 313 
suggesting genetic variations influence music reward sensitivity not only via other general 314 
perceptual-affective processes. Furthermore, our findings reveal considerable genetic 315 
heterogeneity behind different facets of music reward sensitivity. Although all facets show 316 
heritability estimates of a similar magnitude (between 42% and 52%) and are genetically 317 
correlated (between .45 and .77), the results do not support a single (genetic) dimension of 318 
musical enjoyment.  Instead, these findings are consistent with musical enjoyment being built 319 
upon genetically interconnected yet partly distinct parts. Extended multivariate analyses 320 
further strengthened these results by showing that music perception shows stronger genetic 321 
correlations with social bonding than other facets of music reward, indicating functionally 322 
relevant genetic heterogeneity.   323 

Despite answering a long-standing question 27,28, the finding that music reward sensitivity is 324 
to some extent heritable is not surprising in light of the fact that virtually every human trait is 325 
at least partly genetically influenced 46,47. Yet, the finding of notably high heritability for music 326 
reward sensitivity gives hope for molecular genetic studies to answer questions about genetic 327 
underpinnings of musicality in general and musical affect in particular. Prior studies of 328 
individual differences in music reward sensitivity 12,15,16,48 have had far-reaching implications 329 
for our knowledge of biological pathways implicated in perceptual-affective processes 18–20.  330 
These studies have shown that individual differences in music reward sensitivity are 331 
associated with variation in functional and structural connections between two systems. The 332 
first includes the auditory cortex and its pathways involved in perceptual analysis, feature 333 
encoding, and working memory. The second, the reward system, encompasses the striatum, 334 
orbitofrontal cortex, and ventral tegmental area and is involved in pleasure, salience, and 335 
learning 1,2,16,19,20,49. These neurobiological mechanisms could provide a potential substrate 336 
for the genetic influences identified in the present study. Therefore, an important question 337 
for future studies is to investigate whether variability in structural and functional properties 338 
of the relevant brain networks, and their interactions, may mediate the genetic effects on the 339 
ability to enjoy music, thus furthering our overall mechanistic understanding of a key aspect 340 
of human affect. 341 
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A complementary genetic perspective on music reward sensitivity could be a particularly 342 
fruitful strategy to better understand human musicality and affect because we found genetic 343 
influences to be primarily separate from other relevant perceptual-affective processes, such 344 
as music perceptual abilities and general reward sensitivity. The dissociation between the 345 
genetics of music reward sensitivity and general perceptual and reward processing mirrors 346 
the finding that specific musical anhedonia, i.e., blunted or absent hedonic responses from 347 
music stimuli, exists in the absence of any perceptual or generalised reward deficit 12,16, yet 348 
contrasts other findings suggesting sensitivity to intrinsic rewards to be domain general 50.  349 
This implies that genetic variance associated with music reward sensitivity, beyond perceptual 350 
and general reward processing, can be used to better disentangle and understand the 351 
mechanisms involved in sensory-specific experiences of enjoyment.  352 

The partial separation between genetic effects on perception and enjoyment also opens up 353 
the possibility that genes influencing music perception and enjoyment may have been a 354 
distinct target for natural selection during evolution 51. The finding implies that genetic 355 
variation between people may be used to dissect the evolutionary trajectories of different 356 
aspects of human musicality. Along these lines, a further question of interest becomes 357 
whether genetic variants, which are more specifically associated with music enjoyment, are 358 
also enriched in genomic regions of evolutionary interest 52,53. 359 

Here, we did not find support for a single overarching genetic factor of music reward 360 
sensitivity. On the contrary, we found several distinct genetic pathways to music enjoyment. 361 
This result aligns with general views of musicality as “built upon a suite of interconnected 362 
capacities, of which none is primary” 54. Our results demonstrate that such heterogeneity is 363 
seen even when zeroing in on one hypothesised core feature of musicality: enjoyment. We 364 
show that music reward sensitivity is itself not a monolith and that different facets of this trait 365 
are influenced by partly different genetic pathways; these facets range from the ability to 366 
experience emotion and get chills to the rewarding aspects of social bonding through music. 367 
Our results thus may challenge the epistemological status of music reward sensitivity as a 368 
latent causal factor 43,55,56, as a latent factor is unlikely to hold unless a common-genetic factor 369 
solution holds (for additional conditions, see 43).  370 

Our final exploratory analysis provides a direct example of the implications such a shift in 371 
perspective might have on the study of human behaviour and affect. When dissecting the 372 
genetic effects at the level of the facets of music reward sensitivity, novel insights emerge. 373 
Our findings indicate that music perceptual abilities are genetically more strongly correlated 374 
with rewards of social bonding through music. This could be seen as in line with the social 375 
bonding hypothesis, which states that “core biological components of human musicality 376 
evolved as mechanisms supporting social bonding” 57. This was not the case for the 377 
association between music reward and general reward sensitivity, which were relatively 378 
similar across different facets. Furthermore, shared additive genetic variation entirely 379 
explained the association between music perceptual abilities and social reward, suggesting 380 
shared biological components to be at play.  These results highlight how acknowledging the 381 
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genetic heterogeneity of music reward sensitivity might reveal associations that might 382 
have been otherwise unnoticed. (For a detailed discussion on consequences for other well-383 
studied conditions, such as musical anhedonia 12,15,16, we refer to Supplementary Note 4.)   384 

Notwithstanding such functionally relevant genetic heterogeneity, we also found genetic 385 
overlap between the facets, suggesting genetic effects over music reward sensitivity are also 386 
partially shared. This finding is important as some degree of genetic overlap across facets of 387 
music reward sensitivity is needed to better understand the biology of music enjoyment as a 388 
whole. Further studies could test whether these genetic effects underlie other auditory 389 
phenomena, such as pleasure derived by timbre in sounds, which has been shown to correlate 390 
homogenously across facets of music reward 29 or other broader aspects related to human 391 
affect, such as aesthetic sensitivity 58. 392 

Finally, the absence of shared environmental effects on music reward sensitivity (at least 393 
under the assumption of the classical twin design, see below) aligns with many other complex 394 
traits, including those related to musicality 26,46. Yet, it contrasts with findings on some 395 
musicality traits, such as musical achievement 23,24 or singing abilities 59, for which modest 396 
effects of shared environment have been found using similar designs. The lack of shared 397 
environmental effects for some traits but not others suggests that different aspects of 398 
musicality, namely producing music and enjoying music, might follow different patterns of 399 
intergenerational transmission.  The likely absence of shared environmental effects may imply 400 
only a small, if present, passive gene-environment correlation (e.g., genotypes associated 401 
with music reward sensitivity in the parents influence the children via the environment the 402 
parents provide and the genes they pass on to their children, see 60). This is crucial because 403 
passive gene-environment correlations would complicate future efforts to detect direct 404 
genetic effects on music reward sensitivity by, e.g. confounding direct genetic effects with 405 
indirect effects caused by the environment that the parents provide to their children (see 60,61 406 
for a detailed discussion). Recent efforts to better understand the genetic architecture of 407 
complex traits focus on deconstructing indirect sources of heritability, which inflate estimates 408 
of genetic effects and confound the possible inferences that can be obtained from 409 
downstream analysis of genome-wide-derived estimates 61–63. Our findings suggest that music 410 
reward sensitivity, or rather its constituent facets, may be especially promising for facilitating 411 
discoveries of direct molecular genetic effects on music enjoyment. 412 

As with every other twin-informed study 42, our work depends on a number of assumptions. 413 
In the Methods section, we highlight these assumptions and what violation of each entails. 414 
One critical assumption is the equal environment assumption, which states that 415 
environmentally caused differences between twins within a pair are the same across 416 
zygosities. An additional assumption is the lack of gene-by-shared environment interaction, 417 
which could lead to an underestimation of the variance of the C component. For example, 418 
additive genetic effects associated with music reward sensitivity might vary within different 419 
musically enriched environments. However, we also note that the equal environment 420 
assumption is not violated if different zygosities experience more similar or dissimilar 421 
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environments due to genetic differences. On the contrary, this is to be expected if evocative 422 
and active gene-environment correlations are at play, which seems likely for traits related to 423 
music enjoyment. Such gene-environment correlations would not inflate h2 estimates. Still, 424 
they would change their interpretation as they could reflect, for example, a more complex 425 
causal chain that leads individuals to seek or be exposed to environmental changes that, in 426 
turn, influence the phenotype,  resulting in processes such as niche picking 64,65. 427 

At the same time, our study also exploits one of the fundamental strengths of the CTD —the 428 
possibility to estimate genetic effects on deep phenotypes, such as objectively assessed music 429 
perceptual abilities and the full BMRQ, which are notoriously difficult to obtain in large 430 
genetically informative samples 66. In light of the limitations and the strengths of the CTD, our 431 
h2

twin can be considered both an upper bound for the h2 (within an environment, a population, 432 
and at a given time) and provide valuable benchmarks for the total effect of DNA variation 433 
42,64,67 of music reward sensitivity and facets, above and beyond perceptual-affective 434 
processes. These findings, as discussed in length above, generate novel insights and pave the 435 
way for future research on the genetics of music enjoyment and human affect.  436 

 437 

Conclusions 438 

Musicality is the capacity that allows individuals of a species to perceive, generate, and enjoy 439 
music 14,54. Much has been said about the sources of the considerable inter-individual 440 
variation in music perception, production, participation, and achievement. Yet, relatively little 441 
has been written on the genetic contribution to what makes individuals differ in their capacity 442 
to enjoy music. Here, we add a new piece to the puzzle of why music has such powerful effects 443 
on humans. We show that genes influencing our ability to enjoy music are largely distinct 444 
from genes involved in other, more general aspects of perceptual and affective processing. 445 
Further, we reveal that genetic pathways to music enjoyment are partially distinct and that 446 
the genetic overlap between music perceptual abilities differs between different facets of 447 
music reward. In summary, the findings highlight the complex and multifaceted nature of 448 
music enjoyment and its genetic underpinnings, paving the way for further studies of the 449 
evolutionary origins and genetic and neural mechanisms for a key aspect of human affect.  450 

 451 

Methods 452 
Sample 453 
Swedish Twin Registry: Screening Twin Adults Genes and Environment (STAGE). Participants 454 
were twins recruited from the Swedish Twin Registry 68. Twin zygosity was determined by 455 
questionnaire data, which, when compared to genotypes, has been shown to be 99% accurate 456 
in the Swedish Twin Registry 69. The twins included in this study took part in two large recent 457 
waves of online data collection on music, art and cultural engagement. In 2011 and then again 458 
in 2022, a total of 32,000 adult twin individuals were invited from the STAGE cohort born 459 
between 1959 and 1985, of which around 11,500 participated in the first wave and then 460 
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around 9,500 in the latest wave. More details on the survey can be found in Ullén et al. 13. 461 
Participants took the Swedish Musical Discrimination Test (see below) in the first wave and 462 
responded to the Behavioral Approach System and Barcelona Music Reward Questionnaire in 463 
the second wave of data collection. A full description of the twin sample across waves of data 464 
collection can be found in Table 1, including n of twins for which we had both data available, 465 
stratified by the zygosity and the sex of the twins; for both waves of data collection, informed 466 
consent was given by each participant before data gathering began.  Both studies were 467 
approved by the Regional Ethical Review Board in Stockholm (Dnrs 2011/570-31/5, 468 
2012/1107/32, 2021-02014, 2022-00109-02, 2020-02575). 469 
Primary measure 470 

Barcelona Music Reward Questionnaire (BMRQ). The Barcelona Music Reward 471 
Questionnaire  (BMRQ) is a psychometric tool used to assess musical anhedonia 12,16 and, 472 
more generally, music reward sensitivity 11, which has previously been validated across many 473 
cultures 11,70–72. It comprises 20 self-report items, with five response options, ranging from 474 
completely disagree to completely agree.  After recoding response items to numeric options 475 
(1 to 5), with two out of 20 items being reverse coded, we used the sum score of the BMRQ 476 
as a measure of music reward sensitivity (score range from 20 to 100). Following the original 477 
five-factor structure 11, we also created sum scores of the five known facets of music reward 478 
sensitivity 28: (1) Emotion-evocation - the degree to which individuals get emotional, 479 
experience chills, and even cry when listening to music; (2) Mood regulation - the degree to 480 
which individuals experience rewards from relaxing when listening to music; (3) Musical 481 
seeking – the pleasure associated with the discovery of novel music-related information; (4) 482 
Sensory motor – the rewards obtained from synchronising to an external beat or dancing; (5) 483 
Social reward – the rewards of social bonding through music. Additional details are given in 484 
Supplementary Note 5. 485 
Secondary measures 486 

Behavioral Approach System Reward Responsiveness (BAS-RR). The Behavioral Approach 487 
System (BAS) scale is included in the Behavioral Inhibition System (BIS)/BAS questionnaire, a 488 
validated psychometric tool to assess inter-individual differences in two general motivational 489 
systems 37,73. The BAS-Reward Responsiveness (BAS-RR) scale, in particular, assesses inter-490 
individual differences in the ability to experience pleasure in the anticipation and presence of 491 
reward-related stimuli and predicts general psychological adaptive functioning 74. It 492 
comprises five items, with four response options for each. BAS-RR is obtained by the sum 493 
score of the five items after the numerical conversion of the responses (1-4). Additional 494 
details are given in Supplementary Note 6. 495 

Swedish Musical Discrimination Test (SMDT). The Swedish Musical Discrimination Test 496 
(SMDT) is a test that has good psychometric qualities for individual abilities in auditory 497 
perceptual discrimination of musical stimuli 13. It comprises three subtests: melody, rhythm, 498 
and pitch. A brief description of each test is given below (see 13 for more details). 499 
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Melody: This subtest used isochronous sequences of piano tones as stimuli. Tones ranged 500 
from C4 to A#5, played at 650 ms intervals (American standard pitch; 262–932 Hz). The 501 
number of tones increased from four to nine during the subtest progression. For each of the 502 
six stimulus lengths, there were three items. The two stimuli in an item were separated by 1.3 503 
s of silence. The pitch of one tone in the melody was always different in the second stimulus. 504 
Participants had to identify which tone was different.  505 

Rhythm: In this subtest, each item included two brief rhythmic sequences of 5-7 sine tones, 506 
lasting 60 ms each. The inter-onset intervals between tones in a sequence were 150, 300, 450, 507 
or 600 ms. The two sequences in an item were either identical or different, and separated by 508 
1 s of silence. The participant had to determine whether the two sequences were the same 509 
or not.  510 

Pitch: The pitch subtest used sine tones with a 590 ms duration as stimuli. In each item, two 511 
tones were presented, one of which always had a frequency of 500 Hz. The frequency of the 512 
other tone was set between 501 and 517 Hz. The order of the two tones varied randomly, 513 
with tones separated by a 1 s silence gap. Participants had to identify whether the first or the 514 
second tone had the highest pitch. The item difficulty was increased progressively by 515 
gradually making the pitch differences between the tones smaller.  516 
Analyses 517 

Factor Analysis. To confirm the BMRQ's sum score as an appropriate measure of music 518 
reward sensitivity in the Swedish sample, we ran a one-factor Confirmatory Factor Analysis 519 
(CFA) on the five facets of the Swedish version of the BMRQ. CFA was run on one twin per 520 
pair, using the lavaan::cfa() function, to avoid sample dependence. 521 

Classical twin design (CTD). The CTD allows the estimation of additive (A) or dominance (D) 522 
genetics, shared environmental (C), and residual source (E) of phenotypic variance (σA

2, σD
2, 523 

σC
2, and σE

2, respectively). This is possible given the expected phenotypic resemblance of 524 
monozygotic (MZ) and dizygotic (DZ) twins. MZ arise from the same fertilised egg and thus 525 
are ~100% genetically similar (with minimal deviations from expected genetic similarity, see 526 
75); DZ arise from separate egg cells and thus, as ordinary siblings, share on average 50% of 527 
their segregating genes. Furthermore, when both twins of a pair are raised in the same 528 
household, MZ and DZ share 100% of their common environment. Finally, by definition, 529 
remaining deviations from the expected values inferred by additive, dominant, and shared 530 
environmental effects represent unique environmental influences and measurement errors. 531 
Therefore, E is not shared between twins within a family. Under a set of assumptions, 532 
including no epistasis (gene-by-gene interaction, see 76), the covariance of MZ twin pairs is 533 
then equal to: 534 

 535 

σ𝑀𝑍, 𝑀𝑍 =   σA
2 + σD

2 + σC
2 536 

 537 
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While the covariance of DZ twin pairs is equal to: 538 

 539 

σDZ,D𝑍 =   .5*σA
2 + .25*σD

2 + σC
2 540 

Given that the variance and covariance are measured between twins within families, it is 541 
possible to specify a multigroup structural equation model and estimate three out of four 542 
variance components. The decision of which parameters to include in the model (e.g., A, C, E, 543 
or A, D, E) is purely based on twin covariances, which are extracted from the baseline 544 
phenotypic model (for details on the baseline model, see below), and biological plausibility. 545 
If σ𝑀𝑍, 𝑀𝑍 > 2*σD𝑍,DZ , then D is expected to contribute to the phenotypic variance, and, 546 
therefore, an ADE model is specified (note that DE models are not biologically plausible). 547 
Otherwise, an ACE model is fit to the data.   548 

CTD assumptions. The estimates from the CTD are unbiased under a set of assumptions. First, 549 
the CTD assumes equal environments between the twins. In other words, it assumes that 550 
similarities between twins caused by the environment are the same for both zygosities. 551 
Suppose, instead, MZ experiences their environment more similarly than DZ due to 552 
environmental, not genetic, causes. In that case, the estimate for the genetic variance will be 553 
upwardly biased (i.e., σ&%"	>  σA

2). Note that the equal environment assumption is not violated 554 
if MZ experiences their environment more similarly than DZ due to genetic differences. The 555 
latter case would instead result in active gene-environment correlations that are still 556 
consistent with the estimate of the variance components. The second assumption is that the 557 
phenotypes of the parents of the twins’ are uncorrelated  (i.e., random mating, also known 558 
as panmixia 77). If the covariance between two parental phenotypes, p1 and p2, is different 559 
from 0, σP1,P2 ≠ 0, then the shared environmental variance might be upwardly biased (i.e.,  560 
σ'%"	>  σC

2). The third assumption is that there are no gene-environment interactions or gene-561 
environment passive correlations. Based on the gene-environment interaction, different 562 
sources of bias are expected. If AxC is present, then σ&%"	>  σA

2 is expected. If AxE is present 563 
instead, σ(%"	>  σE

2. If passive rG,E is present, then σ'%"	>  σC
2 is expected. An additional set of 564 

assumptions introduced when estimating parameters via SEM is that means and variances 565 
are equal across zygosity group, twin order (i.e., 1 and 2), and sex. Details on the latter set of 566 
assumptions are given below. Complex sources of upward or downward biases in CTD-567 
informed models (e.g., heterogeneity) are discussed elsewhere 78.  568 

Baseline model. We first fit multigroup SEM models to create a baseline against which to 569 
compare the fit of univariate and multivariate models and test for the assumptions of the 570 
equality of mean and variances. The models freely estimated all the observed variance and 571 
covariances and included the age of the twins as a covariate. For the univariate model, 572 
equality of means and variances was tested by sequentially constraining parameters and 573 
comparing the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of 574 
the model to the baseline model, where AIC = 2k – 2ln(L&) and BIC = kln(k) – 2ln(L&), with k 575 
being the number of parameters estimated in the model and L&		the maximised value of the 576 
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likelihood function. Models with smaller AIC and BIC than the baseline model were deemed 577 
a good fit. Additional comparisons are provided by the likelihood-ratio test (LRT), using the 578 
lavaan::lavTestLRT() function from the lavaan R package 79. All models were specified 579 
following lavaan notation and fitted with the lavaan::sem() function.  580 

Univariate variance decomposition. The SEM specification was informed by the CTD, 581 
following the pattern of twin pairs correlations extracted from the baseline model and 582 
baseline model comparison results. Twin pairs correlations were extracted using the most 583 
parsimonious constrained baseline model using the lavaan::standardizedSoultion() function. 584 
Precisely, we fit a five-group ADE sem model, where the five groups were formed by either 585 
full or incomplete MZ female, MZ male, DZ female, DZ male, and DZ opposite-sex pairs. Means 586 
for women and men were estimated freely across sex, but not across zygosities or twin order. 587 
We fit the model via the direct symmetric approach by directly estimating the variances, as it 588 
can derive asymptotically unbiased parameter estimates and is, therefore, less prone to type 589 
I errors 80. We then decomposed the variance-covariance matrix T of twin pairs into the T= A 590 
+ D + E variance covariances, which was predicted as follows: 591 

 592 

𝐓 = ) σ!
%+σ)%+σ*% 𝛼 ∗ σ!%+δ ∗ σ)%

𝛼 ∗ σ!%+δ ∗ σ)% σ!%+σ)%+σ*%
. 593 

 594 
Where α is the expected additive genetic relationship, and δ is the expected dominant genetic 595 
relationship between pairs (i.e., α = 1 or .5  δ =1 or .25, for MZ and DZ, respectively). Note 596 
that for simplicity, here we exclude the contribution of age to T, which was instead included 597 
in the model. To test for the significance of the variance components A and D, we additionally 598 
fit two models where D and AD variances were constrained to 0. Significance was inferred by 599 
model comparison, as above.  We fit the model to the raw sum score of the BMRQ using the 600 
lavaan::sem() function. Assuming data within pairs were missing at random, we used the 601 
recommended estimator for twin data analysis, the full information maximum likelihood 602 
(FIML; argument estimator = “ML”). We used the following estimator for the narrow-sense 603 
heritability: 604 
 605 

ℎ$+,-% 	= 	
σ!%	

σ!% 		+ 	σ*% 	
 606 

 607 

Here we note the detail that σA
2 + σE

2 ≠ σP
2 , as  σP

2 = σA
2 + σE

2  + B2*σAge
2. We also note that, 608 

since the E component includes residual deviation, σE
2 = inter-σE

2 + intra-σE
2, where inter-σE

2 609 
is the inter-individual variance, and intra-σE

2 is the intra-individual variance 77. Comparisons 610 
with standard OpenMX protocols are given in Supplementary Note 7 (note that the small 611 
differences in test statistics did not lead to different conclusions). A graphical representation 612 
of the full univariate multigroup model can be found in Supplementary Fig. 5. 613 
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Sequential multivariate model. The sequential multivariate modelling of SMDT, BAS-RR, and 614 
BMRQ twin data was inspired by the classical multivariate Cholesky decomposition of additive 615 
genetic (A) and environmental (E) matrices 81. Following the CTD, we specified a multivariate 616 
model to estimate variance components and between-components between-trait path 617 
coefficients, λA and λE, based on the between-trait between-twin (also referred to as cross-618 
trait cross-twin) covariances. However, since variance components are directly estimated, it 619 
is important to note that the sequential multivariate model is not exactly a Cholesky 620 
decomposition. In fact, the predicted A and E variance-covariance matrices are not obtained 621 
as A = XXT or E = ZZT, as in a Cholesky decomposition, where X and Z are the lower triangular 622 
matrices with the path coefficients for the additive genetic and environmental components. 623 
Instead, the 6x6 variance-covariance matrix S was decomposed into symmetric matrices as S 624 
= A + E. As for the univariate case, the 6x6 symmetric matrices A and E include the predictions 625 
for the phenotypic variances and the twin pair phenotypic covariances. For comparison, we 626 
provide parameter estimates derived from the standardised solution, which is equivalent to 627 
a Cholesky decomposition, in Supplementary Fig. 6.  Additionally, the S matrix also included 628 
the predictions for the within-twin and the between-twin between-trait covariances. One 629 
important consequence of our model specification is that we do not impose an implicit lower 630 
bound of zero on the variance components, which can cause bias when comparing different 631 
models. The sequence of variables was purely chosen to regress out A1 and A2, respectively, 632 
implied from SMDT and BAS-RR observed scores, from the BMRQ. To estimate an adjusted 633 
heritability (here, for simplicity, adj-h2

twin), we calculated the proportion of variance of the 634 
BMRQ covarying with the component A over the total BMRQ variance (minus the variance in 635 
BMRQ covarying with age): 636 

 637 

𝑎𝑑𝑗 − ℎ$+,-% 	= 	
σ!.% 	

𝜎!.% + 𝜎*.% + 𝛾!/.% ∗ 𝜎!/% + 	𝛾*/.% ∗ 𝜎*/% + 𝛾!%.% ∗ 𝜎!%% + 𝛾*%.% ∗ 𝜎*%%
 638 

 639 

Where the numerical subscripts simply indicate the order of phenotype in the model (e.g., 3 640 
is the BMRQ). To calculate the amount of additive genetic variance unique and associated 641 
with BMRQ beyond SMDT and BAS-RR (σ!":!$% , u=unique, t=total) we computed the 642 
proportion of genetic variance over the total BMRQ additive genetic variance as follows: 643 

 644 

σ!":!$% =
σ!.% 	

𝜎!.% + 𝛾!/.% ∗ 𝜎!/% + 𝛾!%.% ∗ 𝜎!%%
 645 

 646 

A graphical representation of the full multivariate model can be found in Supplementary Fig. 647 
7. Similar to what was reported above, we fit the models using the lavaan::sem() function 648 
(estimator “ML”).  649 
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Distinct factor solution. To estimate the genetic and environmental correlations between 650 
facets of music reward, we applied a correlated factor model via direct symmetric approach 651 
80 (referred to as distinct factor solution).  The direct symmetric approach is conceptually 652 
similar to a correlated factor solution.  In the correlated factor solution, the multivariate 653 
phenotypic variance-covariance matrix M is obtained as M = A+E (in the simplest case of an 654 
AE model), with A =XRAXT and E = ZREZT, where X and Z are the diagonal matrix of the standard 655 
deviation σA and σE and RA is the genetic correlation matrix. Within a direct symmetric 656 
approach, instead, a different parametrisation is specified to directly estimate the M 10x10 657 
symmetric matrix as M = A + E: 658 

 659 

𝐌	 =

⎣
⎢
⎢
⎢
⎢
⎡ σ!/% + σ*/% σ!/,!% + σ*/,*% ⋯ 𝛼 ∗ σ!1% 𝛼 ∗ σ!1,!2
σ!/,!% + σ*/,*% σ!%% + σ*%% ⋮ 𝛼 ∗ σ!1,!2 𝛼 ∗ σ!2%

⋮ ⋮ ⋱ ⋮ ⋮
𝛼 ∗ σ!/% 𝛼 ∗ σ!/,!% ⋮ σ!1% + σ*1% ⋮ σ!1,!2 + σ*1,*2
𝛼 ∗ σ!/,!% 𝛼 ∗ σ!%% 	⋯ 𝛼 ∗ σ!1,!2 + σ*1,*2 σ!2% + σ*2% ⎦

⎥
⎥
⎥
⎥
⎤

 660 

 661 

Where the M1:5,1:5 and M5:10,5:10 elements include the within-twin variance and between-traits 662 
covariances and are constrained to equal across zygosities, and the M5:10,1:5 and M1:5,5:10 663 
elements include the between-twin additive genetic within- and between-trait covariances 664 
and the expected additive genetic relationship α, which is fixed to either 1 or .5 in MZ and DZ 665 
groups, respectively. While this approach may return out-of-bound values, the absence of 666 
boundaries has been shown to yield asymptotically unbiased parameter estimates and 667 
correct type I and type II error rates 80. A graphical representation of the full multivariate 668 
model can be found in Supplementary Fig. 8. Model syntax was written following lavaan 669 
specifications. Model fitting was done via the lavaan: sem() function (estimator “ML”). In sum, 670 
the distinct factor solution provides a multivariate model for the decomposition of phenotypic 671 
variances and covariances in genetic and environmental components. Comparison of this 672 
model with more parsimonious independent pathway models allows us to test for the 673 
presence of a common genetic (or environmental) component shared across facets. 674 
 675 
Common-genetic factor solution. The hybrid independent pathway model (referred to as 676 
common-genetic factor solution) is a multivariate approach similar to the correlated factor 677 
solution, except with an additional restriction on the genetic covariances between traits (σA,A; 678 
hence hybrid or genetic, as environmental covariances are modelled in a distinct factor 679 
solution fashion). Consider a 5x5 phenotypic variance covariance matrix P. Under a hIPM AE 680 
model, P can be written as P = Ac + Au + E, where Ac = XcXc

T, with Xc being a 5x1 vector of the 681 
additive genetic path coefficients of a common additive genetic factor (AC) loading across all 682 
phenotypes, and Au is a 5X5 diagonal matrix including the residual unique genetic variance 683 
for each phenotype, σAu

2. The full additive genetic variance-covariance matrix can be then as 684 
follows: 685 
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𝐀𝐭 =	𝐗𝐜𝐗56 + 𝐀𝐮 =

⎣
⎢
⎢
⎢
⎢
⎡𝛌!/
% + σ!"/% 𝛌!/ ∗ 𝛌!% 𝛌!/ ∗ 𝛌!. 𝛌!/ ∗ 𝛌!1 𝛌!/ ∗ 𝛌!2
𝛌!/ ∗ 𝛌!% 𝛌!%% + σ!"%% 𝛌!% ∗ 𝛌!. 𝛌!% ∗ 𝛌!1 𝛌!% ∗ 𝛌!2
𝛌!/ ∗ 𝛌!. 𝛌!% ∗ 𝛌!. 𝛌!.% + σ!".% 𝛌!. ∗ 𝛌!1 𝛌!. ∗ 𝛌!2
𝛌!/ ∗ 𝛌!1 𝛌!% ∗ 𝛌!1 𝛌!. ∗ 𝛌!1 𝛌1/% + σ!"1% 𝛌!1 ∗ 𝛌!2
𝛌!/ ∗ 𝛌!2 𝛌!% ∗ 𝛌!2 	𝛌!. ∗ 𝛌!2 𝛌!1 ∗ 𝛌!2 𝛌!2% + σ!"2% ⎦

⎥
⎥
⎥
⎥
⎤

 686 

 687 

The 5X5 residual environmental covariance E simply contains the unconstrained residual 688 
environmental variances and covariances σE

2 and σE,E. The 10X10 between-facet between-689 
twin matrix M can then be written as follows: 690 

	691 

𝐌 =	 C𝐀𝒕 + 𝑬 𝛼 ∗ 𝐀𝒕
𝛼 ∗ 𝐀𝒕 𝐀𝒕 + 𝑬

E	692 

 693 

Where α is the expected additive genetic relationship between twins and is fixed to either 1 694 
or .5 across MZ and DZ groups, respectively. A graphical representation of the full multivariate 695 
model can be found in Supplementary Fig. 9. Model syntax was written in lavaan. Model 696 
fitting was done via the lavaan:sem() function. Model comparison between distinct and 697 
common-genetic factor solutions was carried out via the laavan:: lavTestLRT() function. Here, 698 
we additionally note that the common-genetic factor solution is a less parsimonious 699 
version of the more commonly used independent pathway model and, therefore, provides a 700 
less restrictive and more specific test for a genetic common factor when compared to the 701 
distinct factor solution. 702 

Structural equation modeling assumptions. SEM-based estimates obtained from the full 703 
information maximum likelihood (FIML) estimator are unbiased under the assumption that 704 
observations follow a multivariate normal distribution 41. Violation of the assumption of 705 
multivariate normality has been found to have little impact on parameter estimates but can 706 
have severe consequences for both the χ2 test statistics and the standard error of the 707 
estimates for the parameters. An alternative estimator that is less sensitive or robust to 708 
violation of multivariate normality is the maximum likelihood with robust standard error and 709 
scaled test statistics (MLR). Although this estimator assumes missingness to be completely at 710 
random, it has been shown to provide quite reliable estimates of data missing at random 82.  711 
Relevant comparisons between the two estimators are given in Supplementary Note 1. 712 

 713 

Data availability 714 
The datasets generated during the current study cannot be made public as registry data were 715 
used. However, researchers are able to apply online at the Swedish Twin Registry to access 716 
the twin data used in this study (see https://ki.se/en/research/swedish-twin-registry-for-717 
researchers). 718 
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 719 

Code availability 720 

All scripts and code used to analyse the data can be found at: 721 
https://github.com/giacomobignardi/h2_BMRQ. 722 
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