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Abstract

Voltage imaging enables high-throughput investigation of neuronal activity, yet its utility is
often constrained by a low signal-to-noise ratio (SNR). Conventional denoising algorithms, such as
those based on matrix factorization, impose limiting assumptions about the noise process and the
spatiotemporal structure of the signal. While deep learning based denoising techniques offer greater
adaptability, existing approaches fail to fully exploit the fast temporal dynamics and unique short-
and long-range dependencies within voltage imaging datasets. Here, we introduce CellMincer,
a novel self-supervised deep learning method designed specifically for denoising voltage imaging
datasets. CellMincer operates on the principle of masking and predicting sparse sets of pixels
across short temporal windows and conditions the denoiser on precomputed spatiotemporal auto-
correlations to effectively model long-range dependencies without the need for large temporal
denoising contexts. We develop and utilize a physics-based simulation framework to generate
realistic datasets for rigorous hyperparameter optimization and ablation studies, highlighting the
key role of conditioning the denoiser on precomputed spatiotemporal auto-correlations to achieve
3-fold further reduction in noise. Comprehensive benchmarking on both simulated and real voltage
imaging datasets, including those with paired patch-clamp electrophysiology (EP) as ground truth,
demonstrates CellMincer’s state-of-the-art performance. It achieves substantial noise reduction
across the entire frequency spectrum, enhanced detection of subthreshold events, and superior
cross-correlation with ground-truth EP recordings. Finally, we demonstrate how CellMincer’s
addition to a typical voltage imaging data analysis workflow improves neuronal segmentation, peak
detection, and ultimately leads to significantly enhanced separation of functional phenotypes.

1 Introduction

Voltage imaging utilizes fluorescent reporters, either small-molecule dyes or genetically encoded
proteins, to measure the membrane potential of electrically active cells. Compared to traditional
patch-clamp electrophysiology (EP), voltage imaging offers higher throughput and is less invasive.
This technique has been used to monitor neuronal electrical activity during behavioral assays in
vivo [1], as well as to characterize the functional effects of pharmacological and genetic perturba-
tions in primary and iPSC-derived mammalian neurons in vitro [2, 3]. The increased throughput,
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control, and flexibility of voltage imaging have enabled significant advances in our understanding
of biology. Recent developments have improved the brightness of both voltage-sensitive dyes [4]
and heterologously expressed voltage-sensitive proteins [5]. However, the achievable signal-to-noise
ratio (SNR) remains limited compared to conventional patch-clamp techniques due to factors such
as dye quantum yield, short exposure times (<2ms) needed to capture neuronal action potentials,
and constraints on excitation intensity to prevent sample damage.

Limitations on SNR have two practical effects. First, small-magnitude electrical events of
interest, such as subthreshold post-synaptic potentials, could be lost in the background temporal
noise. Previous work powered by tracking the timing of action potential firing between neurons
provided some insight to how neurons might wire together in small circuits. However, the site of
inter-neuronal communication is the synapse. A measure of synaptic connectivity, demonstrated
as subthreshold activity measured at the soma, would provide a greater understanding of how
neuronal circuits are formed and how synaptic connections are modified during different forms
of plasticity. Second, cells expressing relatively low amounts of fluorescent reporters can be lost
in a comparatively high autofluorescent background, lowering the effective throughput of voltage
imaging.

These technical challenges have motivated the development of data denoising algorithms to
computationally enhance the SNR and enable the recovery of obscured and subtle fluorescent sig-
nals. Matrix factorization is an effective class of algorithms for fluorescence image denoising [6] [7],
as the sparse and static signal sources (e.g. neurites) in these imaging assays create an ideal setting
for approximating entire fluorescence recordings as low-rank decompositions. Principal component
analysis (PCA), non-negative matrix factorization (NMF), and penalized matrix decomposition
(PMD) [8] are popular implementations of this concept. These approaches, while being highly
efficient and effective at data denoising, suffer from a number of caveats. These include: (1) im-
plicit parametric assumptions on the nature of the noise that are theoretical approximation of the
actual complex data generating process; (2) usage of spatiotemporal regularizations to encour-
age robustness and model identifiability, such as total variation penalty or temporal continuity,
that are often violated (e.g. spike events, spatially heterogeneous expression of the fluorescent
reporter); (3) making strong assumptions about the background fluorescence component to allow
their approximate subtraction as a simple data preprocessing step. These modeling assumptions,
while laying a strong foundation, ultimately hamper the expressivity of conventional denoising
algorithms.

We envision that the ideal denoising algorithm should minimize the explicit assumptions made
about the noise process while maximizing the potential to learn the complex spatiotemporal rela-
tionships that govern the signal. Deep neural networks (DNNs), which have no theoretical limit to
complexity, can in principle solve the issue of denoising model expressivity. However, deep learning
denoising models pretrained on large datasets of natural images [9] are ill-equipped to operate in the
low-SNR regime of fluorescence imaging [10], requiring a suitable model to be trained from scratch
for this data domain. This immediately poses a challenge for supervised learning approaches which
require clean images as a learning target, which are not available in voltage imaging. A powerful
recent training strategy, called self-supervised denoising, circumvents the requirement of having
clean ground truth data by exploiting a key property of many noise processes: by appropriately
partitioning the raw data into compartments, and predicting one compartment from the other, it is
often possible to eliminate predictors of noise while retaining the ability to predict the underlying
signal. Noise2Noise (N2N) [11] and Noise2Self (N2S) [12] are prominent examples of self-supervised
denoising techniques proposed for images. These methods have consistently been shown to produce
state-of-the-art results, including in fluorescence imaging, even compared to counterparts that are
trained on pairs of noisy and clean data [10]. In particular, the Noise2Self algorithm, which we
use as a foundation to build upon here, operates on the following elegant and simple principle:
suppose a sparse set of pixels are masked out from a noisy image, and a neural network is trained
to predict the value of the sparsely masked pixels from the rest of the image, i.e. the majority of
pixels. Assuming that the noise in the masked pixels is uncorrelated with the rest of the pixels,
the optimal predictor can at best predict the noiseless signal component; in practice, it can excel
at this task given the strong spatial correlations and redundancy in biological images. It follows
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that the optimal masked pixel predictor in turn behaves as an optimal pixel denoiser. Noisy data
itself provides the needed evidence for teasing out the signal component, circumventing the need
for clean training data.

One of the main challenges in extending self-supervised image denoising approaches to spa-
tiotemporal data, such as voltage imaging recordings, is that these datasets contain thousands of
frames, and that each frame is individually too signal-deficient to self-supervise its own denoising.
At the same time, GPU hardware memory constraints and efficient training considerations prevent
us from ingesting and processing entire voltage imaging movies with neural networks to exploit
frame-to-frame correlations. The middle ground strategy adopted by several authors is to process
the movie in overlapping and truncated local denoising temporal contexts, i.e. chunks of adjacent
frames. For instance Li et al. [13] developed DeepCAD, a Noise2Self-like denoising method based
on reconstructing whole masked frames from temporally downsampled movie chunks, and demon-
strated its capacity to restore a high imaging SNR from low-SNR calcium imaging recordings.
Lecoq et al. [14] developed DeepInterpolation, a Noise2Noise-like whole-frame interpolation-based
deep learning method acting on small temporal windows which also allowed them to increase the
SNR and retrieve a significantly higher fraction of neuronal segments from calcium imaging.

These existing approaches are sub-optimal for two important reasons. (1) As we will show in
later sections, while such leave-frame-out approaches work remarkably well for calcium imaging, the
denoising performance degrades strikingly when the same methods are applied to voltage imaging
data (see Sec. 2.3). The much faster temporal dynamics of voltage imaging data compared to
calcium imaging imply that each movie frame contains unique and valuable signal that cannot
be entirely inferred from the adjacent frames. For instance, the evidence for a neuronal spike is
most prominently present in a single frame. (2) Unless the local denoising context is impractically
large and contains hundreds of movie frames, the neural network is incapable of estimating long-
range pixel-to-pixel temporal correlations that are arguably key to effective signal extraction and
noise removal. As we will show in later sections, explicitly precomputing and supplementing the
short-context local denoiser with such information results in a striking boost in the denoising
performance.

In this work, we introduce CellMincer, a self-supervised deep learning method specifically
designed for denoising voltage imaging datasets based on the Noise2Self denoising framework.
CellMincer introduces several key refinements over the currently existing self-supervised movie
denoising methods to address the aforementioned caveats. The key methodological contributions
of CellMincer include: (1) development of an efficient and expressive two-stage spatiotemporal
data processing deep neural network architecture, comprising a frame-wise 2D U-Net module for
spatial feature extraction, followed by a pixelwise 1D convolutional module for temporal data post-
processing; (2) replacing the common task of whole-frame prediction with masking and predicting
a sparse set of pixels from a small number of adjacent frames; this training methodology allows the
denoiser to have access to the unique information contained in any individual frame as well as the
supporting context in its neighboring frames; (3) precomputing spatiotemporal auto-correlations at
multiple length scales, and providing such precomputed statistics as a conditioner to the denoiser
neural network (that otherwise processes smaller spatiotemporal regions of the movie at a time);
(4) developing and leveraging a physics-based simulation framework to generate highly realistic
pairs of clean ground truth and noisy recording realization for hyperparameter optimization and
performing ablation studies to tease apart the roles of various modeling choices in a controlled
setting.

Using benchmarking experiments performed on simulated data and real voltage imaging data
with paired patch-clamp EP recordings as a proxy for ground truth, we show that CellMincer
yields state-of-the-art results as measured in terms of several practical metrics. These include a
peak signal-to-noise ratio (PSNR) average gain of 24 dB compared to the raw data (an increase
of 2 dB over the next best benchmarked method), a 14 dB reduction in high-frequency (>100Hz)
noise (a further reduction of 10.5 dB from the next best method), a 5-10 percentage point in-
crease of F1-score in detecting sub-threshold events compared to the other algorithms and across
all voltage magnitudes in the 1-10mV range (in which the baseline F1-score ranges from 5-14%),
and more than 20% increase in the cross-correlation between low-noise EP recordings and volt-

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589298doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589298
http://creativecommons.org/licenses/by-nc-nd/4.0/


age imaging. A striking result from our ablation study is the pivotal role of conditioning the
denoiser on precomputed global features, resulting in a nearly 5 dB (or approximately 3-fold)
boost in average PSNR gain, as well as a highly-concentrated distribution of PSNR gain across
all frames and electrical stimulation amplitudes (see Fig. 1e). Finally, to demonstrate the utility
of CellMincer to real end-to-end biological hypothesis testing, we compare the voltage imaging
of chronically tetrodotoxin-treated and unperturbed cultured hPSC-derived neurons, and demon-
strate that CellMincer denoising enables reliable identification and segmentation of nearly 2-fold
as many neurons as in the raw data, improved identification of spiking events, and ultimately
significantly enhanced statistical separation between the two functional phenotypes.

2 Results

2.1 CellMincer self-supervised denoising framework

The CellMincer denoising pipeline involves three stages: (1) data preprocessing and global feature
extraction; (2) self-supervised pretraining of the denoising neural network; (3) inference of denoised
movie. In the preprocessing step, we take a recording X(t, x, y) represented as a three-dimensional
tensor with shape T (time)×W (width)×H (height). We treat each pixel as a separate time series
of T samples, fit a low-order polynomial function to each, and thereby decompose the movie as
a sum of smooth trend and detrended residual tensors. The trend tensor primarily represents the
background fluorescence, whereas the residual detrended tensor represents a noisy measurement of
the electrical activity. Going forward, we perform self-supervised denoising only over the detrended
residual component, and add the smooth trend component back after the inference step. To set
the stage for self-supervised pretraining, we calculate various summary statistics for each pixel,
including temporal mean, temporal variance, and all bidirectionally lagged spatiotemporal auto-
correlations with adjacent pixels. These statistics are computed separately for both the slow moving
average and the fast residual components of the detrended movie, and at two different spatially
downsampled resolutions to account for auto-correlations with longer spatial lags. Finally, we
concatenate these precomputed statistics as a tensor F of shape F ×W ×H to represent pixelwise
global statistics, where F = 74 is the total number of computed statistics per pixel. Supplemental
Sec. S.3 fully describes our preprocessing and feature extraction stage. This step is schematically
referred to as global featurizer in Fig. 1a.

We present the denoising strategy we employ in CellMincer in two stages for clarity. First,
we describe the architecture of the DNN that we purport to be capable to performing efficient
denoising. Next, we describe the self-supervised training strategy a la Noise2Self that allows the
denoiser to train without clean targets.

Our proposed denoising DNN takes as input a series of 2τ+1 consecutive frames, corresponding
to time points t − τ, . . . , t − 1, t, t + 1, . . . t + τ , from the detrended movie and aims to predict a
denoised reconstruction of the frame in the middle, at time point t. We refer to τ as the temporal
order, and to 2τ + 1 as the context size of the local denoiser. Crucially, the DNN additionally
takes the precomputed global feature stack F as a conditioner to supplement the local denoiser
with long-range spatiotemporal statistics. The architecture of the denoising DNN consists of a
single-frame spatial feature extractor followed by a temporal post-processor (see Fig. 1b). The
spatial component is implemented as a U-Net convolutional neural network (CNN) with a small
but consequential modification: to condition the convolutional operations on F , we concatenate an
appropriately spatially downsampled copy of F prior to each convolution block on the contracting
path (see Fig. 1c). The conditional U-Net extracts deep, native-resolution C-channel single-frame
embeddings from each of the 2τ + 1 consecutive frames (see Fig. 1b). The resulting embeddings
are concatenated into a 4D tensor of shape (2τ + 1)× C ×W ×H:

A (t− τ : t+ τ, c, x, y) =

t+τ∧
t′=t−τ

NNU-Net

[
Xdetrended(t

′, x, y)
∣∣F ] , (1)

where
∧

denotes concatenation along the time dimension. This intermediate tensor is routed to
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Figure 1: Overview of voltage imaging data and CellMincer denoising model. (a) A simplified
schematic diagram of a typical optical voltage imaging experiment (left). The spatially resolved
fluorescence response is recorded over time to produce a voltage imaging movie. A key com-
ponent of CellMincer’s preprocessing pipeline is the computation of spatial summary statistics
and various auto-correlations from the entire recording, which are concatenated into a stack of
global features (right). (b) An overview of CellMincer’s deep learning architecture. (c) The con-
ditional U-Net convolutional neural network (CNN). At each step in the contracting path, the
precomputed global feature stack is spatially downsampled in parallel (F → F ′ → F ′′ → . . .)
and concatenated to the intermediate spatial feature maps. (d) The temporal post-processor
neural network. The sequence of pixel embeddings are convolved with a 1D kernel along the time
dimension, producing a single vector of length C. A multilayer perceptron subsequently reduces
this vector to a single value. (e) A comparison of model performance on simulated data before
and after introducing global features as a U-Net conditioner. The distributions of PSNR gain
are binned by stimulation amplitude. Using global features confers an average increase of 5 dB
to the denoiser, roughly corresponding to a 3-fold noise reduction. 5
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the temporal post-processor, which consists of a series of temporal convolutional layers, reducing
each set of pixel embeddings across all frames to a final output pixel. The output of the temporal
post-processor represents a denoised reconstruction of the middle frame:

Xdenoised
detrended(t, x, y) = NNpost-processor [A (t− τ : t+ τ, c, x, y)] . (2)

Note that the temporal post-processor treats pixels (x, y) as independent, only operating on time
and U-Net feature channels (see Fig. 1d). This two-stage constrained network design enables
efficient spatiotemporal data processing by logically compartmentalizing the flow of information;
the U-Net facilitates information mixing across pixels within individual frames, while the post-
processor convolves information across frames for individual pixels. Refer to Supplemental Sec. S.4
for architectural details.

We train the CellMincer denoiser in a self-supervised fashion as follows. At the beginning of
each training iteration, pixels chosen at random in the frame at time t are replaced with Gaussian
noise with pixel-specific in-distribution mean and variance before the frame is fed into the network:

X̃detrended(t, x, y) = [1−M(x, y)]Xdetrended(t, x, y) +M(x, y)N [µ(x, y), σ(x, y)] . (3)

Here, M(x, y) is a binary mask containing a sparse number of ones, and µ(x, y) and σ(x, y) cor-
respond to the temporal mean and standard deviation of the detrended movie at position (x, y).
These masked pixels are then used as the training targets, where the Lp loss is computed between
the network’s predicted values and their pre-masked values with the following loss function:

L =
∑
x,y

M(x, y)
∥∥∥NNCellMincer

[
. . .
∣∣∣ X̃detrended(t, x, y)

∣∣∣ . . . ;F]−Xdetrended(t, x, y)
∥∥∥
p
, (4)

where NNCellMincer = NNpost-processor ◦ NNU-Net (see Fig. 1b). Here, . . . | and | . . . refer to the
τ preceding and the τ following frames surrounding the frame at time t, respectively. As for a
choice of pixel loss function, we have experimented with both p = 1 and 2 and found the latter
to result in higher PSNR (see Supplemental Sec. S.6). Even though these pre-masked target
values do not represent actual ground truth but noisy realizations, their noise contribution cannot
be predicted by the neural network provided that the masking mechanism decorrelates the pixel
noise between masked and unmasked compartments (J -invariance, see Ref. [12]). In fluorescence
imaging, the main source of noise is pixelwise Poisson-Gaussian noise, which is uncorrelated across
pixels, allowing us to satisfy the J -invariance condition as a matter of masking individual pixels.
CellMincer’s implementation additionally permits the use of alternate masking mechanisms (e.g.
inclusion of margin around each masked pixel) if needed to account for correlated noise. Crucially,
since the identities of the masked pixels are not revealed to the denoiser (e.g. implicitly by using
a special masked pixel value, as is typically done), the network is incentivised to denoise not only
the sparse subset of masked pixels but the frame in its entirety. This training strategy allows
CellMincer to operate very efficiently at inference time, when we feed the noisy detrended movie
in (2τ + 1)-length overlapping sliding windows to the network and denoise each window’s entire
middle frame. To avoid the typical practice of producing truncated results, we augment all model
inputs with appropriate spatial padding at training and inference time, and we pad the beginning
and end of the denoised movie with τ copies of its first and last frame respectively.

Our implementation of CellMincer can jointly train on many datasets across multiple GPUs
to produce a highly generalizable model, but satisfactory results can be achieved by training on a
single voltage imaging dataset with as few as 5000 frames. Because of the model’s self-supervised
training scheme, the dataset to be denoised can also serve as the model’s only training data.

2.2 Architecture optimization of CellMincer via realistic physics-
based simulations

To optimize the architecture and hyperparameters of CellMincer and study the impact of various
design choices on the baseline denoising performance, one needs noiseless ground truth voltage
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imaging data. While experimental sourcing of true noiseless data is impractical due to technical
limitations (e.g. the trade-off between signal-to-noise ratio and sampling rate, photo-bleaching and
sample heating at higher illumination), we can aim to generate such ground truth recordings and
their noisy realizations via carefully crafted simulations. These simulated data can then be used to
study and optimize the model architecture and serve as a benchmark to evaluate the performance
of CellMincer compared to other denoising methods.

To these ends, we developed Optosynth, a methodology for generating physics-based synthetic
optical voltage imaging data using single-neuron morphological reconstructions and paired EP
measurements from the Allen Brain Patch-seq dataset [15–17]. In brief, Optosynth simulates
a noiseless voltage imaging readout by sampling neurons from a Patch-seq dataset, arranging
them on a synthetic imaging field, and modeling the fluorescence signal density as an appropriate
conversion function of the measured membrane potential. To produce realistic voltage imaging
readouts, we additionally include low-passing of EP to the fluorescence sensor sampling rate,
action potential wavefront propagation and decay, variability in fluorescent reporter expression,
point spread function (PSF), and static and dynamics background autofluorescence. We generate
noisy readings from noiseless simulations by adding Poisson shot noise and Gaussian sensor thermal
noise. Optosynth’s simulations are highly customizable, enabling generation of synthetic datasets
that can represent a wide range of experimental conditions, noise levels, and magnifications. A
detailed description of Optosynth is provided in Supplemental Sec. S.5.

The CellMincer model is specified by a large set of hyperparameters which determine the
architecture of the underlying DNNs, the self-supervised training parameters, and the optimizer
scheduling. To optimize over this hyperparameter space, we first identified a baseline configuration
that specifies a design empirically capable of denoising our Optosynth datasets and training it to
sufficient convergence. We then constructed a series of single-hyperparameter variations of the
baseline configuration and evaluated their performance on Optosynth data. Our hyperparameter
variations included the inclusion or exclusion of global features F , the length of the denoising
window 2τ + 1, the U-Net parameters (depth, number of channels), the temporal post-processor
architecture, the loss function, and the rate of pixel masking during self-supervised training. Our
evaluation procedure consisted of training the model on a subset of our Optosynth data, denoising
both the training data and unseen data (biological replicates generated using Optosynth) with
our trained model, and computing the denoised imaging’s peak signal-to-noise ratio (PSNR) with
respect to the ground truth. These results determined our final selection of hyperparameters used
in subsequent benchmarking experiments.

Foremost, we found that conditioning the U-Net on global features produced the most signifi-
cant improvement by wide margins, up to 5 dB gain in PSNR (see Supplementary Fig. S 2b, rows
1-3). Without inclusion of global features, model performance gains relied heavily on increasing
the local denoising temporal context windows (see Supplementary Fig. S 2b, rows 1, 4-7; the con-
text size is varied from 5 to 21 frames ∼ 10-42ms). We note that such large temporal context sizes
exceed the observed temporal correlation lengths in voltage imaging (see lagged cross-correlations
in Fig. 2d and Fig. 3c), suggesting that the unconditioned denoiser is taking advantage of large con-
text sizes to infer pixel-to-pixel spatial correlations rather than temporal correlations. To further
underscore this point, we note that PSNR gains of a denoiser explicitly conditioned on precom-
puted global auto-correlations saturate between 5 and 9 frames ∼ 10-18ms, which coincides with
the typical temporal correlation length in neuronal activity (see Supplementary Fig. S 2e, rows
1-5). Clearly, precomputing global features and conditioning the denoiser is a much more effective
and computationally efficient alternative to using longer denoising context windows.

Another advantage of conditioning the denoiser on precomputed global features is achieving
more robust PSNR gain characteristics across different stimulation amplitudes. This can be seen
by comparing the violin plots of PSNR gain distributions for unconditioned and conditioned de-
noisers in Supplementary Fig. S 2. The PSNR gain distribution of the unconditioned denoiser
(baseline, first row, panel b-c)) varies from +16 dB to +23 dB, and is highly variable in particular
for recordings at lower electrical stimulation amplitudes (shown in blue). This observation further
underscores that the performance of an unconditioned denoiser relies on its ability to infer corre-
lations solely from the local context, which can be unreliable when neurons are not active under
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low stimulation. In contrast, the PSNR gain distributions of all conditioned model variants (rows
2-2, panel b-c, and all rows of panel e-f) are tightly concentrated from +22 dB to +24 dB.

Besides the crucial importance of conditioning the denoiser on global features, we find that
other design decisions (like U-Net depth, number of channels, loss function selection, and the
amount of masked pixels) have a surprisingly small effect on model performance. This indicates
that CellMincer works reliably and does not require extensive parameter fine-tuning when used
with other voltage imaging datasets. A more detailed description of these optimization experiments
and their results are provided in Supplemental Sec. S.6.

2.3 CellMincer outperforms existing methods at denoising simu-
lated voltage imaging data
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Figure 2: Benchmarking CellMincer and three other denoising methods on simulated voltage
imaging. (a) Sample denoised frame visualizations (grayscale images) and their residuals with
respect to simulated ground truth imaging (red/blue images). Both the denoised and residual
images are shown as relative change in fluorescence ∆F/F with respect to a frame-averaged
polynomial regression of the baseline (see Supplemental Sec. S.3). (b) Sample denoised ROI-
averaged neuron traces (color), overlaid with the ground truth (black). (c) Distributions of
single-frame PSNR gain achieved through denoising. Each distribution corresponds to a different
value of simulated photon-per-fluorophore count Q (shown in the legend), which is the measure
of raw data SNR in Optosynth simulations (see Supplemental Sec. S.5). The dashed vertical line
over the top four rows is a guide for the eye and indicates the mode of CellMincer’s PSNR gain
distribution for the lowest SNR data (corresponding to Q = 5). The plot at the bottom row
shows the SNR distributions of the raw datasets at different Q levels. (d) Distributions of lagged
cross-correlations between denoised single-neuron traces and their ground truths. Their medians
are overlaid with peak correlations at ∆t = 0 labeled. Abbreviations: GT (ground truth).
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For our benchmark evaluations, we include a selection of denoising algorithms applicable to
movie-like data. Importantly, the algorithms share the precondition that clean reference data for
training is not needed. DeepCAD [13] is a self-supervised deep learning algorithm for denoising
calcium imaging data. Penalized matrix decomposition (PMD) [8] is a training-free algorithm based
on a regularized, low-rank factorization of the data. As a baseline, we also include the original
implementation of Noise2Self (N2S) [12] for images, which denoises movie frames individually.

To cover a range of noise conditions, we chose four different SNRs by varying the number of
photons-per-fluorophore Q in simulations (see Supplemental Sec. S.5). For each level of SNR, de-
noted in increasing order asQ = 5, 10, 50, 200, we generated five synthetic datasets using Optosynth
with associated ground truth. We then trained CellMincer and each of the other training-based
denoising methods on three of the five datasets and subsequently used them to denoise all five
datasets. PMD, which is a single-sample denoising algorithm, was used to individually denoise
the five datasets instead. With these denoised datasets along with the original noisy datasets, we
conducted a series of evaluations centered on comparing them to our ground truth imaging. We
present our Optosynth benchmarks in Fig. 2.

To visualize imaging quality, our first benchmark evaluation compared the results of denoising
a single movie frame in both absolute intensity and residual intensity with respect to ground truth,
of which CellMincer and PMD exhibit notably cleaner residual frames (Fig. 2a). However, PMD
retained significant error at neuron locations, while DeepCAD and N2S were less effective at re-
moving noise throughout the frame. Our next evaluation explored the resolution of single-neuron
signals from the imaging. To extract these signals, we inferred single-neuron masks from the raw
data (Supplemental Sec. S.8) and used them to produce ROI-averaged traces. We overlaid these
traces with their respective ground truth for a sample neuron (Fig. 2b) and observed significantly
less noise from CellMincer and DeepCAD. However, we noted that DeepCAD, unlike the other
methods, does not fully reconstruct the spiking events. After establishing a visual evaluation of
CellMincer and the compared methods, we sought to quantify these differences with the PSNR
metric. In column c, we compared the distributions of single-frame PSNR gain achieved by de-
noising. Each frame PSNR was computed over the union of pixels contained in the neuron ROIs
gathered from all five datasets, and only frames during stimulation periods were considered. These
restrictions mitigated the influence of background pixels in our performance metric. We found that
CellMincer demonstrates a consistent lead in PSNR gain over the other algorithms. Additionally,
CellMincer is more consistent across our range of input SNRs, while the other methods yield a clear
reduction in PSNR gain for higher-quality datasets. For reference, the SNR distribution of the raw
datasets are given at the bottom of column c for each of the four simulated scenarios. Finally, we
aimed to show that CellMincer does indeed reconstruct the activity exhibited in the ground truth
single-neuron traces without temporal bias. In column d, we computed the distributions of lagged
cross-correlations between the denoised and ground truth traces over the Optosynth neurons at
Q = 10 and overlaid the median. All cross-correlations sharply peaked at ∆t = 0, and CellMincer
exhibited a zero-lag median cross-correlation of ρ = 0.81, significantly higher than of DeepCAD
(0.68) and PMD (0.65).

2.4 CellMincer improves the detection of subthreshold events in
real voltage imaging data with paired electrophysiology

To extend our evaluation of CellMincer to real data, we further evaluated CellMincer on 26 external
datasets from a previously published study with simultaneous voltage imaging with chemically-
synthesized voltage-sensitive fluorophore, BeRST [18, 19], and patch-clamp EP recordings, the
latter of which can be repurposed as a high-confidence source of ground truth. BeRST is a
chemically-synthesized far-red voltage-sensitive fluorophore. Previously, we showed that BeRST
can be used in cultured rat hippocampal neurons to track changes in neuronal activity in models of
development and disease [20]. Data from that study contained simultaneous recordings of BeRST
fluorescence (voltage imaging) and single-cell patch clamp recordings (EP) that could serve as a
ground truth for benchmarking of CellMincer. Please refer to Supplemental Sec. S.2 for the details
of the experimental procedure.

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589298doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589298
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ce
llM

in
ce

r
Ra

w
N

2S
PM

D
a b c

d e

Electrophysiology Peak Prominence (mV)

Pe
ak

 C
al

lin
g 

Ac
cu

ra
cy

 (F
  s

co
re

)
1

N
oi

se
 R

ed
uc

tio
n 

(d
B)

Frequency (Hz)

M
em

br
an

e 
Po

te
nt

ia
l (

m
V)

Time (s)

M
em

br
an

e 
Po

te
nt

ia
l (

m
V)

Time (s)

M
em

br
an

e 
Po

te
nt

ia
l (

m
V)

Time (s)

M
em

br
an

e 
Po

te
nt

ia
l (

m
V)

Time (s)

Zoomed ROI-averaged trace Cross correlation with EP

Zoomed ROI-averaged trace Cross correlation with EP

Zoomed ROI-averaged trace Cross correlation with EP

Zoomed ROI-averaged trace Cross correlation with EP

Figure 3: Benchmarking CellMincer and two other denoising methods on paired optical and
patch clamp datasets. (a) Sample denoised ROI-averaged neuron traces (color), aligned to the
EP-derived ground truth (black). (b) Inlays of subthreshold activity as indicated in the previous
column, magnified. (c) Distributions of lagged cross-correlations between denoised single-neuron
traces and their corresponding aligned EP signals. Their medians are overlaid with peak corre-
lations at ∆t = 0 labeled. (d) Average noise reductions at varying frequency ranges achieved
through denoising. (e) Peak-calling accuracy F1-scores over a range of EP peak prominence levels,
using the EP signal as ground truth. Abbreviations: ROI (region of interest).
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Our aim in the following benchmarking experiments was to extract single-neuron denoised
imaging traces and compare them to their associated patch-clamp EP signals. While both modali-
ties operate on the same underlying neural activity, they differ substantially in sampling rate, noise
characteristics, and artifacts. It is thus necessary for us to minimally resolve these data modality
incompatibilities by applying a series of common filters and transformations to map them onto a
shared scale. These include removing a slowly-varying trend from both measurements, temporal
alignment of the two recordings, and performing a global affine transformation on the detrended
fluorescence recordings to make them comparable in scale to EP recordings (in mV). See Supple-
mental Sec. S.8 for a detailed description of our alignment procedure.

Using an analogous approach to that presented in our simulated data benchmarking, we trained
the deep learning based models on as many as all 26 of the available joint datasets, depending
on the capabilities of the model implementations. DeepCAD was excluded from this benchmark
due to difficulties with training it on large quantities of data, as well as its previously noted poor
performance in reconstructing spiking events (see Fig. 2). With these trained models, we identified
a subset of 22 datasets exhibiting discernible activity suitable for benchmarking purposes. Each
model was used to denoise these benchmarking datasets, while PMD, as before, denoised each
dataset individually. From the resulting denoised datasets, we extracted ROI-averaged traces and
aligned them to their corresponding EP signals. The concordance between these aligned traces to
the underlying EP activity forms the basis of our benchmark results, shown in Fig. 3.

Our first step was to visualize the quality of our imaging traces after mapping them to the EP
scale. From plotting these traces against their corresponding EP signals (Fig. 3a), we found that
CellMincer again exhibited significantly less noise than the other algorithms. The improvement is
particularly apparent when examining the baseline trace relative to subthreshold activity (Fig. 3b).
To characterize this noise reduction, we computed the spectral power, binned by frequency, of the
residual signal before and after denoising for each algorithm (Supplemental Sec. S.9). We plot the
reduction in power of these residuals, measured in dB, across the frequency range (Fig. 3d). At
frequencies above 100Hz, CellMincer achieves an average noise reduction of 14.3 dB, far greater
than that of PMD (3.8) and N2S (0.5). Using a process analogous to that in our simulated data
benchmark, we also compared the distributions of lagged cross-correlations between the voltage
imaging and EP data (Fig. 3c). CellMincer similarly exhibited a higher median cross-correlation
(ρ = 0.89), while the other algorithms remained on par with the raw data (0.78).

After demonstrating that CellMincer, by way of its enhanced noise reduction, could potentially
resolve signals of a smaller magnitude than that which can be seen by the other algorithms, we
sought an approach to quantify this small-signal reconstruction fidelity. Due to difficulties with
reliably processing these imaging traces with tools designed for EP signals, we devised an analytic
method based on peak-calling (Supplemental Sec. S.9). From this analysis, we plotted the peak-
calling accuracy of each algorithm as an F1-score, binned over several ranges of peak magnitudes
(Fig. 3e), and found that CellMincer exhibited a 1.7 to 3-fold increase in F1-score over the other
benchmarked algorithms and the raw data across all peak magnitude ranges. CellMincer was
the only algorithm to maintain F1 score > 0.15 across all ground truth mV changes (from 1 mV
to 10 mV). At the 5-10 mV range, in contrast to CellMincer, the other two denoising methods
(PMD, N2S) do not show any statistically significant improvement over the raw data. At changes
below 5 mV, only CellMincer and PMD improve the accuracy over the raw data while N2S does
not. Furthermore, CellMincer outperforms the accuracy of PMD significantly in this regime.
These evaluations demonstrated that on real voltage imaging, CellMincer produces significant
quantitative improvements in the reconstruction of single-neuron traces when compared to traces
derived from the raw data and from data denoised by standard algorithms. These improvements
have meaningful implications for the potential uses of CellMincer denoising to recover underlying
subthreshold activity using voltage imaging data.
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2.5 CellMincer improves neuron segmentation and detection of
subtle changes in neural activity

To demonstrate the utility of CellMincer in a representative end-to-end biological hypothesis test-
ing workflow, we present a complete such analysis with and without CellMincer as a data-denoising
component, and we quantify the impact of CellMincer on improving the detection of subtle phe-
notypic changes. Specifically, we compare the spiking activity of unperturbed and chronically
tetrodotoxin (TTX)-treated cultured hPSC-derived neurons via Optopatch voltage imaging. TTX
is a voltage-gated sodium channel blocker which, when used to treat cultured neurons, prevents
them from firing action potentials. Prolonged silencing with TTX increases intrinsic excitability
of neurons [21]. This homeostatic plasticity is also displayed in hPSC-derived neurons [3]. We
incubated hPSC-derived neuronal cultures in 500 nM TTX for 48 hours and washed it out prior to
Optopatch recordings. Parallel unperturbed cultures were incubated in TTX-free media. In both
cases, we subjected the neurons to eight stimulation periods in increasing intensity and measured
their action potential via Optopatch voltage imaging. Please refer to Supplemental Sec. S.1 for
the details of the experimental procedure.
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Figure 4: Comparing the spiking activity of chronically tetrodotoxin (TTX)-treated vs. control
hPSC-derived neurons with raw and CellMincer-denoised Optopatch voltage imaging data. (a)
Raw and denoised versions of a sample frame, colored with the neuron components identified in
their corresponding datasets. (b) Corresponding ROI-averaged single-neuron traces detected in
both versions of the above frame. (c) Spike count distributions, separated by neuron population
and stimulation intensity. Spikes were identified in each detected neuron’s trace and binned by
their stimulation intensity. (d) Detected neuron counts in the raw and denoised versions of each
dataset. (e) Statistical power of the Wilcoxon Rank Sum test applied to the neuron population
differentiation hypothesis, reported as the negative logarithm of its p-value.

We analysed the obtained recordings as follows. We performed a pixelwise detrending prepro-
cessing step on both raw and denoised datasets, computed independent spatial components using
a PCA/ICA decomposition approach [22], and identified neuronal components through careful
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comparative review of the obtained components and the activity traces. We finally derived an
ROI-averaged trace from each identified neuron for downstream analysis, which focused on count-
ing and comparing the statistics of high-amplitude action potential spikes. Additional details are
provided in Supplemental Sec. S.10.

Fig. 4a showcases a segmentation of identifiable neurons on a sample frame from the raw and
CellMincer-denoised analysis. It is evident that: (1) among the neurons that are reliably identi-
fiable in both the raw and denoised dataset, CellMincer more clearly delineates their boundaries.
This is particularly evident among the cluster of overlapping neurons shown on the left side of
the field of view in Fig. 4a); (2) CellMincer enables better separation and detection of more neu-
ronal components, in particular neurons with fainter fluorescence signal, as well as more reliable
spike-counting. To substantiate the latter, we plotted the ROI-averaged traces from three neurons
side-by-side in Fig. 4b (color-matched to the neuron components shown in Fig. 4a). As explored
in the previous experiments, the most salient improvement brought about by CellMincer is in the
form of a significant reduction in the background noise (see Fig. 3c). In the present context, this
has the effect of highlighting subtler spiking events and enabling them to be called with greater
confidence (compare the raw and denoised traces shown in Fig. 4b). The total number of confi-
dently detected neurons are shown in Fig. 4d and establishes that in most recordings, CellMincer
denoising allows identification of twice or more as many neurons with distinct spiking patterns.
As a result of improved neuron segmentation and spike counting following denoising, aggregating
spike statistics over more neurons results in a larger statistical separation between the control and
chronically TTX-treated populations. This can be visualized by comparing the boxplots shown
in Fig. 4c. To further quantify this finding, we performed a Wilcoxon rank sum test, the result
of which is shown in Fig. 4e. Notably, CellMincer denoising yields significantly greater statisti-
cal power to separate the two conditions, with this separation increasing at higher stimulation
intensities, as evidenced in the tail-end of Fig. 4e. Interestingly, the lowest stimulation intensity
shows a deviation from this trend, yet it still aligns with the overall conclusion that chronically
TTX-treated neurons exhibit heightened excitability.

3 Discussion

We introduced CellMincer, a self-supervised deep learning method specifically designed for de-
noising voltage imaging datasets, and discussed several key methodological refinements over the
existing approaches. These include: (1) an efficient and expressive two-stage spatiotemporal data
processing deep neural network architecture, comprising a frame-wise 2D U-Net module for spa-
tial feature extraction, followed by a pixelwise 1D convolutional module for temporal data post-
processing; (2) performing self-supervised training by masking a sparse set of pixels rather than
entire frames, allowing the model to access both intra- and inter-frame information as needed
for effective denoising of voltage imaging datasets; (3) conditioning local denoisers on a set of
precomputed spatiotemporal auto-correlations at multiple length scales, resulting in a significant
boost in denoising accuracy; (4) introducing a physics-based simulation framework to generate
highly realistic pairs of clean and noisy voltage imaging movies for the purpose of hyperparameter
optimization and ablation studies. We evaluated CellMincer’s performance on both simulated and
real datasets, including an external previously published dataset comprising 30 voltage imaging
experiments with simultaneous patch-clamp EP recordings [20], and established that CellMincer
outperforms the existing denoising approaches. Finally, we demonstrated the utility of CellMincer
in downstream analyses, resulting in a more robust identification of neurons and spiking events
and ultimately a higher statistical power for separating neuron populations based on functional
phenotypes.

CellMincer denoising holds the potential to advance the study of complex neuronal communica-
tion through multiple avenues. Firstly, traditional methods often involve measuring postsynaptic
potentials at the cell body to understand synaptic transmission. However, the inherent biophysical
properties of synapses, coupled with the intricate dendritic morphology, such as shape, branch-
ing, and diameter, can distort electrical signals originating at the synapse. Consequently, the
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activity recorded at the soma may not accurately depict events at the synapse. This discrepancy
poses a challenge in electrophysiological techniques, which predominantly require recordings at the
soma. CellMincer, however, presents a promising solution by facilitating the direct examination
of electrical activity at the synapse through voltage imaging techniques and computational SNR
enhancement. Secondly, CellMincer denoising enables the collection of usable data even from low
magnification recordings with low signal-to-noise ratios (SNRs). For instance, enough data was
acquired in seconds to clearly separate the TTX-treated groups (Fig. 4). This is in contrast to
single cell recordings either by patch-clamp EP or high magnification voltage imaging, which would
take multiple recording days.

CellMincer’s improved performance over similar denoising methods largely stems from precom-
puting global movie features and using these features as a conditioner for the denoiser network
that otherwise operates on small temporal contexts. The inclusion of global spatial features along-
side CellMincer’s localized context processing allows the algorithm to exploit persistent long-range
correlations in the data without directly ingesting the entire dataset with a neural network, an
intractable computational operation. These carefully crafted features (see Supplemental Sec. S.3)
meaningfully contribute to data modeling because the neuron signal sources are generally fixed in
space, making the behavior of individual pixels, as well as pixel-pixel relationships, highly consis-
tent. Our ablation studies reveal that providing global features to the denoiser results in a striking
3-fold boost in the PSNR (or approximately a 5 dB gain). While increasing the denoising context
size endows the local denoiser with more global information and improves its performance, we
notice that there is still a ∼ 4 dB gap between an unconditioned denoiser with a context size of 21
frames and a conditioned denoiser with a context size of only 9 frames, see Supplementary Fig. S 2.

Another advantage of leveraging precomputing global features in conditioning short-context
denoisers is computational efficiency. Existing denoising methods that rely on long contexts to
achieve satisfactory denoising performance will inevitably demand relatively larger computational
resources. For instance, when extended to a training corpora of 26 datasets (Sec. 2.4), DeepCAD’s
computational resource demands exceeded our limits and we had to exclude it from the benchmark-
ing. Likewise, DeepInterpolation [14], another self-supervised deep neural network denoiser, could
not be made to process our datasets and was thus also not included in benchmarking. In contrast,
we were able to efficiently train CellMincer on our largest training corpora using widely-available
commodity GPUs.

The pre-training approach we employed to train the CellMincer model on voltage imaging data
might not be optimally tailored to handle other functional imaging modalities, such as calcium
imaging, characterized by substantially different spatiotemporal dynamics. A characteristic dif-
ference in the dynamics of voltage imaging and calcium imaging is the presence of single spiking
events occurring within 5 to 10 frames. The performance gap between CellMincer and Deep-
CAD on voltage imaging suggests that the most effective fluorescence imaging denoisers are highly
specific to their target domains. CellMincer’s architecture uses a context window length on par
with the timescale of a typical voltage imaging spiking event, and its training scheme maximizes
the utility of this context by enabling inference from same-frame pixels. Conversely, DeepCAD
predicts whole frames from a large, temporally downsampled neighborhood of frames, a strategy
which foregoes mutual information carried by proximal pixels in exchange for training scalabil-
ity. Our hypothesis of the specificity of the model (and self-supervision task) to the data domain
is further reinforced by an experiment in which we compare the performance of CellMincer and
DeepCAD on calcium imaging data (see Supplementary Fig. S 5). Both algorithms were trained
on seven low-SNR calcium imaging datasets [13], and their denoised outputs were compared to
high-SNR versions of the same datasets. We noticed a significant drop in the performance of
CellMincer on denoising calcium imaging data, and improved performance of DeepCAD, which is
opposite to our findings on fast voltage imaging data. We concluded that CellMincer’s capacity
to model short-term fluctuations becomes a hindrance when the underlying signal has inherently
slow dynamics, whereas DeepCAD’s whole-frame masking and the implicit bias of slow dynamics
becomes advantageous.

A notable difficulty in conducting the analysis of neuron imaging traces in relation to corre-
sponding EP activity is the lack of available tools for analyzing waveforms that diverge from the
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highly specific characteristics of EP. The Electrophys Feature Extraction Library (EFEL) [23], one
such tool, can extract a variety of EP features such as spike half-widths but is much less conclu-
sive when the input signals were adapted from fluorescence imaging. Our solution, prominence-
thresholded peak calling, is motivated by the biological significance of partial and total depolariza-
tion events, indicative of subthreshold activity and action potentials respectively. Thus, identifying
peaks in the EP represents a sensible first-order approximation for the locations of these events
and can function as a task to which we subject our imaging traces. While most action potentials
stand in such stark contrast to the surrounding baseline that they are evident in any form of the
trace, the elevated baseline in the traces produced by PMD, N2S, and the raw data is likely to
hide less pronounced EP events and introduce more false positives. Although the absolute peak-
calling performance across all methods is low, primarily owing to the inherent incompatibilities
between the 50 kHz EP signal and its derived 500Hz imaging, our assessment is that for EP peaks
between 2-5mV, there is indeed information in the raw data that corresponds to this activity but
is not immediately visible, and CellMincer is distilling this information to allow for more confident
judgements.

A limitation of CellMincer’s default self-supervised training scheme is that in uniformly sam-
pling random crops of the training data, CellMincer spends an overwhelming majority of its com-
putation time on static background pixels as opposed to pixels containing meaningful neuronal
activity. We introduced an option in CellMincer to increase its sampling efficiency without in-
troducing network bias by oversampling such meaningful data crops, defined as exceeding the top
n% of average luminosity across all crops in the dataset for n chosen between 0.1 and 1, to 50%
of each training batch (importance sampling). We can then correct the loss calculation knowing
the constructed ratio of meaningful samples. While this feature was not incorporated into the
models used in our main benchmarking experiments, we found that it reduced the performance
gap between CellMincer and DeepCAD on calcium imaging. We expect further exploration of
this direction, namely adaptive sampling and hard sample mining in the context of self-supervised
training, will find application beyond the present domain.

Precomputation of global features should be carried out with additional considerations in situ-
ations where either neuron locations or noise characteristics could be non-stationary (e.g. certain
in vivo recordings). In such cases, the temporal distributional shift along a long recording interval
may render any one set of precomputed global features less relevant to variable local contexts of
the recording. Since CellMincer’s objective function is unbiased (see Eq. 4), conditioning on poor
(or even irrelevant) global features will not degrade the performance of the method. However,
to take full advantage of the notion of feature-conditioning, we stipulate that a more effective
strategy in denoising non-stationary data would be to pre-segment the movie into approximately
stationary intervals and denoising each section separately using its own precomputed features.
This is streamlined by CellMincer’s ability to pre-train on and denoise an arbitrary collection of
recordings.

We believe that CellMincer’s architecture is adequately powered for denoising many forms
of fluorescence imaging modalities of electrically active cells. Optimizing the hyperparameters
and training schedule of CellMincer for related data domains (e.g. calcium imaging) would be a
natural avenue for future work. While our analysis shows that CellMincer satisfactorily operates
on a single dataset (both for training and denoising), we hypothesize that training a generalist
large-scale CellMincer foundation model on a large and diverse biomedical imaging corpora (and
perhaps using more scalable architectures such as the Vision Transformer [24]) is another promising
area of future research. Intriguingly, inspecting and building on the saliency and attention maps
underlying the Vision Transformer could lay a novel roadmap for segmenting a wide range of
functional imaging datasets into functional units, much like the recently demonstrated utility of
self-supervised models of natural images (e.g. DINOv2 [25]) in segmenting natural images and
performing various other image-based downstream tasks.

We have made available separate pre-trained CellMincer models on synthetic Optosynth data
from Sec. 2.3, the BeRST voltage imaging data from Sec. 2.4, and the Optopatch voltage imaging
data from Sec. 2.5. Even though training a CellMincer model from scratch can take 10-12 hours
on a typical dataset and publicly available commodity GPU (see Supplemental Sec. S.4), using
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one of the pre-trained models as is or fine-tuning it presents a faster and less computationally
intensive approach to the adoption of our method. In the future, we hope that the availability pre-
trained CellMincer foundation models on a large and diverse voltage imaging dataset, combined
with efficient model selection and fine-tuning strategies, will further reduce the computational cost
of using CellMincer.
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5 Code Availability

The code repository containing the CellMincer pipeline can be found at https://github.com/
cellarium-ai/CellMincer. The repository containing the Optosynth simulation framework can
be found at https://github.com/cellarium-ai/Optosynth. An auxiliary repository with re-
productions of the analysis used to produce the figures can be found at https://github.com/
cellarium-ai/CellMincerPaperAnalysis.

6 Data Availability

All data used to conduct the benchmarking experiments with Optosynth data, BeRST voltage
imaging with paired EP data, and Optopatch datasets for chronically TTX-treated and unper-
turbed hPSC-derived neurons can be accessed either directly from the Google Cloud bucket found
at gs://broad-dsp-cellmincer-data, or through notebooks in the aforementioned paper anal-
ysis repository.
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S Supplemental Sections

S.1 Optopatch voltage imaging of chronically TTX-treated and
unperturbed hPSC-derived neurons

hPSC-derived neurons differentiation was performed as previously described [26, 27], followed by
Optopatch voltage imaging also as previously described [28]. Methods are reproduced below for
completeness.

hPSC Culture— Human ESCs were maintained on plates coated with Geltrex (Life Technolo-
gies, A1413301) in mTeSR Plus medium (StemCell Technologies, 100-1130) and passaged with
Accutase (Gibco, A11105). All cell cultures were maintained at 37 ◦C, 5% CO2.

Neuronal Induction— hPSC-derived neurons were differentiated from an hPSC line (H1/WA01)
using combined NGN2 programming with SMAD and WNT inhibition in the presence of mouse
astrocytes [26, 27]. On day 0, hPSCs were differentiated in N2 medium (500 mL DMEM/F12
[1:1] [Gibco, 11320-033]), 5 mL Glutamax (Gibco, 35050-061), 7.5 mL sucrose (20%, Sigma,
S0389), 5 mL N2 supplement B (StemCell Technologies, 07156) supplemented with SB431542 (10
µM, Tocris, 1614), XAV939 (2 µM, Stemgent, 04-00046), and LDN-193189 (100 nM, Stemgent,
04-0074) along with doxycycline hyclate (2 µg.mL−1, Sigma, D9891) and Y27632 (5 mM, Stemgent
04-0012). On day 1 and 2 media was changed to N2 medium supplemented with SB431542 (5
µM, Tocris, 1614), XAV939 (1 µM, Stemgent, 04-00046), and LDN-193189 (50 nM, Stemgent,
04-0074) with doxycycline hyclate (2 µg.mL−1, Sigma, D9891) and Zeocin (1 µg.mL–1, Invitrogen,
46-059). On Day 3 neuronal precursor cells were passaged with Accutase into Neurobasal media
(500 mL Neurobasal [Gibco, 21103-049], 5 mL Glutamax [Gibco, 35050-061], 7.5 mL Sucrose
[20%, Sigma, S0389], 2.5 mL NEAA [Corning, 25-0250 Cl]) supplemented with B27 (50x, Gibco,
17504-044), BDNF, CTNF, GDNF (10 ng.mL−1, R&D Systems 248-BD/CF, 257-NT/CF, and
212-GD/CF) and doxycycline hyclate (2 µg.mL−1, Sigma, D9891) in a 24-well format and infected
with lentiviral optogenetic constructs (HT076, hSyn Cre-off Archon-TS-darkCitrine-TSx3-ER)
at 2 MOI. On day 7, the cells were passaged with Accutase onto 10mm glass coverslip bottom
dishes precoated with Geltrex containing a monolayer of mouse cortical astrocytes. Estimated
neuron/astrocyte ratio was 1:2 with 80k neurons plated per 10mm dish. Cell were matured in
Neurobasal media supplemented with B27 (50x, Gibco, 17504-044), BDNF, CTNF, GDNF (10
ng.mL−1, R&D Systems 248-BD/CF, 257-NT/CF, and 212-GD/CF) and doxycycline hyclate (2
µg.mL–1, Sigma, D9891) with 50% media changes twice a week.

TTX treatment and Optopatch imaging— On Day 35 500 nM TTX (Tocris) was added to
the culture media and cultures were returned to the incubator for additional 48 hours. Parallel
control cultures were kept in TTX-free media. 10 minutes prior to recording the cultures were
washed 3 times in pre-warned recording solution (125 mM NaCl, 2.5 mM KCl, 3 mM CaCl2, 1 mM
MgCl2, 15 mM HEPES, 30 mM glucose (pH 7.3) and adjusted to 305–310 mOsm with sucrose)
to wash out the TTX. Recordings were obtained in recording solution in the absence of TTX at
23 ◦C. Cellular activity was recorded on custom-built wide-field microscope equipped with oblique
illumination lens and a wide 20x objective. The cells were stimulated with 500 ms blue light
(488 nm) at 1 Hz of increasing intensity (20 to 120 mW/cm2) for 6 seconds, while firing patterns
were recorded under continuous red light (635 nm) illumination at 1 kHz.

S.2 Simultaneous BeRST fluorescence voltage imaging and
single-cell patch-clamp EP recording experimental procedure

Simultaneous BeRST imaging and single-cell patch-clamp EP recordings were performed as
described previously [20]. Methods are reproduced below for completeness.
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Cell Culture— All animal procedures were approved by the UC Berkeley Animal Care and Use
Committees and conformed to the NIH Guide for the Care and Use of Laboratory Animals and
the Public Health Policy.

Rat Hippocampal Neurons— Hippocampi were dissected from embryonic day 18 Sprague
Dawley rats (Charles River Laboratory) in cold sterile HBSS (zero Ca2+, zero Mg2+). All
dissection products were supplied by Invitrogen, unless otherwise stated. Hippocampal tissue was
treated with trypsin (2.5%) for 15 min at 37 ◦C. The tissue was triturated using fire polished
Pasteur pipettes, in minimum essential media (MEM) supplemented with 5% fetal bovine serum
(FBS; Thermo Scientific), 2% B-27, 2% 1 M D-glucose (Fisher Scientific) and 1% GlutaMax. The
dissociated cells (neurons and glia) were plated onto 12 mm diameter coverslips (Fisher Scientific)
pre-treated with PDL at a density of 30-40,000 cells per coverslip in MEM supplemented media (as
above). Cells were maintained at 37 ◦C in a humidified incubator with 5% CO2. At 1 day in vitro
(DIV), half of the MEM supplemented media was removed and replaced with FBS-free media to
supress glial cell growth (Neurobasal media containing 2% B-27 supplement and 1% GlutaMax).
Functional imaging was performed on 8-15 DIV neurons to access neuronal excitability and
connectivity across different stages of development. References to biological replicates, or “n,”
refer to the number of dissections data were collected from.

VoltageFluor/BeRST 1 Stocks and Cellular Loading— For all imaging experiments,
BeRST 1 was diluted from a 250 µM DMSO stock solution to 0.1-1µM in HBSS (+Ca2+, +Mg2+,
-phenol red). To load cells with dye solution, the media was first removed from a coverslip and
then replaced with the BeRST-HBSS solution. The dye was then allowed to load onto the cells for
20 minutes at 37 ◦C in a humidified incubator with 5% CO2. After dye loading, coverslips were
removed from the incubator and placed into an Attofluor cell chamber filled with fresh HBSS for
functional imaging at room temperature (20-23 ◦C).

Voltage Imaging with BeRST— Voltage imaging was performed on an upright AxioExaminer
Z-1 (Zeiss) or an inverted Zeiss AxioObserver Z-1 (Zeiss), both equipped with a Spectra-X light
engine LED light (Lumencor), and controlled with Slidebook (3i). Images were acquired using a
W-Plan-Apo/1.0 NA 20x water immersion objective (Zeiss) or a Plan-Apochromat/0.8 NA 20x
air objective (Zeiss). Images (2048 px × 400 px, pixel size: 0.325 µm × 0.325 µm) were collected
continuously on an OrcaFlash4.0 sCMOS camera (sCMOS; Hamamatsu) at a sampling rate of
0.5 kHz, with 4×4 binning, and a 631 nm LED (13 mW/mm2, SpectraX) with a 631/28 nm
excitation bandpass. Emission was collected after passing through a quadruple bandpass
dichroic (432/38 nm, 509/22 nm, 586/40 nm, 654 nm LP and quadruple bandpass emission filter
(430/32 nm, 508/14 nm, 586/30 nm, 708/98 nm).

Electrophysiology— For electrophysiological experiments, pipettes were pulled from borosilicate
glass (Sutter Instruments, BF150-86-10), with a resistance of 5–8MΩ, and were filled with an
internal solution; (in mM) 115 potassium gluconate, 10 BAPTA tetrapotassium salt, 10 HEPES,
5 NaCl, 10 KCl, 2 ATP disodium salt, 0.3 GTP trisodium salt (pH 7.25, 275 mOsm). Recordings
were obtained with an Axopatch 200B amplifier (Molecular Devices) at room temperature. The
signals were digitized with a Digidata 1440A, sampled at 50 kHz and recorded with pCLAMP
10 software (Molecular Devices) on a PC. Fast capacitance was compensated in the on-cell
configuration. For all electrophysiology experiments, recordings were only pursued if the series
resistance in voltage clamp was less than 30MΩ. For whole-cell, current clamp recordings in
hippocampal neurons, following membrane rupture, resting membrane potential was assessed and
recorded at I = 0 and monitored during the data acquisition.

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589298doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589298
http://creativecommons.org/licenses/by-nc-nd/4.0/


S.3 CellMincer preprocessing and global feature extraction de-
tails

Before a voltage imaging movie X(t, x, y) is received as input to a CellMincer model, our pipeline
applies several preprocessing steps to: (1) approximately isolate the background fluorescence; (2)
normalize the dynamic range of background-subtracted data prior to denoising; (3) precompute
a number of global movie statistics for conditioning the local denoiser. In this section, we detail
the data preprocessing and global feature extraction stages of the CellMincer pipeline.

Data preprocessing and trend isolation— Background fluorescence is a dynamic imaging ar-
tifact both highly individual to its source dataset and magnitudes larger than the true fluorescence
signal, so removing it aids the network in identifying neuron action potentials. To model this back-
ground activity separately for each (x, y) pixel, we temporally interpolate each pixel’s trace with
a low-order polynomial (with a default value of npoly = 3) to obtain the following decomposition:

X(t, x, y) = Xtrend(t, x, y) + σdetrendedXdetrended(t, x, y). (5)

By design, Xtrend approximately captures the smooth temporal trend and DC bias offset in
the recording, whereas Xdetrended represents the normalized residual fluorescence signal. When
specified by the user, we obtain the smooth trend fit only from the resting periods (typically the
beginning and the end segments of a recording segment). When such resting periods are not
included in the recording, we regress over the entire recording and use a lower order polynomial
(npoly = 1) to avoid overfitting to the neural activity. We note that normalizing the detrended
component by its standard deviation over all pixels and time points, σdetrended, allows CellMincer
to train over multiple datasets and data sources (see Eq. 5). After denoising such a detrended
dataset, CellMincer reports both the output without modification and reconstituted with the
original scaling and trend (Eq. 5).

Precomputing global features— After the preprocessing stage of the CellMincer pipeline, we
precompute the global features as follows. First, we further decompose Xdetrended(t, x, y) into slow
and fast components:

Xdetrended(t, x, y) = Xslow
detrended(t, x, y) +X fast

detrended(t, x, y), (6)

where Xslow
detrended(t, x, y) is the moving average of Xdetrended(t, x, y) over a short window. For a

500 Hz recording, we calculate the moving average over 10 frames, corresponding to 20 ms. The
goal here is to separate the neural activity into fast transients (e.g. spikes) and slower features
(e.g. subthreshold activity). We calculate the same set of global features from the two components
independently. We define the general spatially-resolved temporal auto-correlation function as such:

ρ[X; ∆t,∆x,∆y](x, y) =
1

T

T∑
t=1

X(t, x, y)X(t−∆t, x−∆x, y −∆y). (7)

The first three global features are: (1) the square root of ρ[Xslow
detrended; 0, 0, 0](x, y), i.e. the pixelwise

slow temporal variability; (2) the square root of ρ[X fast
detrended; 0, 0, 0](x, y), i.e. the pixelwise fast

temporal variability; (3) the temporal mean of Xslow
detrended(t, x, y), i.e. the mean pixelwise slow ac-

tivity. In addition to these, we include 17 other normalized and spatially-resolved auto-correlation
functions as follows:

ρ[Xslow
detrended; ∆t,∆x,∆y](x, y)

ρ[Xslow
detrended; 0, 0, 0](x, y) + ϵ

,
ρ[X fast

detrended; ∆t,∆x,∆y](x, y)

ρ[X fast
detrended; 0, 0, 0](x, y) + ϵ

, (8)

for ∆x,∆y ∈ {−1, 0, 1}, ∆t ∈ {0, 1}, and excluding ∆x = ∆y = ∆t = 0. Put together, these
amount to 37 feature maps. Next, we spatially downsample both Xslow

detrended and X fast
detrended by a

factor of two, such that each image-space pixel corresponds to the average signal over a two native-
resolution pixels. We calculate the same set of 37 features maps, and upsample the obtained feature
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map by a factor of two back to the original resolution. The rationale is to bring more distant
spatially-lagged auto-correlations into a feature map in the native resolution. In principle, this
procedure can be repeated multiple times to capture further dilated and averaged auto-correlations.
We stop the procedure at the second level, obtaining F = 2 × 37 = 74 spatial feature maps in
total which we collect and concatenate into a F ×H ×W tensor. Conveniently, the F channels of
this tensor encode a standardized set of spatiotemporal auto-correlations at different lengthscales,
which can be used by the model to infer covarying groups of pixels without having access to the
full movie.

S.4 CellMincer neural network design, training schedule, and im-
plementation details

The neural network architecture of CellMincer consists of a U-Net which produces deep embeddings
of individual frames and a temporal post-processor which reduces a sequence of frame embeddings
into a single denoised frame (see Fig. 1b).

Our U-Net design allows for the augmentation of the input frame with our precomputed global
features. This augmentation can occur either by concatenating the two before passing it through
the U-Net or by repeating this concatenation at each step of the U-Net’s contracting path, iter-
atively downsampling the global features in tandem with the frame embedding (see Fig. 1). We
find that this repeat global feature augmentation reinforces the network bias toward using the
global features, improving downstream performance. In addition, our U-Net implementation is
not limited to a specific input dimension (as often required by conventional implementations),
as demonstrated by our protocol of training on small imaging crops while using whole frames at
evaluation time. This allows the model to train on imaging corpora with mixed dimensions and
generalize to arbitrarily sized inputs without needing to dissect the input into uniformly-sized
patches. Without padding each convolution layer, our U-Net produces image contraction, so we
apply reflection padding to the input to achieve our desired output dimensions.

The temporal post-processor takes as input a short window of frame embeddings from the U-
Net, convolves the time dimension, and collapses the feature dimension, producing a single output
for each pixel. In this manner, no further spatial entanglement is introduced, so we do not include
global features at this computation step (see Fig. 1d).

Through optimization trials, we determined an Adam optimizer with standard momentum
parameters (β1 = 0.9, β2 = 0.999) was most effective for training CellMincer. We applied a cosine-
annealed learning rate with linear warmup [29], parameterized at ηmax = 10−4. To increase the
diversity of imaging used to train our model, we configured our training samples to consist of small
62×62 crops padded with 30 pixels on each side, striking a balance between the minibatch diversity
and the training signal that comes from each entry in the minibatch. With this configuration, we
were able to maximize GPU utilization by training on minibatches of 20 samples per GPU (reduced
to 10 samples for our largest model variant). We found that 50,000 training iterations generally
led to sufficient model convergence when using a training set of limited size (1-5 recordings). More
investigation is needed to determine whether a longer training period is needed to make full use
of a larger training set.

In the course of CellMincer’s development, we explored a series of variations on its architecture
and training schemes, some of which are reported in detail in Sec. S.6. Of those omitted from our
results, we considered single U-Net architectures that combined spatial and temporal processing,
either by using a 3D U-Net to model time or by concatenating the frame sequence within the
feature dimension. While our time as features model was computationally more efficient, we
could not reach the expressivity and performance afforded by our current two-stage design. We
also experimented with the choice of learning rate schedule, opting for an empirically validated
cosine annealing with 10% linear warmup [29]. This schedule mitigates early instability while the
model performance is highly variant while improving convergence near the end of training. In
addition, we briefly explored the use of stochastic weight averaging [30], and discovered that it
had a paradoxically negative impact on performance. Our hypothesis is that the contours of our
model’s loss landscape are highly nonconvex so that an averaging of local optima removes us from
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the optimal parameter manifold.
We implemented CellMincer as a CLI tool in the PyTorch Lightning framework, which offers

ease of scalability with multi-GPU training. To offer a sense of training costs and runtime, a
CellMincer model trained on a single dataset using one NVIDIA Tesla T4 GPU for a standard
50,000 iterations would take 12-16 hours to finish, while a larger operation using 26 datasets and
4 GPUs may take 6-7 days. In practice, we found that training a fresh model to denoise a new
dataset is not necessary. For instance, in our end-to-end hypothesis testing experiment (Sec. S.10),
we simply used a model previously trained on a different voltage imaging corpus (recorded under
similar conditions) and did not involve any of the datasets in the experiment. Denoising a typical
dataset with CellMincer, by contrast, takes no more than a few minutes on any GPU setup.

S.5 Simulating realistic voltage imaging datasets using Optosynth

In order to optimize the architecture and hyperparameters of a data denoising technique and
study the impact of various design choices on the bottom line denoising performance, one needs
noiseless or high-SNR ground truth data. To generate such ground truth recordings and their
noisy realizations, we developed a physics-based simulation companion software called Optosynth
in which we aimed to carefully model salient aspects of the phenomenology of voltage imaging.
We briefly describe the key steps involved in Optosynth simulations as follows (see Supplementary
Fig. S 1 for a graphical overview).

Data procurement and preprocessing— We used Allen SDK [31] to access Allen Brain Atlas
data, and procured 485 neurons from mouse primary visual cortex (VISp) from the Allen cell types
database with paired morphology and EP data (Patch-seq) [32–34]. We minimally preprocess
reconstructed morphology data as follows. We scale the image-space pixel from the original 0.1144
µm/pixel by a factor of 10 to 1.144 µm/pixel, representative of the typical magnification of voltage
imaging experiments. We project the 3D morphology into a 2D binary mask. Allen morphology
reconstructions only provide the location and radius of the soma. We use this information to gener-
ate a synthetic soma shape circumscribed by a random Fourier curve with 3 frequency components
and a wiggle amplitude of no more than 20% of the soma radius. We also minimally preprocess the
EP data by truncating the sweeps to 2 sec in duration, amounting to 0.5 sec of resting recording,
1s of electrical stimulation, followed by another 0.5 sec of resting recording. For each neuron, we
keep track of the stimulation current amplitude (pA) and the membrane potential (mV) time series.

Setting up the simulation— The Optosynth simulation configuration is used to generate a
manifest for the experiment. The key user input is the number of desired stimulation segments for
the full experiment, and is given to the tool as a list of [Imin, Imax] stimulation amplitude intervals.
Based on this specification, we filter the pool of available Patch-seq neurons to the subset of
neurons that have at least one sweep within each stimulation interval. Relaxing the stimulation
current to fall within an interval (in contrast with matching a specific value) allows more flexibility
in choosing neurons for simulation, because not all Patch-seq neurons have received the same set
of stimulation amplitudes.

Simulating the neuron fluorescence density— For each neuron, we precompute a spike decay
map α(r), a delay map τ(r), and a fluorescent reporter spatial density map ρ(r) as follows:

α(r) = exp

(
−||r− rsoma||

ℓdecay

)
, (9a)

τ(r) = −||r− rsoma||
vprop

, (9b)

ρ(i)(r) ∼ fclamp

[
GP(0, ℓreporter); ρ

(min)
reporter, ρ

(max)
reporter

]
, (i = 1, . . . , Nneurons). (9c)

Here, r is a 2D position vector, rsoma refers to the soma location of the neuron of interest, ℓdecay
is a specified signal decay lengthscale, vprop is the action potential propagation velocity [3, 35].
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Figure S 1: Overview of Optosynth voltage imaging simulation environment. (a) Single-neuron
paired morphology and EP data downloaded from Allen Brain Atlas; (b) Generating experiment
manifest, including selecting neurons and sweeps for each segment of the experiment, and ran-
dom sampling and precomputing various simulation accessories; (c) Schematic illustration of the
generation process of a movie frame: depending on the position of a pixel on a given neuron, an
action potential wavefront propagation delay is read off from the precomputed delay map and is
used to select the appropriately delayed timepoint on the EP voltage trace. The voltage value is
converted to fluorescence amplitude in combination with the precomputed reporter heterogeneity
and spike decay maps. This process is repeated within an efficient vectorized algorithm for all
pixels for a given neuron and for all other neurons in the simulation. A background frame is
generated and added to the total fluorescence amplitude map generated by the neurons. A point
spread function (Gaussian blur) is applied to the total fluorescence map to generate a clean movie
frame. The application of pixelwise Poisson-Gaussian noise with specified parameters (thermal
noise strength, quantum yield) generates a noisy movie frame. This process is repeated for each
frame in the stimulation segment and for all other segments in the simulation. (d) From top
to bottom: (1) neuronal masks juxtaposed in different colors; (2) a simulated frame before the
addition of background and PSF; (3) the same frame after the addition of background and PSF;
(4) the same frame after the addition of Poisson-Gaussian noise.

We sample ρ(r) from a Gaussian process with zero mean and an isotropic Gaussian kernel with
lengthscale ℓreporter. The fclamp function linearly rescales the dynamic range of the randomly

generated density map to the specified lower and upper limit, ρ
(min)
reporter and ρ

(max)
reporter, respectively. We

randomly place each neuron on the imaging field, together with a random rotation, displacement,
and scale factors. To this end, we take the initial binary mask of the i’th neuron and apply a
general isotropic affine transformation on the mask to obtain the final mask on the imaging field,
which we refer to as M(i)(r) ∈ [0, 1]. The precomputed spatial maps and the geometric placements
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on the imaging field are held constant for all stimulation segments in the experiment, as well as
potentially other simulated trials involving the same neurons.

The spatial fluorescence density emanating from a pixel at position r at time t emanating from
the i’th neuron, F (i)(r, t), is calculated as follows:

V
(i)
LP (t) = FLP

[
V (i)(t); fLP

]
, (10)

V (i)(r, t) = α(r)V
(i)
LP (t− τ(r)) + (1− α(r))V0, (11)

F (i)(r, t) = M(i)(r) ρ(i)(r)
F∞

1 + exp
[
−β
(
V (i)(r, t)− Vrise

)] , (12)

First, we apply a low-pass Fourier filter FLP with cutoff frequency fLP on the patch-clamp EP

recording of i’th neuron, V (i)(t), to obtain V
(i)
LP (t). This provision is to simulate the lagged

response of one’s choice of fluorescent reporter to voltage transients. To obtain the effective
spatial membrane potential of the neuron, V (i)(r, t), we linearly admix the resting potential
V0 ≈ −70mV and the appropriately time-delayed and low-passed EP recording, see Eq. 11.
Finally, the fluorescence density is obtain by converting the spatial membrane potential to
fluorescence and multiplying by the precomputed reporter density and neuron mask, see Eq. (12).
We use a sigmoid function to convert voltage to fluorescence, and set the sigmoid slope β ≪ 1 to
work mostly in the linear regime. The two parameters F∞ and Vrise are automatically determined
by the user’s specification of two points on the voltage conversion curve, (V1, F1) and (V2, F2).

Simulating the background fluorescence density—Typical voltage imaging recording is often
accompanied by a source background fluorescence, including the static autofluorescence from the
cell culture, and a dynamic slowly-varying component due to convection currents associated with
sample heating by the stimulation laser. We simulate the background noise by first sampling a set
of patterns from a zero-mean Gaussian process with anisotropic Gaussian kernels:

Bstatic(r) ∼ GP(0; ℓ
(x)
static, ℓ

(y)
static), (13a)

B
(k)
dynamic(r) ∼ GP(0; ℓ

(x)
dynamic, ℓ

(y)
dynamic), (k = 1, . . . ,K), (13b)

where ℓ
(x,y)
static and ℓ

(x,y)
dynamic denote the spatial variation lengthscales of static and dynamic background

patterns along the x and y axes, and K is the number of dynamic patterns. For each dynamic
pattern, we additionally sample a slowly-varying temporal amplitude:

a(k)(t) ∼ GP(0; f−1
dynamic), (14)

where fdynamic is the dynamic background variation frequency. We finally compose the full back-
ground as follows:

B(r, t) = fclamp

[
Bstatic(r); ρ

(min)
static , ρ

(max)
static

]
+ fclamp

[
1

K

K∑
k=1

a(k)(t)B
(k)
dynamic(r); ρ

(min)
dynamic, ρ

(max)
dynamic

]
.

(15)
Generating the clean and noisy recordings— The total fluorescence density is the sum of
fluorescence density associated with the neurons and the background:

F (r, t) =

Nneurons∑
i=1

F (i)(r, t) +B(r, t). (16)

We interpret the fluorescence density F (r, t) as the density of excitable fluorophores per voxel,
such that the reporter fluorescence laser converts F (r, t) to an emitted photon count per imaging
interval via a conversation factor Q. To account for point spreading due to imaging optics, we
further convolve F (r, t) with a normalized Gaussian point spread function (PSF) with lengthscale
ℓPSF to obtain the clean fluorescence density:

λ(r, t) =

∫
dr′ PSF(ℓPSF)(r

′)F (r− r′, t). (17)
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The clean recording is given as:

Xclean(r, t) = RQλ(r, t) + ∆dc, (18)

where R is the sensor voltage gain per absorbed photon, Q is the photon emission rate per excited
fluorophore, and ∆dc is a dc offset (characteristic of typical sensor readouts). The noisy recordings
are obtained by applying a Poisson-Gaussian noise and quantizing to integer counts:

Xnoisy(r, t) ∼
⌊
RPoisson [Qλclean(r, t)] + Gaussian (0, σsensor) + ∆dc

⌋
. (19)

Note that the SNR is implicitly controlled by the two parameters Q (number of photons per
fluorophore) and σsensor (sensor noise).

To generate multiple simulated recordings from the same neurons, we simply repeat the simu-
lation process multiple times while keeping the experiment manifest constant (including choice of
Patch-seq neurons, as well as their geometries and precomputed spatial maps).

S.6 Optimizing CellMincer network architecture and training
schedule using Optosynth-simulated datasets

We performed an extensive hyperparameter exploration to study the role of various modeling
choices and identify optimal settings. Simulated data produced by Optosynth was an ideal setting
for optimization experiments and ablation studies because of the access to ground truth imaging
and its capacity to simulate a range of imaging conditions. The ground truth imaging enabled the
direct computation of performance metrics for model evaluation, while the simulation versatility
allowed us to test the model on data imaged at various SNR without the overhead associated with
real-world data collection. Using Optosynth, we generated five datasets under the same neuron
density and SNR conditions, three of which were allocated to the training set while the other two
were set aside for testing.

Because a complete grid search was not feasible, we chose a baseline configuration that pro-
duced a viable model and varied the parameters around this baseline one at a time. Some choices,
such as the use of an Adam optimizer, the learning rate scheme, and the number of training itera-
tions, were decided in the baseline model and do not appear in our optimization experiments. We
determined variations on each of the other hyperparameters of interest to apply to our baseline
model and trained a CellMincer model with each of the resulting configuration variants. These
models were subsequently used to denoise both the training and testing datasets, and we com-
puted the distribution of PSNR gain over each frame within the active stimulation periods. The
distributions of these PSNR gains and all of our model variants are summarized in Supplementary
Fig. S 2.

Our key finding was that the inclusion of global features produced a dominating gain in PSNR.
On both training data and unseen test data, CellMincer models incorporating global features
exhibited an additional 5 dB gain in PSNR over the baseline model (i.e. a striking 3-fold increase
in SNR), in contrast with other architectural variations that yielded 0-1.5 dB over the baseline
(Supplementary Fig. S 2a-c). Indeed, we found that the baseline model performance (which did
not include the global features) was highly sensitive to changes in the temporal window length
(i.e. the denoising context size), with longer windows significantly improving performance. It is
evident that both modifications to this baseline model address the limited temporal context it is
provided, of which global features is by far the more effective and computationally efficient option.
To determine the architectural settings that best synergize with the inclusion of global features,
we performed this optimization experiment again with a parallel set of CellMincer variations, all
of which included repeat global features (Supplementary Fig. S 2d-f). While most of the model
performance variation remained consistent with our results in the first iteration, we observed
that the performance gain induced by larger temporal contexts plateaued at a window length of
13 frames, comparable in size to our baseline window of 9 frames. This further supports our
hypothesis that very long temporal windows can be exploited by a model without global features
as a compensatory measure, and by explicitly including global features, we removed the need for
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Figure S 2: CellMincer hyperparameter settings and their resulting models’ performance on
Optosynth data. Each model was evaluated on both its training data (b, e) and unseen test data
(c, f). (a)-(c) Initial series of experiments using no global features as a baseline. (d)-(f) Followup
iteration of experiments using repeated global features as a baseline. The global features setting
determines whether the precomputed global features is not used (0), used to augment the U-Net
input only at the beginning (1), or used to augment repeatedly at every contracting path step (R).
The included temporal post-processor variants refers to the architecture of the ultimate multilayer
perceptron component: C → C/2 → C (A), C → C → C/2 → 1 (B), and C → C → C → 1
(C). The architectural variants are ordered in increasing complexity. The pixel masking setting
refers to the Bernoulli parameter used to decide whether each pixel is masked, a sampling process
repeated for each training iteration. The second set of experiments adjusts the original baseline
model to use a conditional U-Net with repeated global features.
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long contexts. The result is a network architecture that requires comparatively fewer input frames
for denoising, allowing it to denoise datasets in a fraction of the computational time needed by
comparable deep learning architectures like DeepCAD.

S.7 Metrics for evaluating denoising performance on Optosynth
simulated datasets

Peak signal-to-noise ratio (PSNR), measured in decibels, is a metric of similarity between a clean
image and its noisy realization and is defined as:

PSNR [Xclean, Xnoisy] = 10 log10

(
Imax

1
WH

∑W
x=1

∑H
y=1 [Xclean(x, y)−Xnoisy(x, y)]

2

)
, (20)

where Imax is the maximum possible value for the signal intensity. Many of our results are reported
in PSNR gain, in which we use the PSNR between the raw noisy data and the clean data as a
baseline. Reporting the results in terms of PSNR gain is more meaningful and comparable across
different settings as it does not depend on Imax. Structural similarity index measure (SSIM) is
another metric describing the perceived quality of noisy digital images. We chose to reports on
results in terms of PSNR given the flexibility it affords (e.g. the ability to be restricted over
arbitrary spatial regions such as foreground or background pixels), as well as its wide adoption in
the fluorescence imaging community.

S.8 Procuring fluorescence intensity traces and aligning to joint
electrophysiology data

Our analyses of single-neuron traces are contingent on identifying representative ROIs over which
the fluorescent signal is averaged, which is also a common practice in the field. To determine
neuronal ROIs, we select a small set of seed pixels that belong to a neuron’s soma and calculate
cross-correlations between these pixels and every other pixel in the raw recording. On the resulting
cross-correlation map, we choose a manually tuned threshold that captures the soma region and
apply the watershed algorithm to add spatial continuity. The resulting ROI is then used to compute
traces for the raw recording as well as its denoised counterparts.

Our ROI-extracted fluorescence trace can be interpreted as a noisy affine transformation of
the neuron’s electrophysiological activity. In the absence of a calibration dataset, we rely on
an optimization-based approach to align the obtained fluorescence traces (in arbitrary units) to
the EP data (in mV). We first remove the trend from the imaging trace by median filtering
with a moving one-second window (which is short enough to correct for pipette movement but
long enough to retain the actual signal). We also removed high-frequency jitter from the patch-
clamp EP by applying a Savitzky-Golay cubic filter with a 51-point window. These post-filter
signals are more easily imposed over one another following several linear transformations. By
matching corresponding peaks in both signals, the intensity trace can be transferred onto the EP
timescale. This allows us to evaluate intervals between peaks in absolute time and to downsample
the EP signal with interpolation. We then find the affine transformation of our intensity trace
that minimizes L2 error with the EP signal, producing an aligned voltage imaging trace. Our
subsequent analyses center on evaluating the reconstruction quality of these aligned traces. Refer
to Fig. 3b for the results of this alignment method.

S.9 Metrics for evaluating denoising performance on real voltage
imaging with paired EP

Quantifying residual noise power using short-time Fourier transform— To compute
the spectral noise power of a residual aligned fluorescence trace, we apply a short-time Fourier
transform (STFT) parameterized by window length 64 and overlap 48. While voltage imaging,
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which exhibits a relative downsampling factor of 100, cannot fully capture the underlying EP
signal, the peaks of spiking events are particularly high-magnitude points of uncertainty, making
them ill-suited for this analysis. To remove spiking events from consideration, we exclude time
intervals in which the EP signal’s total spectral power exceeds a chosen threshold. For the
remaining time intervals, we convert the spectral powers to noise intensity (dB) and average them
in each frequency bin to produce the average noise at that frequency. By repeating this process
for each denoised signal and the raw signal, we can compute the reductions in noise intensity,
yielding the results shown in Fig. 3d. A typical spectrogram is also shown here in Supplementary
Fig. S 3, in which we clearly notice spiking events as and the attenuated high-frequency noise in
the inter-spike interval in the CellMincer-denoised results. In contrast, the spectrogram of the
raw data is visually akin to that of white noise.

Figure S 3: A sample spectral power map (dB) of a residual voltage imaging recording before
and after denoising with CellMincer.

Prominence-based peak calling— We can formulate the notion of quantifying signal recon-
struction quality as a peak-calling problem. We consider peaks in the EP signal and classify them
by their prominence, as most spikes exceed 20 mV in prominence while peaks in the subthreshold
activity fall below 10 mV. A visualization of prominence as a signal peak feature is shown in Sup-
plementary Fig. S 4. Let XEP(t) and XVI(t) refer to the filtered and aligned traces derived from
the patch-clamp EP and the voltage imaging (VI) respectively, and let Sp(X) be the set of peak
time-points in signal X(t) thresholded above a certain prominence p. We express our problem as
an evaluation of similarity between Sp(XEP) and Sp′(XVI) for p

′ ≃ p. As our set elements comprise
points along a continuous time interval, we need to adapt the notions of precision and recall to
allow fuzzy matching of nearby peaks. More explicitly, we define:

Prec(XEP, XVI; p, p
′) =

|{tVI ∈ Sp′(XVI) : ∃tEP ∈ Sp(XEP) s.t. |tVI − tEP| < ∆t}|
|Sp′(XVI)|

, (21a)

Rec(XEP, XVI; p, p
′) =

|{tEP ∈ Sp(XEP) : ∃tVI ∈ Sp′(XVI) s.t. |tVI − tEP| < ∆t}|
|Sp(XEP)|

. (21b)

We calculate the F1-score as usual:

F1(XEP, XVI; p, p
′) = 2× Prec(. . .)× Rec(. . .)

Prec(. . .) + Rec(. . .)
. (22)

As our definitions suggest, we determine peaks to be correctly called when a corresponding peak
occurs within a ∆t separation. In our evaluations, we set ∆t = 2ms, corresponding to a one-
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frame discrepancy in 500 Hz voltage imaging. To introduce tolerance around particular choices of
prominence thresholding, we further define:

F ∗
1 (XEP, XVI; p) = max

p′∈[p−∆p,p+∆p]
F1(XEP, XVI; p, p

′), (23)

and we set ∆p = 0.5mV. We average this quantity over bins of prominences p to produce Fig. 3e,
which is the ultimate result of this analysis.

Figure S 4: A visualization of the prominence attribute in a simplified signal with three peaks.
A moderate prominence threshold would exclude transient peaks produced by noise fluctuations
(green), and a larger threshold would exclude subthreshold activity (blue), leaving only the true
action potentials (red).

S.10 Method for segmenting and spike-counting voltage imaging
datasets

We extract single-neuron segments from each raw movie and its denoised counterpart using a
PCA/ICA-based approach [22]. Similar to CellMincer’s data preprocessing step, our first step is
to enhance pixel-pixel correlations by detrending the movie, leaving only the signal component
stemming from neural activity. Through experimentation with various signal filters, we found
that a rolling circle filter parameterized with width 3.2 frames (6.4ms) and height 16 (fluorescence
a.u.), followed by a threshold filter to collapse values between ±15 (fluorescence a.u.) to zero,
was effective at isolating spiking events in the denoised data. We could not achieve similar suc-
cess using various combinations of filters on the raw data, so we left those datasets unchanged.
Using movie pixels as samples and time frames as features, PCA reduces the dimension of each
pixel from Ntime ∼ 104 to NPCA = 200. These components correspond to groups of covarying
pixels but not necessarily to individual neurons. For this reason, ICA is used to subsequently un-
mix the principal components into an independent component set containing our neuron segment
candidates. To detect neurons of varying signal strengths, we use a range of parameterizations
NICA ∈ {10, 20, 50, 100} to produce the components from which our neuron segments are selected
through manual filtering, including a careful study of ICA spatial components together with the
associated temporal trace around spike-like events.

Following the extraction of these segments, we compute inner products between a segment mask
and each movie frame and apply median filtering with window length of 51 frames to generate its
corresponding trace. From these traces, we identify spiking events through manual filtering. This
process is aided by a peak-finding algorithm to determine spike candidates and a segmented movie
visualization to resolve ambiguous spiking sources. These spikes are tallied across stimulation
intensities, and statistical separation between the spiking activity of unperturbed and chronically
TTX-treated neurons is computed with a Wilcoxon rank sum test.

It should be noted that through the process of computationally and manually filtering segments,
candidates with no discernible activity were excluded from analysis, even though they may have
been real neurons which failed to express either the light-gated ion channel or fluorescent reporter.
This distinction was considerably more apparent in the denoised movies, potentially causing some
neurons to be discarded from the denoised count and included in the raw count despite the overall
neuron count favoring the denoised data.
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Figure S 5: Benchmarking experiments for several configurations of CellMincer and DeepCAD
on calcium imaging. In addition to the CellMincer configuration tuned on Optosynth data, we
tested two variants which incorporated a significantly longer context size of 25 frames (up from 13
frames), as well as an implementation of importance sampling to increase the frequency of data
crops with discernible neural activity in training batches. (a) Sample denoised frame, zoomed
in on a select neuron. (b) Averaged intensity trace over sample frame. The standard deviation
of the residual signal with respect to the aligned high-SNR trace is labeled. Note that σres was
computed over the residual signal following an alignment transformation. This transformation
was optimized for the alignment to raw data, which explains the raw signal’s surprisingly low
residual variance. (c) Cross-correlations between the denoised trace and high-SNR trace.

S.11 Limitations of CellMincer vs. DeepCAD on calcium imaging
datasets

To first demonstrate an application of the DeepCAD model in its native problem domain, we
conducted a limited experiment to compare the efficacy of CellMincer and DeepCAD on calcium
imaging. We trained CellMincer and DeepCAD on a training set of seven low-SNR calcium imaging
datasets and compared the outputs with their corresponding high-SNR recordings. The results
of this experiment, shown in Supplementary Fig. S 5, include multiple iterations of CellMincer
configurations that incorporate adaptations to calcium imaging data domain. One adaptation
significantly increases the temporal context length to more closely resemble the architecture of
DeepCAD, while a second version applies the importance sampling approach used to more effi-
ciently sample active regions of the recording (see Discussion). For the sample neuron presented
in Supplementary Fig. S 5a, we found that DeepCAD produced a discernibly cleaner image of
the neuron than both CellMincer and the raw data. We then averaged the intensity over each
image in column a to produce corresponding single-neuron traces, which we plotted in column
b. Overlaid onto these plots is the trace derived from the high-SNR recording aligned to its raw
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low-SNR counterpart. Ignoring the residual spread of our raw alignment, which is already mini-
mized by construction, we found that while DeepCAD’s trace conforms comparatively well to the
high-SNR recording, our importance sampling strategy significantly reduced the performance gap
between CellMincer and DeepCAD on calcium imaging. This experiment warrants future research
in a more versatile self-supervised training approach that allows denoising both slowly-varying
(calcium imaging) and rapidly-varying (voltage imaging) functional imaging modalities.
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Optosynth Parameter Name Symbol Type Default Value

OptosynthSpecs parameters

width W int 512

height H int 128

sampling_rate N/A float 500

duration_per_segment N/A float 2.0

scale_factor N/A float 1.0

min_neuron_fluorescence_scale_factor N/A float 0.1

max_neuron_fluorescence_scale_factor N/A float 1.0

SyntheticNeuronSpecs parameters

dendritic_backprop_velocity vprop float 1e+4

dendritic_backprop_decay_lengthscale ℓdecay float 20.0

min_reporter_density ρ
(min)
reporter float 1.0

max_reporter_density ρ
(max)
reporter float 10.0

reporter_density_var_lengthscale ℓreporter float 2.0

ephys_lowpass_freq fLP float 250

BackgroundFluorescenceSpecs parameters

dynamic_n_components K int 20

dynamic_x_lengthscale ℓ
(x)
dynamic float 10

dynamic_y_lengthscale ℓ
(y)
dynamic float 100

dynamic_temporal_frequency fdynamic float 100

dynamic_min_total_fluorophore_density ρ
(min)
dynamic float 0.0

dynamic_max_total_fluorophore_density ρ
(max
dynamic float 0.5

static_x_lengthscale ℓ
(x)
static float 5.0

static_y_lengthscale ℓ
(x)
static float 5.0

static_min_total_fluorophore_density ρ
(min)
static float 0.0

static_max_total_fluorophore_density ρ
(max
static float 0.1

VoltageToFluorescenceSpecs parameters

beta β float 0.01

v1 V1 float -100

f1 F1 float 0.4

v2 V2 float 50

f2 F2 float 1.0

CameraSpecs parameters

dc_offset ∆dc float 500

gaussian_noise_std σsensor float 10

psf_lengthscale ℓPSF float 0.25

readout_per_photon R float 2.2

photon_per_fluorophore Q float 50

Table S 1: Optosynth parameters and their default values.
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