New Results
Interpreting single-cell and spatial omics data using deep networks training dynamics
View ORCID ProfileJonathan Karin, Reshef Mintz, Barak Raveh, Mor Nitzan
doi: https://doi.org/10.1101/2024.04.06.588373
Jonathan Karin
1School of Computer Science and Engineering, The Hebrew University of Jerusalem
Reshef Mintz
1School of Computer Science and Engineering, The Hebrew University of Jerusalem
Barak Raveh
1School of Computer Science and Engineering, The Hebrew University of Jerusalem
Mor Nitzan
1School of Computer Science and Engineering, The Hebrew University of Jerusalem
2Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
3Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
Article usage
Posted April 10, 2024.
Interpreting single-cell and spatial omics data using deep networks training dynamics
Jonathan Karin, Reshef Mintz, Barak Raveh, Mor Nitzan
bioRxiv 2024.04.06.588373; doi: https://doi.org/10.1101/2024.04.06.588373
Subject Area
Subject Areas
- Biochemistry (13008)
- Bioengineering (9889)
- Bioinformatics (31684)
- Biophysics (16353)
- Cancer Biology (13404)
- Cell Biology (19118)
- Clinical Trials (138)
- Developmental Biology (10351)
- Ecology (15358)
- Epidemiology (2067)
- Evolutionary Biology (19620)
- Genetics (13005)
- Genomics (17994)
- Immunology (13106)
- Microbiology (30640)
- Molecular Biology (12777)
- Neuroscience (66891)
- Paleontology (490)
- Pathology (2070)
- Pharmacology and Toxicology (3564)
- Physiology (5555)
- Plant Biology (11460)
- Synthetic Biology (3189)
- Systems Biology (7852)
- Zoology (1775)