
Inferring residue level hydrogen deuterium exchange with
ReX

Oliver M. Crook ∗ 1, Nathan Gittens2, Chun-wa Chung2, and Charlotte M. Deane1

1Department of Statistics, University of Oxford, Oxford, UK
2Structural and Biophysical Sciences, GlaxoSmithKline R&D, Stevenage, UK

April 8, 2024

Abstract

Hydrogen-Deuterium Exchange Mass-Spectrometry (HDX-MS) has emerged as a powerful
technique to explore the conformational dynamics of proteins and protein complexes in solu-
tion. The bottom-up approach to MS uses peptides to represent an average of residues, leading
to reduced resolution of deuterium exchange and complicates the interpretation of the data.
Here, we introduce ReX, a method to infer residue-level uptake patterns leveraging the overlap
in peptides, the temporal component of the data and the correlation along the sequence dimen-
sion. This approach infers statistical significance for individual residues by treating HDX-MS
as a multiple change-point problem. By fitting our model in a Bayesian non-parametric frame-
work, we perform parameter number inference, differential HDX confidence assessments, and
uncertainty estimation for temporal kinetics. Benchmarking against existing methods using a
three-way proteolytic digestion experiment shows our method’s superior performance at pre-
dicting unseen HDX data. Moreover, it aligns HDX-MS with the reporting standards of other
structural methods by providing global and local resolution metrics. Using ReX, we analyze
the differential flexibility of BRD4’s two Bromodomains in the presence of I-BET151 and quan-
tify the conformational variations induced by a panel of seventeen small molecules on LXRα.
Our analysis reveals distinct residue-level HDX signatures for ligands with varied functional
outcomes, highlighting the potential of this characterisation to inform mode of action analysis.

1 Introduction

Understanding the conformational dynamics of proteins and the conformational changes induced
by their interactions is key to determining their function. One method to explore such dynamics
is hydrogen-deuterium exchange mass-spectrometry (HDX-MS), which tracks the rate of exchange
of amide hydrogens with deuterium in solution (Orengo et al., 1999; Engen, 2009; Chalmers et al.,
2011; Houde et al., 2011; Masson et al., 2017; Sauve et al., 2018). This rate is impacted by various
factors such as secondary (and higher order) structures, as well as solvent accessibility (Katta and
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Chait, 1993; Konermann et al., 2011; Kammari and Topp, 2020; Jia et al., 2020). It is fundamentally
based on the concept of local folding and unfolding, as suggested in the Linderstrøm-Lang theory
(James et al., 2021) The numerous applications of HDX-MS can include: the charaterisation of
binding interfaces of antibody-antigen complexes by mapping of their epitopes and paratopes (Tsai
et al., 2020); examining structural stabilisation by small molecules and their corresponding allosteric
effects (Kielkopf et al., 2019); and the effect of amino-acid mutations on transporters (Jia et al.,
2020) and applications to vaccine design (Gorman et al., 2016).

The majority of HDX-MS studies involve a bottom-up approach to mass-spectrometry (Masson
et al., 2017). In this widely employed strategy, proteins undergo on-line proteolytic digestion via a
non-specific protease—often pepsin or nepenthesin-II —immobilized to a column, usually yielding
good sequence coverage by reporting deuterium uptake at the peptide fragment level. Although
the selection of protease can be tailored to specific applications, inherent limitations emerge due
to the resolution loss at the peptide level, obstructing a nuanced interpretation of the molecular
phenomena under scrutiny. Hence, bottom-up HDX-MS leads to distinct scenarios that remain
unaddressed by current statistical methodology. First, combining information from overlapping
peptides (often referred to as redundancy) and replicates lacks a clear approach. Second, instances
where overlapping peptides exhibit a mixture of protection and de-protection effects require a means
of resolution, which is currently addressed by somewhat arbitrary approaches such as data omission
(Pascal et al., 2012). Third, differences in the length of the overlapping peptides introduces inter-
pretation issues, especially when contrasting modest, consistent effects on longer peptides against
more variable effects on shorter ones. We refer to this phenomena as the length-bias issue. Finally,
these challenges need to be considered whilst also accounting for the temporal nature of HDX data
and correlations along the sequence dimension.

Projecting peptide-level data to residue-level data is an apparent solution to the previously
outlined challenges, and several strategies have been proposed in this direction (Babić and Smith,
2017; Babić et al., 2019; Althaus et al., 2010; Zhang et al., 2012; Zhang, 2020; Hamuro and Zhang,
2018; Kan et al., 2013, 2019; Liu et al., 2011; Claesen and Politis, 2018; Skinner et al., 2019;
Saltzberg et al., 2017; Salmas and Borysik, 2021; Smit et al., 2021; Gessner et al., 2017; Keppel
and Weis, 2014). These proposed approaches can be divided into non-optimisation approaches
(e.g. (Babić and Smith, 2017)), such as taking a running average along the sequence dimension
(Keppel and Weis, 2014), and optimisation-based approaches where a model is developed and
then fit to the data by minimising the discrepancy between the model and data (e.g. (Gessner
et al., 2017; Smit et al., 2021; Salmas and Borysik, 2021; Skinner et al., 2019)). Such models can
incorporate physically relevant constraints, such as prohibiting negative deuterium uptake. While
a residue-level model, in principle, could overcome the aforementioned issues, it introduces its own
set of challenges. The main obstacle is the underdetermination of an appropriate model, implying
a scenario where model parameters outnumber data points. Further, HDX suffers from a more
extreme form of underdetermination that cannot be mitigated by acquiring additional data. This
arises due to the potential countless combinations of deuterium uptake for two adjacent residues,
each with unit redundancy, as long as the sum of the uptake is consistent with the observed data.
All of these drawbacks become exacerbated when one wishes to study multiple protein states and
perform differential HDX-MS experiments. Here, it becomes paramount to associate a measure
of statistical confidence to the results to avoid false positives. Currently, there is no appropriate
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statistical framework that attempts to tackle these issue.
In response to these outstanding methodological challenges, we developed ReX - a statistical

method complemented by an associated software package, designed to achieve residue-resolved HDX.
ReX combines a likelihood model, which models the deuterium uptake per residue, with a prior
change-point model that permits correlations or jumps between the parameters of adjacent residues.
ReX is a non-parametric Bayesian model (see (Crook et al., 2022a) for examples), meaning it
does not fix the number of parameters, allowing model complexity to expand with the quality and
volume of data. The Bayesian framework allow us to associate probability distributions to pertinent
quantities (such as model parameters) that are updated in the light of data (Crook et al., 2022a).
This updated distribution, termed the posterior distribution, allows us to quantify the uncertainty
in our model inferences.

Despite a number of computational approaches available to obtain residue-level HDX from over-
lapping peptide-level HDX data, a comprehensive benchmarking of such approaches is absent from
the literature. Directly conducting residue-level HDX via nuclear magnetic resonance (NMR) or
electron transfer dissociation (ETD) has its own set of drawbacks (Wei et al., 2014; Stofella et al.,
2022). In particular, NMR has low sensitivity whilst ETD has poor efficiency and typically needs
sample specific optimisation. Consequently, comparisons leveraging different experimental plat-
forms are likely to only report on qualitative differences. Here, we propose a simple and extensible
benchmark using a triple digestion of Cytochrome C. In this approach, we test the ability of different
methods to reconstruct the HDX-MS data from the unseen digestions and quantify the error. In this
experiment, we expect the same underlying HDX results, but by using different peptide digestions
to generate independent datasets allows for a critical examination of whether diverse methods yield
consistent residue-resolved HDX-MS profiles.

In this manuscript, we first detail the ReX model specification and posterior inference. We
proceed to explain and perform a benchmarking analysis, highlighting ReX’s superior performance
but also providing insights into the recommendations and potential pitfalls associated with alterna-
tive methods. Subsequently, we illustrate how ReX can evaluate the resolution and quality of HDX
data, as well as evaluate the consistency of structure prediction methods such as AlphaFold (Jumper
et al., 2021). We further showcase ReX’s capabilities through a variety of examples and extensive
simulations. A comparative analysis of the stabilisation of the two bromodomains of BRD4 using I-
BET151 demonstrates that the BC loop of the second bromodomain is more flexible that that of the
first bromodomain. We then perform conformational signature analysis (CSA) on LXRα with sev-
enteen small molecules at the residue-level. Here, we demonstrate the additional insights that can be
drawn by quantifying uncertainty in the conformational landscape induced by the small molecules.
The associated R-package ( https://github.com/ococrook/RexMS ) enables single-protein anal-
ysis (https://ococrook.github.io/RexMS/articles/ReX.html), differential analysis (https://
ococrook.github.io/RexMS/articles/DifferentialRexMS.html )and conformational signature
analysis (https://ococrook.github.io/RexMS/articles/ConformationalSignatureAnalysis.
html). The package comes with a variety of visualisations including PDB structure visualisation.
We also provide Shiny Application for interactive data visualisation and as a template so other
may construct their own. To interact with the BRD4 and LXRα results visit the following web-
pages: https://olivercrook.shinyapps.io/BRD4-ReX/ and https://olivercrook.shinyapps.
io/ConformationalSignatureAnalysis/.
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2 Results

2.1 The ReX method and posterior inference

ReX is designed as a versatile statistical method aiming to facilitate the inference of residue-level
HDX-MS across a range of experimental designs. It accommodates multiple protein states, including
mutations, small molecules, complexes and more (see Fig. 1). Whilst replicates and many time-
points are not a strict requirement of the input data, we advocate for them. Incorporating additional
replicates and time-points, especially those spanning three or four orders of magnitude, not only
helps ReX infer the model parameters but also enhances confidence and quality in the outcomes. To
ensure consistency between peptides, ReX incorporates information from fully deuterated controls.

Central to ReX is a Bayesian change-point model, designed to perform sub-localisation of HDX
uptake. We posit the existence of a latent (unobserved), residue-level process, analogous to as-
sumptions entailed in a Hidden Markov Model (Eddy, 2004). For a given residue, there is a
temporal uptake model parametrised as mixture between a stretched exponential (Weibull-type)
model (Crook et al., 2022b) and a standard exponential (logistic model). The mixture proportions
are learned during the inference process, enabling the model to better adapt without necessitat-
ing pre-specification. Given that this model usually possesses an excessive number of parameters,
regularization of the parameter space is performed by defining a prior model (Betancourt, 2021;
Crook et al., 2022a). The complexity of the inferred model is guided by the data, and thus, we non-
parametrically specify the prior model as a change-point process (Green, 1995; Fearnhead, 2006).
Here, parameters between segments of residues are similar or necessitate a jump. This implies that
the number of change-points, their locations, and associated kinetic parameters must be inferred
(see Fig. 1). While these quantities could be pre-specified, they are typically unknown, and hence,
we include these quantities in the inference process. A prior Poisson process is employed to model
the unknown (random) locations of these change-points along the data’s residue axis (Kingman,
1992).

Inference in Bayesian models typically employs Markov-chain Monte-Carlo (MCMC) to draw
samples from the posterior distribution of parameters, by using a Markov-Chain(Betancourt, 2017).
However, a challenge arises when adding or removing a change-point which increases or decreases
the dimension (i.e. the parameter count) of the model. Therefore, we developed an MCMC method
that allows the Markov-chain to explore whilst increasing and decreasing the model’s dimension.
The Reversible Jump MCMC (RJMCMC), sometimes referred to as the trans-dimensional MCMC
algorithm, facilitates such dimension switching (Green, 1995). This algorithm handles scenarios
where the number of unknown entities is itself unknown. The intricacies are primarily in determining
the transition probability when altering dimensions (see methods for more details).

Bridging the unobserved model to the data remains challenging. The observation model takes
the residue-level model and adds up the residue values from the exchangeable residues covered by
a peptide to derive peptide-level inferences which can be compared with the data. The residuals
are posited to follow a Laplace distribution with the scale (variance) parameter multiplied by the
length of the peptide. This approach down-weights the contribution of longer peptides, or more
precisely, permits them to be more variable.

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.12.589190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589190
http://creativecommons.org/licenses/by/4.0/


Repeat according to experimental design
1. Timepoints (typically 4 orders of magnitude)
2. Replicates
3. Protein Complexes/antibodies
4. Small molecules
5. Mutants

m/z

D
D

DD

D

D

D

D

Generate HDX-MS data

Heavy water incubation,
quench,

on-line proteolytic digestion

Mass
Spectrometry

ϑ(r): residue-level parameters

ϑ�
ϑ�

ϑ�

ϑ�
ϑ�

ϑ�

ϑ�
ϑ�

Inference of number of change-points, their locations and associated parameters using Reversible Jump

Time

KHAAYAWPFYKPVDVEALGLGDY

Time

KHAAYAWPFYKPVDVEALGLGDY

Inference of change-points

Sublocalisation using
Bayesian change-point model

%D uptake
ReX method

KHAAYAWPFYKPVDVEALGLGDY

ϑ�

ϑ�
ϑ�

ϑ�

ReX model and inference

Time

time

D
-u
pt
ak
e

Inference of temporal model

Reversible Jump moves

parameters of temporal model

Figure 1: An Overview of the ReX method, model and inference.
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Figure 1: ReX is applicable to general HDX-MS experiments performed using the bottom-up ap-
proach. Typical variations in workflow are allowed including changes to temperature, pH, buffer
concentration. Experimental designs with at least three labelling time points and replicate measure-
ments enhances the quality of ReX’s outputs. The method can be used for any protein states such
as protein complexes, antibodies, small molecules and mutants as examples. The goal of ReX is to
take the peptide map generated by the experiment with deuterium reported on peptide fragments
and infer (sub-localise) the deuterium exchange measurements at the level of residues. ReX uses
a Bayesian change-point model on the parameters of the temporal kinetics. This non-parametric
model is fitted using reversible jump Markov-chain Monte-Carlo.
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2.2 An extensible benchmark for residue-level HDX-MS

In order to assess ReX, in comparison with other approaches, we devised a versatile and extensi-
ble experimental benchmark, designed to be straightforwardly implemented and extended by all
HDX-MS practitioners. Taking cytochrome-C, HDX was conducted at four labelling time points
(15,150,1500,15000s), initially undergoing digestion with nepenthesin II (Affipro) for three repli-
cates. Subsequent digestions employing pepsin and aspergillopepsin (Type XIII) were performed
in separate experiments. Each digest generates different peptide maps and we refer to this as a
differential digestion experiment (see Fig. 2).

To computationally profile diverse approaches, residue-level uptake was initially inferred for
each model under consideration, using data obtained from the nepenthesin II digest. Subsequently,
the remaining two digests were ‘held-out’ and rendered invisible to the model, establishing our
benchmark as a ‘leave-digests-out’ experiment. Each peptide from the ‘held-out’ data was considered
in turn. We predicted their deuterium uptake by summing the already inferred residue values,
thereby obtaining uptake ‘peptide-maps’ from both the predicted and observed data. To evaluate the
performance of the model, we measured the deviation of the predicted and observed data (see Fig.
2), with the superior approaches having the lowest error. This benchmarking technique is adaptable
to other digests, proteins, methods, and MS instruments, confirming its general applicability.

In order to compare to other methods, we searched the literature to find other open-source ap-
proaches. However, despite extensive treatment of the topic in the literature few methods are openly
available. Only methods that were either simple enough to recode, or had available open-source
code (ensuring both execution and veracity of the method) were benchmarked. Additionally, it was
imperative that all benchmarked methods could report deuterium uptake, not merely differences or
protection factors.

We successfully benchmarked several methods: the Pseudo-Inverse (P-Inv) approach (Babić
and Smith, 2017), a least-squares based approach (LeastSq) (Gessner et al., 2017), a weighted av-
erage approach (RFU-WA) (Keppel and Weis, 2014), and approaches based on the Fused-LASSO
(PyHDX) (Skinner et al., 2019; Smit et al., 2021). Specifically, the weighted average approach cal-
culates a residue-weighted average, considering the length of the peptides. P-Inv inverts a coupling
matrix between residue and peptide-level uptakes, while LeastSq minimizes the deviation between
an uptake model and observed data using a squared error loss function. PyHDX expands on this,
incorporating an additional smoothness penalty between residues. Further details on all approaches
are given in the methods.

The performance of each method under benchmark analysis is presented in Fig.3A, revealing
ReX as a consistently accurate and physically reasonable approach for inferring deuterium uptake
values. Furthermore, ReX exhibited the lowest Median Absolute Deviation (MAD) consistently
in six out of eight examples, outperforming other methods and only being less accurate than the
generalized-inverse approach (P-Inv) at one specific time point (150s) (See Fig.3A). Detailed ex-
amination revealed that P-Inv, in particular, generated unphysical kinetic curves and occasionally
inferred negative uptake, violating physical principles and the monotonicity assumptions of deu-
terium uptake (Fig.3B). In contrast, ReX and the weighted average approach (RFU-WA) were the
only methods that produced a monotonic deuterium uptake, with other methods sometimes pre-
senting non-monotonic profiles (Fig.3C). An extension of our benchmark analysis, which considered
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Figure 2: Design of experimental and computational benchmark. A triple-protease digest
is performed on Cytochrome C to generate three different peptide maps. In turn the data from each
digest is used to train residue level models which are then evaluated on the held-out data from the
other digests.

alternative training data and downsampled Nepthensin data, confirmed ReX’s superior performance
in the largest number of comparisons, outperforming the next best method, PyHDX with λ = 5,
across three additional benchmarking experiments, totalling 32 comparisons (Fig. 3D and Fig. S1).
In instances where PyHDX excelled, ReX was the second-best method 80% of the time, solidi-
fying its reliability. Ultimately, the challenge of all methods is identifying the correct amount of
smoothness as overly smooth approaches (RFU-WA) and those with low amounts of smoothness
(P-Inv) performed poorly. We also noted that the (P-Inv) approach become unstable at points of
high-deuterium uptake.
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Figure 3: Benchmarking Results. (A) The bootstrap distributions of the median absolute
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the lowest average error in six of the eight cases. (B) The percentage of residue-level uptakes that
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2.3 Extracting features from ReX

Having established the accuracy of ReX, we extracted features from the model for subsequent down-
stream analysis. A current limitation of the HDX-MS literature is the routine absence of reported
measures of resolution of the data. ReX outputs a scale or standard deviation parameter termed
sigma (σ) and uses σ to model the deviation of its uptake fits from the observed data. Accordingly,
σ is larger for more variable data. Hence, when we added additional standard deviations of noise
to our Cytochrome C data and saw that σ increased in a close to linear fashion (see Fig. S2). This
means that smaller values of σ indicate less variable data and large values of σ indicate greater
variability. Consequently, σ is a viable global metric for data quality and resolution.

For a residue-level measure of data quality, we propose the average reconstructive error (ARE)
- a measure of the model’s ability in reconstructing observed data at the peptide level (see meth-
ods). Elevated ARE values for a residue implies consistently suboptimal modelling for overlapping
peptides (Fig. S2). Significant variability in the value of the ARE highlights regions where fits
are either of high or low quality. Moreover, the ARE is highest in the same region of the poorly
modelled peptides in our benchmarking experiment. Furthermore, these results are consistent with
adding additional variability to the data (see Fig. S2). Crucially, σ and the ARE are consistent,
ensuring a credible interval constructed using σ of size 1−α means that at least 100× (1−α)% of
the data is covered by the credible interval (see Fig. S2). Hence, σ and ARE together are robust
and communicable metrics for algorithmic faithfulness and dataset quality bringing it in-line with
reporting standard in crystallography, electron microscopy and structural prediction.

We then examined four previously published HDX experiments on Alpha-Lactalbumin, Bar-
nase, Enolase and Serium Amyloid Protein (SAP) (Salmas and Borysik, 2021), associating struc-
tural feature annotated via Uniprot (Consortium, 2015) and Free SASA with our model outputs
(Mitternacht, 2016). We defined surface accessible (SA) as relative SA above 25% (Mitternacht,
2016). Though HDX cannot simply be reduced to these quantities, we found correlations across
several of these annotations. Our results (presented in Fig. 4) are obtained by randomly resampling
residues 1000 times and are reported as a distribution (see Fig. S3). Examining the mean num-
ber of change points for each of the structure features showed fewer change-points for non-surface
accessible (NSA) regions compared with SA regions. We interpret fewer change-points (i.e. fewer
jumps) as increased correlation in the sequence dimension. Hence, the result is likely because of a
more stable hydrogen bond network in NSA regions of the proteins. Helices tended to have more
change-points than strands perhaps indicative of the helices being generally able to concertina and
more readily locally unfold and refold. Again, parallel strands appeared less stable to exchange
than their anti-parallel counterparts, perhaps due to their weaker hydrogen bond angles (Tsutsumi
and Otaki, 2011). When considering the mean uptake of these features, we found SA regions con-
ferred a faster rate of exchange and higher maximum uptake. The effect of weaker hydrogen bonds
of parallel strands was also observed with faster and higher uptake for parallel strands compared
with the anti-parallel counterparts. Helices also appeared more amenable to deuterium exchange,
suggesting perhaps a propensity to breath more.

Subsequently, we used ReX’s features to predict the secondary structure of predicted struc-
tures of Cytochrome C. Using AlphaFold2 and multiple sequence alignment (MSA) subsampling
(Wayment-Steele et al., 2022), we generated 25 models of cytochrome C (See Fig. S11 and Supple-
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mentary methods). By training random forest models with our HDX data, we achieved a median
AUROC of 0.78 ([0.63, 0.88], 90% confidence interval) when predicting secondary structure (See Fig.
S12 and supplementary methods). Prediction of SA and NSA were also obtained for each model
and we computed the prediction confidence at each residue for both secondary structure and SA.
Models with a confidence score (see supplementary methods) above 0.7 had a median RMSD from
the crystal structure of 1.2Å, whereas models with a confidence score below 0.6 had a median RMSD
of 4.1Å(see Fig. S13). This analysis suggests HDX could potentially triage AI generated protein
structures.
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Figure 4: ReX inferred features for structural annotations. (A) The mean number of change-
points stratified by structural annotation including strand-type, helix and solvent accessibility. The
distributions are over random subsamples and boxplots are in the Tukey format and represent
approximate 95% confidence intervals. The greater the number of change-points less correlated
the uptake is along the sequence dimensions. (B) The same stratification as (A) but for the mean
deuterium uptake over exposure time to heavy water.
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2.4 Residue-Resolved differential HDX-MS with ReX

HDX-MS is a powerful technique in differential settings where conformational changes induced
by interactions or perturbations can be revealed (Masson et al., 2017). Details that are often
challenging or impossible to obtain with other structural approaches are readily observable using
HDX-MS (Engen and Komives, 2020). Having explored ReX’s abilities with single proteins, we then
used it to quantify residue-level difference from differential HDX-MS experiments. ReX calculates
residue-level probabilities of deuterium difference, enhancing the interpretation and visualisation
of the resultant data. Given that HDX alone cannot currently de-convolute a binding site from
conformational changes, we opt for an extensive simulation study to demonstrate ReX’s abilities.

Using our already generated cytochrome C data digested by nepenthesin II, we performed
120 simulations. This involved randomly selecting a residue from cytochrome-C and then subse-
quent reduction of deuterium uptake for all peptides covering that residue to specified percentages
(80, 90, 95%) of the original uptake, with 80% representing the strongest protection effect. Each
scenario was repeated four times across an additional ten random seeds representing a total of 120
simulations.

The challenge of quantifying individual residue differences arises from the need to account for the
consistency, or lack thereof, among overlapping peptides. ReX, through a re-constructive approach,
models the residue in each protein state under study, comparing each residue’s uptake with the APO
(reference) state. We quantify the difference at the level of peptides by predicting the peptide-level
values by summing over the posterior mean values for the appropriate residues. Subsequently, the
total reconstructive error (TRE) (also effect size) is the value obtained by summing the effect for
overlapping peptides. This summation approach, rather than average, gives more confidence to
residues overlapping numerous peptides with a consistent direction of effect. For example, suppose
four peptides overlap a residue and their deuterium difference is in random directions with consistent
magnitude, then their sum will be close zero. In contrast, ten overlapping peptides each with the
same direction of effect, but with small magnitude of change, will have greater value boosted by
the summation of ten values. An associated probability calculation of confidence can be made (see
methods for more details).

An illustrative analysis is shown in Fig. 5 for an 80% effect. Volcano plots, representing effect-size
(TRE) vs Probability, are obtained for each time point with residues of interest located in the top
corners (see Fig. 5A). However, volcano plots obscure spatial context, which can be re-introduced
through line plots detailing effect size as a function of residue number, where transparency is
scaled with probability. Our simulations induced a ripple effect where a clear protection effect
is accompanied by a corresponding and adjacent de-protection effect. A subsequent protection
effect but smaller is then observed proximally and so forth. When averaging the effect over time
these effects are washed-out and the region of protection is clearly identified. Probabilities were
transformed into an estimate of the expected false discovery rate (FDR), obtained by computing
the average of the posterior error probabilities (see methods). For typical FDRs of interest (FDR <

0.01), we find that our probability estimates are calibrated but can underestimate the error at higher
values of FDR or at specific time-points (see Fig. 5D). Averaging over the time dimension yielded
consistent estimates of error (Fig. 5E). The complete set of examples is shown in the supplementary
material, which comprises one week of simulations on 48 CPU cores.

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.12.589190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589190
http://creativecommons.org/licenses/by/4.0/


An exhaustive evaluation of all simulations is detailed in the supplementary material, where
initially the proximity of the randomly selected residue (for subsequent peptide perturbation) to
the residue with highest probability of difference is evaluated. Typically, these were extremely
close being within a couple of residues (see Fig. S4). Furthermore, it may not always be possible
to improve this results if the residue was in a region of low redundancy. We then obtained the
probability of this randomly selected residue having a deuterium difference. At an 80% effect,
this randomly chosen residue had close to probability 1 in almost all examined scenarios with
the probability reducing (as expected) for smaller protection effects. Our analysis confirms that
our approach is well-calibrated and advocate for considering temporal averages if the effects and
probabilities are small. Additional calibration plots are shown in Fig. S5.
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Figure 5: A simulated epitope mapping example. (A) Volcano plots stratified by time-points
with probability of change in the y-axis and difference in Effect Size (ARE) in the x-axis. Protection
is presented in blue and De-protection in red. (B) Line plots with difference in Effect Size (TRE)
plotted as a function of residue. Protection is presented in blue and De-protection in red. The
transparency is scaled with probability. (C) As in B but with the results averaged over time. (D)
Calibration plots showing the expected false discovery rate (FDR) against the observed (FDR) are
method is mostly conservative (points below the principal diagonal). (E) The same as (D) but
averaged over time. The results are always conservative showing good calibration.
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2.5 Comparative analysis of tandem Bromodomains in BRD4

The BET (Bromo- and Extra-Terminal domain) protein family, containing epigenetic readers such
as BRD2, BRD3 and BRD4 (Chung et al., 2011; Chung and Tough, 2012), have drawn significant
attention due to their role in the the recognition and binding to acetylated lysine residues on histones
that regulate transcription (Filippakopoulos et al., 2010). Inhibitors of the BET family of proteins
have shown promise for a wide variety of therapeutic applications (Mujtaba et al., 2007). These
proteins contain tandem Bromodomains, where the functional role of each Bromodomain BD1 and
BD2 has recently been clarified (Gilan et al., 2020). Bromodomains have a characteristic four-helix
bundle arranged in a left hand twist with high sequence similarity. For example, the majority of
Bromodomains contain a canonical WPF shelf and a conserved asparagine (residue 140 in BD1 of
BRD4). Sequence alignment of the two Bromodomains in BRD4 reveals high levels of conservation
(See Fig. S10), yet subtle differences impact the respective domain’s flexibility (Gilan et al., 2020).

To understand the flexibility differences at residue-level between BD1 and BD2 of BRD4, we
analysed triplicate HDX-MS experiments of BRD4 in the context of the non-specific inhibitor I-
BET151 (Dawson et al., 2011). Five labelling time-points (15,60,600,3600,14400s) were collected
in triplicate in the presence of DMSO or I-BET151. We then applied ReX separately to each
Bromodomain due to missing data in the proline-rich disordered region joining them.

Upon examining BD1, a strong stabilisation signature was observed at all time points (Fig. 6A)
suggestive of molecule binding forming additional bonds and reducing HDX. The effect endured
over extended labelling times, with minimal confident de-protection, indicating global stabilisation
of the entire domain (Fig. 6B). Meanwhile, BD2 presented a an even more pronounced global
stabilisation effect (Fig 6C). However, I-BET151 has a 13-fold higher domain selectivity for BD1
over BD2, attributed to a through-water interaction of the quinoline nitrogen to the side chain of
Gln85 in BD1 (Petretich et al., 2020). To gain further insights, we examined the time averaged effect
in a line plot for both Bromodomains (Fig. 6D). The results are similar with marked stabilisation
around the WPF shelves. However, the BC loop in BD2, proximal to the conserved asparagine,
exhibited a much stronger stabilization signature than in BD1.

To rationalise this result, we examined the structure of the small molecule in the binding pocket
and saw that I-BET 151 faces away from the BC loop (Fig. 6E) meaning that it unlikely that
the molecule forms any new bonds in this region. Given that the selective inhibitor IBET-BD1
achieves selectivity by additionally binding to Asp144 via an appended pyrrolidine (Gilan et al.,
2020), we hypothesised that the BC loop, and the whole BD2, exhibits more intrinsic flexibility.
Consequently, the enhanced stablisation signature in BD2 might be attributed more to differential
flexibility than to a significant disparities in the bonding network.
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WPF Shelf

Acetylated Histone binding

iBET-151

Figure 6: Comparative analysis of tandem Bromodomains in BRD4 using ReX (A)
Volcano plots of Effect Size (TRE) against probability of difference of BD1 in BRD4 (B) The
corresponding line plots associated with BD1 in BRD4. Transparency is scaled with probability.
(C) As with (A) but for the BD2. (D) (Upper) A time averaged line plot showing protection effects
as a function of residue for BD1 (lower) as with (upper) but for BD2, (E) iBET-151 in complex
with BD1 of BRD4 with conserved asparagine and WPF shelf highlighted. The BC loop face away
from the molecule. (F) A cartoon of BD1 in BRD4 with the HDX results plotted directly on the
structure.
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2.6 Conformational Signature Analysis of LXRα

LXRα is a member of the nuclear hormone receptors (NHR) family of transcription factors (Willy
et al., 1995; Janowski et al., 1996). Upon binding with cholesterol derivatives, LXRα heterodimer-
izes with the retinoid X receptor to modulate gene expression (Hong and Tontonoz, 2014). Liver
X receptors (LXRs) play a pivotal role in cholesterol homeostasis and are therapeutic targets for
atheroscelerotic cardivascular disease (Venkateswaran et al., 2000; Hong and Tontonoz, 2014). In-
duction of cholesterol transporters, such as ABCA1, by LXRs facilitates efflux of cholesterol from
macrophages and subsequent excretion of cholesterol from the body(Wagner et al., 2003). However,
developing anti-atherogenic compounds has posed challenges because of their adverse lipogenic ef-
fects (Schultz et al., 2000; Levin et al., 2005), a consequence of LXRs regulating the expression
of many lipogenic genes (Schultz et al., 2000). Furthermore, it is believed that among LXRs it is
LXRα that is primarily responsible for the lipogenic effects (Schultz et al., 2000). Two therapeutic
molecules WAY-252623 (Katz et al., 2009) and BMS-852927 (Kick et al., 2016) have reached clinical
evaluation for their attenuated lipogenic effects and potent ABCA1 induction.

In order to understand how structural dynamics correlate with the in vivo pharmacology of
the different available LXR compounds, Belorusova et al. (2019) conducted an HDX-MS study on
seventeen molecules complexed with LXRα. These molecule were characterised by their in vivo
beneficial and adverse effects using mouse models, then ranked based on their ABCA1 induction
and induced plasma triglyceride (TG) levels. AZ5, AZ8, AZ9 had WAY-252623 exhibited low
ABCA1 induction, with the remainder classified as being high inducers. Furthermore, AZ1, AZ876,
T0901317, WAY-254011 and F1 were classed as lipogenic, AZ2-AZ5 were not classified, and the rest
classified as non-lipogenic.

Given, the large number of molecules performing pairwise comparisons was infeasible; thus we
(and the previous authors) applied multivariate statistical methods. Conformational Signature
Analysis (CSA) was performed, whereby the HDX-MS data is formatted as a data matrix and
treated statistically. Unlike the previous analysis, ReX was used to project the peptide-level data
to residue-level data and additionally quantify uncertainty. The uniform treatment of all states
enabled examination of the conformational landscape spanned by the perturbation induced by the
ligands. Subsequently, we correlated this landscape with the in vivo determined pharmacological
properties of the ligands.

First, ReX was employed and followed by principal component analysis (PCA) to visualise the
high-dimensional data (see methods). PCA projects the data along orthogonal components, where
the first component (PC1) has highest variance explained (largest eigenvalue) and subsequent com-
ponents are then ordered by the amount of variance explained (see methods) (Holmes and Huber,
2018). The first three principal components are visualised across Fig. 7 A and B, with molecules
colour-coded by molecular annotations. BMS-852927 was separated from all other molecule in both
PC1 and PC2. This corresponded to considerably stronger stabilisation of helix 3 and the beta-
sheets, and reduced stabilisation of helix 10-12. ABCA1 inducers separated broadly along PC1,
whereas lipogenic molecules, though grouping together, presented more complex interpretation.
The loadings, visualised directly on the structure in Fig. 7 G, indicate residues’ contribution to the
component variance with darker shades representing stronger contributions. As expected PC1 is
driven by variation in beta-sheet and helix 3 stabilisation. PC2 variation is driven by residues on
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helix 3 and 10, whilst PC3 variation is contributed to by residues on helix 9 and the loop from helix
9 to 10.

Adopting a flexible approach, functional annotations of the molecules were used in a supervised
model. We employed orthogonal partial least squares discriminant analysis (OPLS-DA (Thevenot,
2016)), creating separate models for lipogenicity and ABCA1 induction (Fig. 7 C). OPLS-DA di-
rectly separates the data along a predictive component and subsequent orthogonal component(s).
Associated residue weights (loadings) are depicted in the line plots in Fig. 7 E and F. The separation
between high and low ABCA1 inducers was driven by residues on helix 3, the adjacent beta-sheet,
and helix 5. Whereas separation along the lipogenic dimension involved larger contributions from
helix 1, whether stabilisation and destabilisation depended on the molecule. Notably, the lipogenic
molecules saw marked stabilisation of residues 214-219 and the residues 200-214 tended to be desta-
bilised in non-lipogenic molecules. However, these effects are partially correlated with residues that
contribute to ABCA1 induction, complicating the differentiation of the competing effects. Mul-
tidimensional scaling (MDS) on chemical (Tanimoto) similarity confirmed that molecules did not
cluster, in chemical space, by their functional annotations (see Fig. S6).

Providing additional context, CSA was re-performed using ReX in the context of LXRα com-
plexed with the second receptor interacting motif of the co-activator SRC1 (Belorusova et al., 2019).
Unliganded LXRα does not interact with the SRC1 peptide and all compounds induced binding of
LXRs to the SRC1 peptide (Belorusova et al., 2019). While separating the high and low ABCA1
inducers was more challenging, a clearer separation of the lipogenic clases was observed (see Sup-
plementary Figs. S6, S7 and S8)) with (18.3%) variance explained by the predictive component (as
opposed to 15.1%). The ABCA1 separation was driven by similar residues as found without the
co-activator peptide, with these residues also contributing to the class separation of the lipogenic
molecules, but to a lesser extent. Moreover, residues on helix 10-12 gave a high contribution,
which was not observed in the ABCA1 results or without the SRC1 peptide. Results from helix 1
changed in this context, with all ligands contributing to strong stabilization of this region. Lipogenic
molecules appeared to enhance the interaction with SRC1 (mean Kd = 1.2 µM) with a weak agonist
effect from the non-lipogenic molecules (Belorusova et al., 2019). In addition, the co-activator pep-
tide interacts with helix 12 supporting the marked reduction of HD exchange. Hence, the results
might be explained by lipogenic molecules encouraging higher differential recruitment of the SRC1
peptide, explaining their HD results, while ABCA1 induction seems independent of this effect.
Therefore, the therapeutic effects of LXRα ligands may hinge on the conformations they stabilize.
Agonist ligands encourage helix 12 folding into the active state, creating a co-activator-binding
surface and recruiting SRC1 (Belorusova et al., 2019). Stabilisation of helix 3, 5, and corresponding
beta sheets, which are the interaction sites of co-repressors induced high-levels of ABCA1. Perhaps
the LXR co-repressors are disassociated from the complex during these conformations leading to
elevated ABCA1 levels (Belorusova et al., 2019).
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Figure 7: Conformational Signatures of LXRα.
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Figure 7: (A) PCA plots of HDX-MS signatures per ligand. Ligands are coloured by ABCA1
induction and blue arrow represent residue contributions. (B) As with (A) but for PC1 versus
PC3. The ligands are coloured by lipogenic annotation. (C) An OPLS-DA plot with lipogenic as
the outcome variable (D) An OPLS-DA plot with ABCA1 induction as a outcome variable (E)
The loading plot corresponding to the predictive dimension of (C) larger loadings indicate greater
contribution. (F) A loading plot corresponding to the predictive dimension of (D). (G) PCA loading
of (A) and (B) plotted directly on the protein structure of LXRα. Purple indicates a positive loading
(positive correlation with the original variable) and Green indicates a negative loading (negative
correlation with the original variable)
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2.7 Uncertainty quantification of CSA

In the analysis of LXRα above, we have predominantly used point estimates, specifically means,
from our Bayesian non-parametric approach ReX. While beneficial, this approach does not exploit
the full potential of the methodology. Quantifying uncertainty in these analyses is paramount if
they are to replace mouse experiments or be used for downstream pharmaceutical decisions.

To visualise the uncertainty in the conformational landscape, we project 50 samples from the
posterior distribution (possible summaries) into PCA coordinates aligned using the procrusties
transform (Nguyen and Holmes, 2019; Crook et al., 2022c). Fig. 8a is particularly illuminating,
confirming that BMS-852927 and GW3975 are positioned in distinct regions of the plot and the
resulting contours suggest that these conformations are unlikely to overlap those induced by other
molecules. Other molecules are also distinct or overlap somewhat, suggesting they induced similar
conformations. In fact, numerous molecules, either annotated as high ABCA1 inducers or unan-
notated, overlap within the same spatial region, hinting that two unannotated molecules (AZ1,
T0901317) could be potent ABCA1 inducers. All lipogenic molecules (and some non-lipogenic)
occupy this spatial region, indicating that avoiding this part of the conformational landscape may
be key to circumventing lipogenic side effects.

Exploring the uncertainty in the loadings, visualized in Fig. 8b, reveals the confidence levels
attributed to specific residues contributing to variation in the conformational landscape. Caution
is advised when interpreting residues where the loading contribution changes sign. This does not
inherently indicate a change in the direction of protection or de-protection but if the weight does
intersect zero this means that we are unsure of a non-zero contribution. However, the majority of
residues contributions remain confident leaving conclusions unchanged. The C-terminal helix region
displays substantial uncertainty, warranting further investigation in the context of the co-activator
peptide (Supplementary Fig. S9). The quantiles, visualised in structure space and exemplified by
plotting a 95% quantile directly onto the crystal structure (Fig. 8c,d,e), exhibit minor changes
between the upper and lower quantiles, yet helix 3 and beta-sheets remain highlighted across the
95% confidence interval. Hence, uncertainty quantification strengthens our results and is a unique
benefit of ReX.
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Upper Quantile (97.5%) Lower Quantile (2.5%)

Figure 8: Quantifying conformational uncertainty. (A) A PCA (PC1 vs PC2) plot with
uncertainty contours representing the posterior distribution of the locations of molecules in PCA
coordinates. (B) The corresponding quantiles in the loadings of the principal components (C) The
loading plotted directly on the protein structure corresponding to the mean estimate of the loadings.
(D) As with (C) but the upper quantile of the loading (E) as with (D) but with the lower quantile
of the loadings.
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3 Discussion

HDX-MS offers a powerful approach to probe the conformational dynamics of proteins, yet the
bottom-up approach to MS has inherent interpretative challenges stemming from peptide redun-
dancy, length-bias, and contradictions. To address these challenges, we introduced ReX, a Bayesian
non-parametric change-point model tailored to infer residue-level HDX patterns. Uniquely, ReX
adapts to data quality and size, offers quantifiable measures of data resolution, and, importantly,
quantifies uncertainty, distinguishing it from existing approaches. Its ability to correct length-bias,
combined with a data-informed inference of smoothness along the residue dimension, sets ReX
apart. As a flexible approach, ReX is able to model single proteins, differential experiments or
large-scale comparisons via supervised or unsupervised conformational signature analysis.

Using a three-way differential digestion experiment, ReX was shown to be a highly accurate ap-
proach, whilst adhering to physical constraints of HD exchange. Furthermore, the analysis demon-
strated the importance of smoothing in the residue dimension. Through a variety of case-studies,
we demonstrated the insights that ReX obtained. For instance, considering BRD4 Bromodomains
in the context of I-BET151, we determined the differential flexibility of the BC loop in the two
Bromodomains. Further, CSA on seventeen molecules complexed with LXRα highlighted ReX’s
ability in linking conformational signatures with in vivo determined pharmacological properties.
Hence, ReX offers a promising avenue to streamline further experimental investigations with addi-
tional confidence obtained from uncertainty quantification. Specifically, we found that the ligand
BMS-852927 induced a distinct conformation of LXRα and the lack of stabilisation of helix 12, helix
3 and the beta-sheets could explain its therapeutic profile.

While ReX efficiently models centroided spectra, EX1 dynamics might necessitate a dual ap-
plication of ReX, each tailored to a distinct population’s centroid. Looking ahead, integrating
ReX with alternative structural models, such as cryo-EM, and introducing 3D structure-derived
constraints or correlations could further improve its performance.
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4 Methods

4.1 Likelihood model

We first describe our proposed model as a Bayesian generative model (see (Crook et al., 2022a) for
a general description and mass-spectrometry examples). We let yi(t) be the observed deuterium
incorporation process where i indexes peptides from i = 1, .., N . We assume there is an underlying
residue level process that builds yi(t). More specifically, the observed peptide data are considered
as noisy observations of some function of the unobserved residue processes. This unobserved (or
latent) residue process is derived specified using the following functional form:

µr = (1− πr)(1− exp (−brtpr) + πr(1− exp (−drt))), (1)

which defines the unobserved process for residue r, where residues are indexed r = 1, ..., R. We
remark that this functional form is more elaborate that previous approaches, which is to allow a very
general approach. The mixture between two competing models is defined by mixing proportions
πr ∈ (0, 1). These proportion the relative preference for the two most popular models. The first
component describes the stretched exponential of Weibull kinetics used by a number of studies and
the second component uses the model compatible with protection factors as a single exponential
per residue. The mixing components are learnt from the data and so concentrate on the preferred
model or an interpolation between the two. We collect the parameters using θ(r) = (πr, pr, br, qr),
which is a function of residues.

The peptide process is derived from the residue process as the summation of residue-level pro-
cesses, using a Laplace error model, and hence:

yi ∼ L

(∑
Ri

µr, liσ
2

)
,

Ri := {r : starti + 2 ≤ r < endi, r ̸= Pro} ,

(2)

where li is the number of exchangeable amides for peptide i. This encodes a so-called length bias,
allowing the longer peptides to be more variable (or contribute less to the overall fit). We assume
that variance parameter arises from the same distribution for all residues. This assumption on σ2

allows us to borrow power to better estimate the variance for each residue (and hence each peptide).
For convenience, we write µi =

∑
Ri
µr.

4.2 Non-parametric prior model

It is pertinent to note that at the moment our model is over-specified, by which we mean that there
are more parameters than there typically observed data. However, even if N > R, our model may
still be difficult to identify. The model becomes identifiable when the redundancy for every residue
is greater than one. This over-specification is necessary to complete the model, with the issue being
alleviated by careful prior modelling and quantifying uncertainty.

We employ a non-parametric prior model, which is a class of flexible prior models which allow
the number of parameters in the model to be inferred using the data. The prior model is the model
of the likelihood parameters; that is, the model that describes θ(r). In this way if more data is
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observed the model is able to adapt and introduce complexity. To reduce the effective dimension of
the model we use a change-point model. Here, the parameters are specified as constant segments
between points of change, where the values of the parameters, the locations of the change-points
and the number of change-points are quantities to be inferred from the data. We note that whilst
the prior model is hence piece-wise constant the posterior distribution (the distribution of the
parameters having observed the data) is not necessarily in the same model family.

For a more precise mathematical description of the model, we specify these change-points using
a Poisson process prior with rate λ/(R − 1). The choice of rate ensure the mean number of
change-points is λ (Kingman, 1992). From standard analysis of Poisson process, the number of
change-points, K, is Poisson distributed K ∼ Pois(λ). We denote the vector of of change points
as τ = (τ1, ..., τK), which are a priori uniformly distribution and ordered in (1, R), by properties of
the Poisson process prior.

There are K + 1 intervals to consider between each change-point and the endpoints. We let,
θk = (πk, pk, bk, qk) be the parameters in the kth interval, k = 1, ..., K + 1 and let θ = (θ1, ..., θK+1).
Hence, we can write the prior function as

θ(r) =
K+1∑
k=1

θkI(τk−1 ≤ r < τk), (3)

from which it is obvious to see that the prior model is a piece-wise constant process. The prior
model specification of the model is complete once we specify priors for the individual parameters
for which we place the following hierarchical structure

dk ∼ G(dshape, drate)
bk ∼ G(bshape, brate)
πk ∼ B(πshape1 , πshape2)
pk ∼ B(pshape1 , pshape2)

log σ ∼ N (m, v2)

drate ∼ G(dα, dβ)
brate ∼ G(bα, bβ).

(4)

This model structure involves a hyper-prior structure which allows borrowing of information between
the model parameters.

4.3 Derivation of posterior distribution

For clarity and to aid understanding the nuances of the model, we derive the posterior distribution
of our model. By standard computations, using repeated application of Bayes’ Theorem:

p(K, τ, θ, σ|y) ∝ p(y|τ, θ,K, σ)p(θ|τ,K)p(τ |K)p(K)p(σ) (5)

First, we recall that
p(K) = Pois(K;λ), (6)
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and the change-points τ are uniform and ordered in (1, R), so

p(τ |K) =
K!

(R− 1)K
(7)

as there are K! permutations of uniforms that give the same τ . Given K, the τ state space Ωτ,K is

Ωτ,K = {τ1, .., τk ∈ (1, R) : τ1 < τ2 < ... < τK} . (8)

The prior for θ is

p(θ|τ,K) = p(π|τ,K)p(b|τ,K)p(d|τ,K)p(p|τ,K)

=
K+1∏
k=1

p(πk|τ,K)p(bk|τ,K)p(dk|τ,K)p(pk|τ,K)
(9)

with the state space Ωθ,K+1 = ((0, 1)× (0,∞)× (0,∞)× (0, 1))K+1. For the observation model, we
recall that:

yi ∼ L

(∑
Ri

µr, liσ
2

)
,

µr = (1− πr)(1− exp (−brtpr) + πr(1− exp (−drt)))
Ri := {r : starti + 2 ≤ r < endi, r ̸= Pro} ,

(10)

Hence, we see that

p(y|τ, θ,N, σ)π(σ) =
N∏
i=1

L

(
yi;
∑
Ri

µr, liσ
2

)
N (log σ;m, v2). (11)

The parameter space for fixed K is ΩK , where

ΩK = Ωθ,K+1 × Ωτ,K × Ωσ, (12)

where Ωσ = (0,∞). The full parameter space Ω∗ for the posterior π(K, τ, θ, σ|y) is

Ω∗ =
∞⋃

K=0

⋃
(τ,θ,σ)∈ΩK

(τ, θ, σ,K). (13)

4.4 Derivation of reversible-jump Markov-chain Monte-Carlo sampler

If the number of parameters in the model was fixed, we could employ a Markov-chain Monte-Carlo
algorithm to sample from the posterior distribution of the model (Brooks et al., 2011). However, we
are required to explore an infinite dimensional state-space or in other words our model is allowed to
change dimension. That is the dimension of the model is to be inferred from the data which allows
our model powerful flexibility. As a results, we require Monte-Carlo moves that allow moves between
models of smaller and greater dimension. The number of parameters is essentially controlled by the
number of change-points. That is the increasing the number of change-points increases the number
of parameters in the model.
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This is classically referred to as a class of statistical problems where "the number of things we
do not know is something we do not know". To sample from the posterior distribution of our model,
we need an MCMC algorithm that allows for a varying dimension model. One such an approach
is referred to as reversible jump Markov-chain Monte-Carlo (RJMCMC), sometimes referred to as
trans-dimensional MCMC. We briefly introduce RJMCMC in the general setting before specialising
to our case and refer to the seminal work of Green (1995).

4.5 Preliminaries on RJMCMC

Suppose that we have a countable collection of models over which we wish to perform inference
{Mk, k ∈ K}. Each model Mk has a vector of parameters θk ∈ Ωnk , where the dimension nk is
allowed to vary for each model. Bayesian model choice for observed data y, can be written using
the following hierarchical structure:

p(k, θk, y) = p(k)(θk|k)p(y|k, θk). (14)

For convenience, we set x = (k, θk). For given k, x ∈ {k}×Ωnk =: Ωk and x varies over Ω∗ =
⋃

K Ωk.
Now, we need to construct and Markov transition Kernel P (x, dx′) that is aperiodic, irreducible
and satisfies detailed balance. In the case of transition between parameter subspace with different
dimensions, some care is needed. Consider a Markov chain where the current state is x, and propose
to make a move of type m that transitions to state dx′ with probability qm(x, dx′). Not all states
with be accessible from x is a single move and so qm(x,Ω∗) = 0 for many m. Such a move in then
accepted with the following probability

αm(x, x
′) = min

{
1,
π(dx′)

π(dx)

qm(x
′, dx)

qm(x, dx′)

}
. (15)

However, it is still unclear how to construct moves between different models. Suppose ρk,k′ is the
probability of proposing a move to model k′ when the current model is k. Typically, ρk,k′ = 0 if
|k − k′| > 1 for simplicity, but still ensures all states are accessible and therefore the Markov-chain
will be irreducible. The reversible jump MCMC algorithm can be stated as follows

• Suppose Xt = (θk, k) is the current state of the Markov-chain. State Xt+1 is generated as
follows:

• Set k′ = k + 1 with probability ρk,k+1 and otherwise let k′ = k − 1.

• Simulate u ∼ gk,k′(.), where dim(u) = k

• Set (θk+1, u
′) = ψ(θk, u), where ψ is a differentiable bijection.

• If k′ = k + 1, i.e. dimension increasing, we compute:

α(θk+1, k|θk, k) = min

{
1,

π(θk+1, k + 1|y)ρk+1,k

π(θk, k|y)ρk,k+1gk,k+1(u)

∣∣∣∣∂ψk,k+1(θ, u)

∂(θ, u)

∣∣∣∣} (16)

• If k′ = k − 1, i.e. dimension decreasing, we compute:

α(θk−1, k − 1|θk, k) = min

{
1,
π(θk−1, k − 1|y)ρk−1,kgk−1,k(u

′)

π(θk, k|y)ρk,k+1

∣∣∣∣∂ψk,k−1(θ, u)

∂θ

∣∣∣∣} (17)
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• Sample v ∼ U[0, 1], and if α ≥ v, then set Xt+1 = (θk′ , k
′) and otherwise set Xt+1 = (θk, k)

It is often easier to compute the acceptance probability by considering the probability distribution
of θk′ , k′|θk, k, which we call Q. The acceptance probability is then

α(θk′ , k
′|θk, k′) = min

{
1,
π(θk′ , k

′|y)Q(θk, k|θk′ , k′)
π(θk, k|y)Q(θk′ , k′|θk, k)

}
. (18)

We can then perform a MCMC move between models of varying dimensions.

4.6 Contrustion of RJMCMC

Here, we explicitly construct the RJMCMC sampler for our Poisson process prior model. We
proceed by first describing the moves and then computing the transition probabilities

4.6.1 Adding a dimension

We first consider adding a dimension with probability ρ. We then choose an interval to break/split
by sampling j ∼ U {1, 2, ..., K + 1} and let the new change point be τ̃ ∼ U(τj−1, τj). We now have
two new intervals for which we need to generate parameters and so we simulate θ̃1, θ̃2 ∼ p(θ). We
then set k′ = k + 1, τ ′ = (τ1, ..., τj−1, τ̃ , τj, ..., τK) and θ′ = (θ1, ..., θj−1, θ̃1, θ̃2, θj+1, θK+1)

4.6.2 Removing a dimension

We delete a dimension with probability 1 − ρ. Choose a change-point to delete by sampling j ∼
U {1, .., N} and sample new parameters for the merged interval from θ̃ ∼ p(θ). We then set k′ =
k − 1, τ ′ = (τ1, ..., τj−1, τj+1, .., τK), θ′ = (θ1, ..., θj−1, θ̃, θj+2, θK+1).

4.6.3 Transition probabilities

For adding dimensions, we compute the following transition probabilities, which follow by book-
keeping and independence:

Q(θ′, τ ′, K ′|θ, τ,K)

= {Probability of new dimesnion} × {Choose interval} × {Choose τ̃} ×
{

Choose θ̃1, θ̃2
}

= ρ
1

K + 1

1

τj − τj−1

p(θ̃1)p(θ̃2)

(19)

and similarly for the reverse case we see that:

Q(θ, τ,K|θ′, τ ′, K ′) = (1− ρ)
1

K + 1
p(θ) (20)

For removing dimensions, we compute the following transition probabilities

Q(θ′, τ ′, k′|θ, τ, k)

= {Probability of removing a dimension} × {Choose a change-point} ×
{

Choose θ̃
}

= (1− ρ)
1

k + 1
p(θ̃)

(21)
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For the reverse situation, we note that K ′ = K, and compute

Q(θ, τ,K|θ′, τ ′, K ′) = ρ
1

K

1

τj+1 − τj−1

p(θ̃1)p(θ̃2) (22)

Furthermore, we need to compute the posterior

π(θ′, K ′, τ ′|y) ∝ p(y|τ ′, θ′, K ′, σ)π(θ′|τ ′, K ′)π(τ ′|K ′)π(K ′) (23)

and the formulas are given earlier.

4.7 MCMC moves for other parameters

Given the current iteration of the MCMC algorithm at model K (i.e. K change-points), we the
parameters θ and σ are updated using a random-walk Metropolis-Hastings algorithm (Chib and
Greenberg, 1995).

4.8 Other Methods

In this section we detail other possible methods for determining residue-level uptake data.

4.8.1 Generalised inversion approach

Let Uresidue be a R × 1 vector of unknown residue level uptakes for a fixed exposure time. Let
Upeptide be the N × 1 vector of peptide level uptakes for a fixed exposure time. Let C be a coupling
matrix of dimension N ×R, which means all entries are 0 apart from the (i, j)th entry which is 1 if
residue j has exchangeable amide for peptide i. Then it follows that

Upeptide = CUresidue. (24)

In general C is rectangular is we can solve for unknown Uresidue by performing Uresidue = C†Upeptide,
where C† is the generalised inverse. The main limitations of this approach are that this inversion
is unstable, there is no reason why the temporal component would be consistent, uptake values
are not guaranteed to be 0 and 1 and no smoothing between uptake value between neighbouring
residues.

4.8.2 Least-squares approach

Consider the notation of the following section, then Uresidue can be solved by considering the fol-
lowing minimisation problem

min∥Upeptide − CUresidue∥2, (25)

constraining the entries of Uresidue,j to be in [0, 1]. This problem can solved by gradient-descent.
This approach ensure the residue uptake values are between 0 and 1, however all the other limitation
remain. Furthermore, the minimum in not necessarily unique or global.
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4.8.3 Fused-LASSO approach

To introduce smoothness between residue; that is, constraining the uptake between neighbouring
residues to be similar we can introduce a fusion penalty. Consider the following optimisation
problem:

min∥Upeptide − CUresidue∥2 + λ|Uresidue,j − Uresidue,j+1|1, (26)

constraining the entries of Uresidue,j to be in [0, 1]. The extra penalty ensures that neighbouring
residues are similar. This is the approach implemented by PyHDX (Smit et al., 2021) and is similar
to (Skinner et al., 2019) and is part of a more general strategy called the fused LASSO. It is unclear
how to select λ and because of double-dipping if λ is chosen using the data then computing p-value
for difference after applying this approach leads to inflated false positives. This is referred to as the
selective inference problem.

4.8.4 Residue-averaging approach

Here, we simply take the average deuterium uptake over peptides for the respective residues. Con-
sider the matrix Upeptide and normalise the columns by the number of exchangeable amides for the
relevant peptide to construct Ũpeptide. The residue level uptake is then the row-average of the non-
zero entries of Ũpeptide, which is a vector of length R. This approach suffers from the same issues as
the other approaches. However, it also over smoothness because it cannot quickly adapt to sudden
changes.

4.9 ReX methodology

4.9.1 Basic quantities

In this section, we detail a number of additional quantities available from analysis with our approach
other than estimate of residue level uptakes and parameters. Firstly, for each observed peptide yi,
we can extract the posterior mean µ̂i from our model:

µ̂i =
1

M

M∑
m=1

µim, (27)

where m = 1, ...,M indexes over MCMC iterations. This is the prediction of that peptide from the
model. Slight variations are of course possible and modelled by deviation from the mean using σ.
We can then compute the reconstructive error (RE) using the following formula:

REi = yi − µ̂i, (28)

which can be normalised by the li. To define a per residue error, we consider the collection of
peptide Nr overlapping residue r. We then defined the (signed) average reconstructive error (ARE)
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and the total reconstructive error (TRE) as following:

Signed AREr =
1

nr

∑
j∈Nr

yj − µ̂j

lj
,

AREr =
1

nr

∑
j∈Nr

|yj − µ̂j|
lj

,

TREr =
∑
j∈Nr

yj − µ̂j

lj
,

(29)

where nr is the redundancy at residue r. We can see that any of these quantities would be large
if the data are poorly modelled at residue r and these quantities give us an idea of which residue
are contributing most to the error. TREr is particularly important in the context of HDX-MS
because if several peptides overlapping a residue all with the same direction of error/difference,
such a difference is then consistent. This is a natural way to exploit the redundancy of the data.

4.9.2 Probabilistic estimates

We note that σ is an estimate of the deviation at any residue r. Therefore, we may compute the
following probabilities:

P (Signed AREr > 0) ≈ 1

m

∑
I(Signed AREr > τ (m)), τ (m) ∼ L(0, σ(m))

P (AREr > 0) ≈ 1

m

∑
I( AREr > |τ (m)|), τ (m) ∼ L(0, σ(m))

P (|TREr| > 0) ≈ 1

m

∑
I(| TREr| > |τ (m)|), τ (m) ∼

∑
Nr

L(0, σ(m))

(30)

These values gives us an estimate of errors at a particular residue. In practice, we may wish to
control the false discovery rate (FDR) but given that in a typical application we do not know the
false positives, we have to estimate this quantity. We can estimate the expected false discovery
rate (EFDR), in the following manner. Consider a set of ordered probabilities for a particular
phenomena such as deuterium difference p1, ..., pn. For a particular threshold τ , we estimate the
EFDR as follows:

EFDR(τ) =

∑n
i=1(1− pi)I(pi ≥ τ)∑n

i=1 I(pi ≥ τ)
(31)

Typically, we wish to control the EFDR at a particular level, say 0.05, however it is not clear which
threshold correspond to this value. To do this, we simply take the smallest pi such that the following
holds: EFDR(p) < 0.05 for p > pi and EFDR(p) > 0.05 for p < pi. It is easy to find this value by
trying sequentially smaller values of the observed pi.

4.9.3 Differential Analysis

HDX-MS is frequently applied in the differential setting where by two proteins states are compared.
Examples include epitope mapping using an antigen with and without antibody or proteins with
ligands, modifications, mutations etc. To perform differential analysis, we fit our model on the
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differential state being considered, for example the antigen-antibody complex data. We then using
a reconstructive approach by computing the difference between the peptides observed in the APO
data but using the posterior quantities from the state of interest. Large and consistent differences
indicate confident deuterium difference between the two states. By using TREr and the associated
probabilities of a difference, we can quantify the residues which are different between the two
conditions. The comparison need not be the APO data but any protein state of interest. It is
important to note that using this approach explicitly makes use of the redundancy of the data.
Consistent differences in the same direction on an overlapping group of peptides will be assigned
greater confidence because the quantities are summed rather than averaged.

4.9.4 Conformational Signature Analysis

At a high-level, conformational signature analysis (CSA) is for applications where pair-wise compar-
ison between all protein states is unfeasible. Typically, a large-panel of small molecules or antibodies
may be compared using HDX-MS. Several goals can be achieved by employing CSA. Firstly, we
wish to quantify the conformational landscape; that is, what are the modes of variation that the
perturbations to the protein induce. In what ways are perturbations similar in the variation they
induce to the protein. Which residues are the largest contributors to this variation? If the per-
turbations have associated functional annotations (such as the molecular property of a ligand) can
these be discriminated and can we quantify the residue associations? Given the complexity of these
analysis, quantifying uncertainty is of importance to avoid spurious associations.

ReX provides functionality to answer these questions. We first employ ReX to project peptide-
level to residue-level data, using TREr for all states c = 1, ..., C under consideration. These data
are then combined into a single data matrix of conditions by residues X. That is the (c, r)th entry
of X is the TREr for state c. For unsupervised analysis (data without external annotations), we
employ principal components analysis (PCA). This projects the matrix X using an orthogonal
linear transform into a new space. The directions taken for each subsequent component explain
the greatest variation of the data whilst remaining orthogonal. This projection can be written as
following

S = XL, (32)

where S is the C×R score matrix and L is the R×R loading matrix. Typically, the data is visualised
using a 2D scatter plot using the coordinates described by S. The first column of S describes the
first principal component (PC) and so on. Dimensionality reduction is typically achieved by only
keeping a small number of the columns of S, which explain a large amount of the variation in the
data. L is the R × R loading matrix which is the projection matrix in this case. Taking columns
of L and scaling by the variances, called loadings, define the important contributing variables to
the variation quantified by the PCs. In this case the loadings are associated with residues and the
magnitude (whether positive or negative) indicate the importance of that residue. The loadings
for each PC can be visualised directly on the protein structure to aid interpretation. Note that a
negative or positive loading does not necessarily indicate protection or de-protection

If each condition is associated with a external annotation such as a molecular property of a
compound, we can add an annotation vector y. In this case, we an employ a discriminate analysis
(DA) method. Similarly to PCA, we find the directions of the data that most discriminate the
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molecular properties using partial least squares discriminate analysis (PLS-DA) or the orthogonal
extensions (OPLS-DA) (Thevenot, 2016). In the latter, the dimensions are separated into predictive
and orthogonal dimensions. The annotation vector can be categorical (antagonist vs agonist) or
continuous (EC50). As before, the loadings can be projected onto the protein structure to interpret
the results.

To perform uncertainty quantification, we notice that we began our analysis with using the
posterior means from the ReX output. Instead, we can repeat the aforementioned analysis using
samples from the posterior distribution. In this way, we build up a distribution of locations for
each projection of our state and a distribution of loadings. We align the different projections to the
projection from the posterior means using the Procrustes transform.

4.10 RexMS R-package

The software package is implemented in R and can be found at the following url: https://github.
com/ococrook/RexMS. Documentation is found within the package and additional tutorials are
found within the package website https://ococrook.github.io/RexMS/. The tutorial cover single
protein analysis https://ococrook.github.io/RexMS/articles/ReX.html, differential analysis
https://ococrook.github.io/RexMS/articles/DifferentialRexMS.html, and conformational
signature analysis https://ococrook.github.io/RexMS/articles/ConformationalSignatureAnalysis.
html. Conformational signature analysis is implemented in both unsupervised and supervised mode,
in addition the supervised mode allows both categorical (e.g. a functional label) and continuous
(e.g. binding affinity). There can be missing values in the labels too if you wish to infer outcome
given the conformational signature.

4.11 Benchmark experiment of HDX-MS of Cytochrome C

Horse heart cytochrome c (Sigma C7752) was prepared at a stock concentration of 80 µM in an
equilibrium buffer of 50 mM MOPS, 150 mM NaCl, pH7.2. For peptide mapping experiments,
6 µL of 6.67 µM cytochrome c (40 pmol) was diluted in 54 µL equilibrium buffer. For labelling
experiments 6 µL of 3.33 µM (20 pmol) cytochrome c in 54 µL labelling buffer (50 mM MOPS,
150 mM NaCl, pD7.2 (pHread = 6.8)). The samples were labelled at 15, 150, 1500 and 15000 s
at 20°C, performed in triplicate for experiments with nepenthesin-2 digestion, and in singlicate for
aspergillopepsin and pepsin digestions. The reaction was quenched in an equal volume of quench
buffer (400 mM sodium phosphate, 6 M guanidine hydrochloride pH 2.2, 2% formic acid) for 1
min at 0.5 degree C and injected into a 100 µL sample loop and digested on one of three protease
columns: nepenthesin-2 (2.1 mm × 20 mm, Affipro), aspergillopepsin (2.1 x 20 mm, AffiPro) or
pepsin (2.1 x 30 mm, Waters Enzymate BEH).

For 100% D labelling experiments (fully deuterated control), the reaction was performed offline,
where 6 µL of 6.67 µM cytochrome c (40 pmol) was diluted offline in 54 µL of 6 M d5-guanidinium
deuteriochloride prepared in MOPS labelling buffer (50 mM MOPS, 150 mM NaCl, pD7.2 (pHread
= 6.8)) and labelled for 15 min at 20 ◦ C. The reaction was then quenched by manual addition of
an equal volume of 400 mM sodium phosphate, pH2.2, 2% formic acid for 1 min at 0.5◦ Cprior to
sample injection.
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The resultant peptides were collected on a pre-column trap (UPLC BEH C18 Vanguard, Waters)
for 4 min with 0.2% formic acid and 0.03% TFA in H2O at a flow rate of 100 µL/min, and separated
by liquid chromatography (1.7 µm UPLC BEH C18 column, 1.0 × 50 mm dimensions, 130 pore
size, Waters) for 12 min at a flow rate of 20 µL/min at 0.5 ◦ C, over a gradient of 11–40% of 0.2%
formic acid in MeCN before ramping to 98% for a further 3 min. A Leucine Enkephalin solution
was used as lock mass.

Data was acquired on a Waters Cyclic IMS series mass spectrometer, operated in V-mode
(resolution mode) using single-pass acquisition in the data-independent HD-MS acquisition mode
for labelling experiments, and HD-MSE acquisition mode for peptide mapping experiments.

Peptide mapping experiment data was processed in ProteinLynx Global Server v3.0.2. Identified
peptides were first filtered using a precursor maximum error of ± 7 ppm, a PLGS score of 7, and
sequence length of 5-20 amino acids. A second LARS-type filtering system was then employed to
further triage peptides, where a minimum LARS score of 5 was set based on seven soft filtering
thresholds: a minimum intensity 10,000, minimum products of 6, minimum products per amino
acid of 0.5, minimum consecutive products of 1, minimum sum intensity of identified products of
2000, minimum peptide score of 8, as well as an identification in ≥ 2 peptide mapping experiments
performed. HDX-MS labelling experiments were processed and manually curated in HDExaminer
(v3.3) against the filtered peptide list to determine deuterium uptakes.

To correct between uptake difference between digest experiments, even after normalisation by a
full deuterated control, a correction factor was obtained by taking the peptides that were common
in both experiments and computing the ratio of the medians of all these common peptides per time
point. Deuterium uptakes for all peptides were then multiplicatively adjusted by this correction
factor per time point to put them on the same scale.
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