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Abstract 25 

Fungal plant pathogens causing head blight and leaf blotch diseases are one of the most 26 

important threats to cereals such as oat and wheat. Although different resistant varieties have 27 

been developed, these diseases are still hard to control thus driving the use of chemical 28 

fungicide in Europe and worldwide. Plant breeding programs to develop new varieties with 29 

quantitative resistance could result in a longer resistance to the pathogens but require scalable 30 

quantitative methods to analyze complex phenotypes. Additionally, in nature, several diseases 31 

can occur at the same time due to the coexistence of different pathogen species, thus increasing 32 

the genetic complexity of the pathosystem. In the present study we develop a reductionist 33 

strategy to study disease resistance at a higher level of organismal complexity, through the 34 

application of machine learning to image analysis of artificial pathobiomes. Our results show 35 

that such approach enables a meaningful simplification of complex plant multi-pathogen 36 

species interactions, allowing the analysis of specific pathogen-pathogen interactions to 37 

unravel hidden phenotypic layers that are not visible or quantifiable under field conditions. 38 
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Introduction 40 

Wheat is one of the main cultivated crops and a prime source of proteins and carbohydrates in 41 

our diets (de Sousa et al., 2021). It is cultivated worldwide and is the target of diverse fungal 42 

pathogens. Because of its importance to food security, the search for new disease resistance 43 

traits has been a major focus for plant pathologists and breeders. Traditionally, we can separate 44 

two types of disease resistance: qualitative resistance and quantitative resistance. Qualitative 45 

resistance is commonly associated with one, dominant resistance R gene/allele, while 46 

quantitative resistance is associated with an assortment of different trait loci (QTLs) 47 

representing putative resistance genes with additive effects. Although quantitative resistance is 48 

usually less efficient than the strong R gene based qualitative resistance (Rousseau et al., 49 

2013), it is generally more durable, effective against a broader spectrum of races of a particular 50 

pathogen (Corwin & Kliebenstein, 2017; McDonald & Linde, 2002; Van den Berg et al., 51 

2014), and usually involves a higher number of genes. Modern strategies for breeding 52 

quantitative disease resistance require the use of extensive genomic and phenotypic data from 53 

the host and the pathogen. Additionally, the ability to reveal and properly score complex and 54 

diverse phenotypical traits becomes essential to link host/multi-pathogen genotype interactions 55 

to their corresponding phenotypes. Such approach which has been coined as ‘phenomics’, 56 

implies the systematic acquisition of high-dimensional data on an organism-wide scale (Houle 57 

et al., 2010; Rousseau et al., 2013). 58 

 59 

In nature, it is common that different plant pathogens coexist on a single host (Tollenaere et 60 

al., 2016). Plants have thus developed complex responses to counter act and adapt to complex 61 

pathobiomes. This involve a variety of genetic factors rendering breeding for multiple disease 62 

resistance (MDR) rather challenging (Barrett et al., 2021; Orton & Brown, 2016; Wiesner-63 

Hanks & Nelson, 2016). For example, it has been shown that the biotrophic pathogen 64 

Pseudomonas syringae induces salicylic-related defense triggering susceptibility of its host to 65 

Alternaria brassicicola, a necrotrophic pathogen (Spoel et al., 2007). Also, Arabidopsis 66 

thaliana plants previously infected with Albugo candida show increased susceptibility to an 67 

avirulent strain of Hyaloperonospora arabidopsidis (Cooper et al., 2008).  In wheat, primary 68 

infection with Zymoseptoria tritici can induce systemic susceptibility and systemic shifts in the 69 

wheat metabolome and microbiome composition (Seybold et al., 2020), but at the same time 70 

it can also reduce the incidence of Puccinia striformis (Madariaga, 1986) or inhibit the 71 

sporulation of wheat powdery mildew (Orton & Brown, 2016). These findings indicate there 72 

are higher levels of genetic organismal complexity regulating host/multi-pathogen interactions.  73 
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 74 

Such genetic complexity is also highly relevant for so called ‘disease complexes’ where several 75 

pathogen species can act in mixed infections to cause diseases such as ascochyta blight, black 76 

spot, and fusarium head blight (FHB).  In the latter, over 17 Fusarium and non-fusarium species 77 

are known to be associated with FHB (Karlsson et al., 2021) thus making the disease difficult 78 

to control. Species associated with FHB in cereals include Fusarium graminearum, F. 79 

langsethiae, F. avenaceum, F. poae, F. culmorum, F. tricinctum, Microdochium majus and 80 

Microdochium nivale (Karlsson et al., 2021). Broadly speaking, Fusarium species can infect 81 

cereal hosts in virtually all organs, through the roots, the crown, or the stem base of the plant 82 

(Karlsson et al., 2021). This complex scenario makes the management of the disease and 83 

breeding for resistance particularly challenging considering the variety of tissues and organs 84 

that can host pathogenic Fusarium species (Karlsson et al., 2021; Vogelgsang et al., 2008). 85 

 86 

Due to this complex scenario, several types of reductionist resistance screenings have been 87 

developed, such as detached leaf assays (Diamond & Cooke, 1999), seedling resistance 88 

(Mesterhazy, 1987), seed germination assay (Browne & Cooke, 2005), coleoptiles assay (Wu 89 

et al., 2005) and response to the Fusarium mycotoxin deoxynivalenol (DON) (Buerstmayr H, 90 

Lemmens M, 1996). All these methods have been useful in the identification of Fusarium 91 

resistance traits in cereals, and particularly the detached leaf assay, which has been particularly 92 

used due to the high correlation between pathogen latent period and quantitative disease 93 

resistance in the field (Diamond & Cooke, 1999; Niks & Skinnes, 1998). As some pathogenic 94 

Fusarium species such as F. avenaceum or F. graminearum can be endophytes in grass plants 95 

(Inch & Gilbert, 2003; Postic et al., 2012), it is relevant to notice that the latent period could 96 

be a good predictor of plant resistance due to the well accepted assumption of the endophytic 97 

origin of pathogenic Fusarium species (Lofgren et al., 2018). As a result of this complex 98 

scenario (interactions between pathogens during mixed infections, disease complex with 99 

diverse causal agents), genetic studies of multispecies disease interactions are necessary to 100 

gain better understanding of multiple-disease resistance (MDR). 101 

 102 

Here we describe a fully featured strategy inspired and co-developed with the Microphenomics 103 

platform at the Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK, Germany). 104 

This simplified approach enables the study of host/multi-pathogen interactions in a controlled 105 

and scalable manner, which is suited for the exploration of large cereal germplasm collections 106 

in a space and time-effective manners. 107 
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Materials & Methods 108 

Plant growth conditions 109 

An overview of the phenotyping pipeline is provided in Figure 1. We used the reference 110 

hexaploid wheat cultivars ‘Chinese Spring’, ‘Fielder’, and ‘Bob White’, Triticum aestivum spp. 111 

aestivum parental breeding lines (‘Agadir’, ‘Artico’, and ‘Victo’), a T. turgidum spp. durum 112 

cultivar (‘Latino’), a T. dicoccum accession (MG5323), and an old cultivar of T. turgidum spp. 113 

turanicum (Zardak), and commercial spring wheat cultivars were germinated in pots with 114 

sterilized substrate at 20-21 °C, RH of 70% and with light intensity of 300 μmol and 18 h light/ 115 

6 h dark photoperiod. Commercial spring wheat cultivars were provided by the Swedish 116 

Agricultural Cooperative Lantmännen Lantbruk (Sweden). Plants for inoculation with Z. tritici 117 

were maintained in a closed infection chamber inside a growth chamber with the same above 118 

conditions, and supplemented with and additional LED light sources enriching the light 119 

spectrum in the 380 and 700 nM wavelength, respectively (Supplementary Figure 1) 120 

 121 

Preparation of Zymoseptoria tritici inoculum 122 

Z. tritici reference isolates ST99CH_3B8 (3B8), ST99CH_3C4 (3C4), ST99CH_3C7 (3C7), 123 

ST99CH_3D5 (3D5), ST99CH_3D7 (3D7), ST99CH_3F2 (3F2), and ST99CH_3G6 (3G6) 124 

were isolated in Switzerland in 1999 (courtesy of Prof. Bruce McDonald, ETH Zürich). Z. 125 

tritici isolates were incubated in yeast extract-malt extract-starch agar, YMS (4 g/L yeast 126 

extract, 4 g/L malt extract, 4 g/L sucrose, 16 g/L agar), in darkness at 20 °C for 11 days until 127 

the day of the infection. At that stage, spores were collected from the plates by scraping the 128 

cells in sterile conditions and resuspendimg them in TWEEN 0.01%. The solution was filtered 129 

throughout a sterile filter with pore diameter of 22-25 µm. Spore concentration was calculated 130 

with a hemocytometer and adjusted in all isolates to 1x106 spores/ml. Before air gun infection, 131 

all isolates were mixed at equal volume and concentration.  132 

 133 

Preparation of Fusarium sp. inoculum 134 

F. avenaceum, F. culmorum and F. graminearum were collected from Swedish fields in summer 135 

of 2021 and previously genotyped by Kaur et al. (2024) using universal ITS primers ITS1 (5’-136 

TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’), and 137 

species specific primers for F. graminearum marker GOFW (5’-138 

ACCTCTGTTGTTCTTCCAGACGG-3’) GORV (5’- CTGGTCAGTATTAACCGTGTGTG-139 

3’), and for F. culmorum with marker Fc03 (5’-TTCTTGCTAGGGTTGAGGATG-3’) Fc02 140 

(5’-GACCTTGACTTTGAGCTTCTTG-3’) (Astrid Bauer & Seigner, 2015; De Biazio et al., 141 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.14.589412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589412


6 
 

2008). For coinfections with the three Fusarium species, isolates were grown for two weeks at 142 

25 °C on oatmeal agar or OMA (3 g/L ecological oatmeal and 16 g/L agar) and sporulation was 143 

induced by incubation under natural light for 3 days. For coinfections with Zymoseptoria tritici, 144 

all Fusarium species were incubated in muesli agar or MA (25 g/L muesli, 2 g/L malt extract 145 

and 12 g/L agar) plates at 25 °C for 30 days. After the incubation period, spores were collected 146 

by scratching from the plate and suspended in TWEEN 0.01%. The final spore concentration 147 

was adjusted to 250 spores/μl and aliquoted into vials at -20 °C until infection day. 148 

 149 

Coinfection assays 150 

For coinfections with different Fusarium species, 6 cm-length leaf segments were cut from 15-151 

days-old wheat seedlings. Leaf segments were placed with the abaxial surface touching 152 

Benzimidazole Agar medium (BA, 5% water agar supplemented with 0.03 mg/L 153 

benzimidazole). Three dimensional (3D)-printed frames of polylactic acid (PLA) were 154 

designed to keep the leaf surface in contact with the BA medium, thus preventing desiccation 155 

of the leaves. A wound was performed in the middle of each leaf segment with a 0.02 mm 156 

diameter bore needle, then, a 15 μL drop with a Fusarium spore concentration of 10 spores/μl 157 

was deposited. Leaf segments were secured with masking tape to seal the wound and avoid 158 

curling. As a control, a group of leaf segments were inoculated with TWEEN 0.01%. In the 159 

case of Fusarium species coinfections, an equal volume and concentration of spores (10 160 

spores/μl) were mixed into a 15 μl drop and inoculated as described above. Pictures were taken 161 

at 8 dpi using a DSLR camera. Fusarium coinfection assays of the commercial cultivars, lab 162 

standards, and parental lines was performed using 4 cm length leaf segments, with a spore 163 

concentration of 250 spores/μL and an incubation time of 5 days without frames. 164 

 165 

For F. graminearum – Z. tritici coinfections, 9-days-old wheat seedlings were placed in a closed 166 

infection chamber. Z. tritici cultures were isolated from YMS plates by scratching and 167 

resuspended in TWEEN 0.01%. Spore concentration was calculated with a hemocytometer, 168 

and adjusted to 106 spores/ml. The different isolates were mixed in equal proportions and 169 

sprayed with a spray gun over the seedlings using 0.33 ml per seedling. As a control, a group 170 

of plants were inoculated with TWEEN 0.01%. After the inoculation, the chamber was 171 

maintained at high humidity (over 70% of RH) and in darkness for 24 hours. Then plants were 172 

placed back in a day-night cycle as described above, and kept at high RH by spraying distilled 173 

water, using a low-pressure spray gun. Then, 6 cm length leaf segments were cut from Z. tritici-174 

infected and mock-inoculated plants at 3-days-post infection (dpi). Secondary infections with 175 
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F. graminearum were performed as described above, using a 15 μl drop with a F. graminearum 176 

spore concentration of 250 sp/μl. Leaf segments were kept on plates with BA medium and 177 

maintained in darkness with high RH% for 24 hours, then moved day/night cycle and at high 178 

RH until 4 dpi (MG5323) and 5 dpi (Fielder), and then photographed. 179 

 180 

Machine learning-aided image analysis 181 

Each leaf segment from the original picture was extracted individually using ImageJ. To 182 

quantify disease severity, Jupyter Notebooks (https://jupyter.org/) were used to run code from 183 

the PlantCV (https://plantcv.org/) and OpenCV packages (https://opencv.org/). Images showing 184 

the juxtaposition of different masks were obtained using the Jupyter Notebooks terminal 185 

interface. Bash commands were used to simultaneously analyze multiple samples from one 186 

directory, while the PlantCV based script was used to analyze the images and create a JSON 187 

file as an output in a selected directory. The implementation of PlantCV allows binary image 188 

transformation from original RGB pictures, mask creation, and pixel classification in different 189 

predefined classes through a multiclass Naïve Bayes (NB) algorithm. A probability function 190 

for red, green, and blue values, allowing pixel classification from these values is calculated. 191 

The JSON file output contains the number of counted pixels in each predefined class. Data was 192 

transformed to a tabular file and uploaded to the R statistical environment for further analysis.  193 

 194 

Statistical analyses 195 

As data did not pass the normality and homoscedasticity tests, a linear model with fixed effects 196 

was designed after performing an aligned-rank transformation with the values of necrosis or 197 

chlorosis (𝑦) as response variable and cultivar (𝑥1), zymoseptoria (𝑥2) and its interaction (𝑥3) 198 

as explanatory variables with their corresponding coefficients (𝛽1, 𝛽2, 𝛽3 ). The constant µ 199 

represents the intercept. 200 

𝑦 = µ +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 201 

To test statistical differences, we performed an aligned-rank-transformation-two-way-ANOVA 202 

(robust two-way-ANOVA) and a post hoc test with Tukey adjustment. A Principal Component 203 

Analysis (PCA) was carried out with the average value of each cultivar and Fusarium 204 

combination (each combination has at least 5 biological replicates). Coordinates of each sample 205 

in the PCA were extracted to calculate the distance matrix which was used as input for cluster 206 

analysis throughout a hierarchical Agglomerative Nesting (AGNES) algorithm.  207 

 208 
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All statistical analyses were performed with the R statistical software (https://www.r-209 

project.org/,  version 4.2.2) in the Rstudio environment (R Core Team, 2022) and the packages: 210 

readxl, dplyr, tidyr, stringr, reshape2, ggplot2, multcompView, forcats, ARTool, rcompanion, 211 

factoextra, cluster (Graves et al., 2023; Kassambara & Mundt, 2020; Kay et al., 2021; Maechler 212 

et al., 2022; Mangiafico, 2023; Wickham, François, et al., 2023; Wickham, Vaughan, et al., 213 

2023; Wickham, 2007, 2016, 2022, 2023; Wickham & Bryan, 2023). 214 

 215 

Results 216 

Phenotypic analysis of leaf segments with single and mixed Fusarium sp. infection 217 

We selected plants from the bread wheat cultivar Fielder to perform Fusarium infection assays 218 

as it turned out it was a good universal susceptible control suitable for obtaining clear disease 219 

phenotypes in our hands. Leaf segments were inoculated with F. avenaceum, F. culmorum, F. 220 

graminearum and their combinations by drop inoculation (see Material & Methods). PLA 221 

frames held the leaf segments in contact with the medium, maintaining the plant tissues 222 

humidified and without signs of stress for more than 7 days. Disease symptoms progression on 223 

the leaf segments was monitored for one week. At 8 dpi, variability in disease severity between 224 

single vs. mixed Fusarium sp. infection was scored (Figure 2).  225 

 226 

We found that F. graminearum showed the most severe symptoms, triggering necrosis in large 227 

areas of the leaf segment. In contrast, the combination of F. culmorum and F. graminearum 228 

showed the lowest severity of the disease symptoms in comparison with single F. graminearum 229 

infections. These results suggest that F. graminearum is the most aggressive of the three 230 

Fusarium species tested, and that there are interactions between F. avenaceum, F. culmorum 231 

and F. graminearum that could change the plant response. Moreover, we can detect such 232 

differences using the detached leaf assay, demonstrating the ability of the image analysis script 233 

to distinguish among different phenotypes.  234 

 235 

Scoring of Fusarium sp. leaf symptoms using image analysis 236 

To define our region of interest (ROI) and reduce the error rate of the algorithm, the picture 237 

area inside the PLA frames that hold the leaves was extracted. Then, each leaf segment was 238 

extracted as an individual image using a PlantCV based script (Gehan et al., 2017). Pixels were 239 

manually captured with ImageJ, and their RGB parameters (red, green, blue) were saved in a 240 

tab delimited file where we defined each class of pixel. To avoid class imbalance, we collected 241 

the same number of pixels for each class (necrosis, chlorosis, healthy tissue, and background). 242 
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We thus built a solid training set of over 1000 different pixels from each class. Once the RGB 243 

values of each class were defined in a training set, a Naïve Bayes algorithm (Gehan et al., 2017) 244 

was used to develop a probability function for each pre-defined class. Throughout the 245 

probability function, the script classifies each pixel in the different pre-defined classes, creating 246 

a binary image for each class that is transformed into a mask. This procedure allows the 247 

differentiation of the regions that show necrosis, chlorosis, healthy tissue, or background. 248 

Finally, the number of pixels from each class was counted to quantify each feature in every leaf 249 

segment (Figure 3).  250 

 251 

A total of 64 leaf segment pictures were analyzed to test this approach. The results of the 252 

quantification of each leaf segment grouped by treatment are illustrated in Figure 4. The script 253 

correctly identified the infection with F. graminearum as the one that triggers the most severe 254 

symptoms causing the largest area of necrotic tissue. The level of necrosis observed in the 255 

control groups are close to 0, indicating a high performance of the classifier algorithm. We 256 

could also quantify previously observed changes that had less necrosis than those infected with 257 

F. graminearum only. We therefore conclude that the resulting image-segmentation and pixel 258 

classification is biologically meaningful, and can correctly differentiate diseases severity 259 

levels, and disease symptoms. 260 

 261 

Comparison of disease severity values scored visually vs with the Naïve Bayes algorithm. 262 

We then compared the scorings obtained by a trained person with the results obtained with 263 

PlantCV. Usually, the disease severity of Fusarium species in detached leaves assays are 264 

calculated as a composite phenotype consisting of two attributes: chlorosis and necrosis. The 265 

different values of these two variables are combined on a scale from 0 to 5 degrees of severity 266 

(Kaur et al. 2024; Supplementary Table 1). We calculated the percentage of plant pixels 267 

classified as necrosis, the percentage of plant pixels classified as chlorosis and the sum of 268 

necrosis and chlorosis percentages. 269 

 270 

To compare the results obtained by a human with the result of our image analysis, we used an 271 

image library previously generated by us (Kaur et al., 2024). It consisted of images of detached 272 

infection assays with F. avenaceum, F. culmorum, F. graminearum and their combinations 273 

using the material described above. Due to the large number of putative comparisons (39 lines 274 

and 7 different treatments) and considering the complexity of the data, we decided to perform 275 
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an exploratory cluster analysis with the coordinates of each sample obtained from a Principal 276 

Component Analysis (PCA) and compare the relative position of each genotype. 277 

 278 

We found that the most coherent clustering was obtained with the percentage of necrosis scored 279 

with the NB algorithm (Figure 5, Supplementary Tables 2, 3, 4, 5). This approximation 280 

aggregates the samples in breeding lines (blue), lab standards (pink) and commercial lines 281 

(green, red and yellow). Moreover, the clusters obtained with the values of necrosis percentage 282 

are similar to the groups obtained with visual scores.  In both cases there are two clear groups 283 

of commercial lines close to the lab standard and the breeding lines (blue and yellow in manual 284 

scoring and orange and yellow in ML scoring). A third commercial line group, which is less 285 

similar to the lab standards (green ML scoring), is split in two closely related groups in the 286 

manual scoring (green and pink). In contrast, with manual scoring, the parental lines are divided 287 

into the cluster of lab standards (Latino, Zardak and MG5323, tetraploid durum wheat) and one 288 

of the clusters of commercial lines (Artico, Victo and Agadir, hexaploid wheat). However, 289 

beyond these differences, the relative position of each genotype in comparison with the others 290 

remains relatively similar. For example, the lab standard Fielder is close to the lines Chinese 291 

Spring, Bob White, Eleven, Amulett, and Rogue in both cases, with manual scoring and with 292 

necrosis calculated with NB algorithm. In fact, the ML algorithm leads to better separation of 293 

the cluster of parental lines (although it aggregates closer tetraploid and hexaploid wheat 294 

species), lab standards, and the different commercial lines clusters. These results indicate that 295 

our image analysis pipeline can detect small differences in the amount of necrosis, and it 296 

suggests that is more accurate quantifying these differences than a discrete scale of disease 297 

severity analyzed by the human eye. 298 

 299 

To corroborate the existence of differences among Fusarium combinations and wheat 300 

genotypes, we performed a robust ANOVA analysis (Supplementary Table 6), to detect 301 

statistically significant differences between genotypes, Fusarium combinations, and the 302 

combination of both. The results of the ANOVA indicate that there are statistically significative 303 

differences (p<0.01) between genotypes, Fusarium combination, and the combination of both, 304 

suggesting that our set up detects specific responses to each Fusarium species in a genotype-305 

specific manner. These results further indicate that our image analysis pipeline is more sensitive 306 

to small differences thus allowing us differentiating genotype-specific responses in more 307 

coherent clusters. It is noticeable that our results strongly suggest that the manual scoring tends 308 

to overestimate the value of necrosis, meanwhile with our image analysis set up we can choose 309 
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explicitly if we prioritize to analyze necrosis, chlorosis, or both. Together, our results indicate 310 

that our imaging pipeline is accurate and can potentially reveal new layers of information in 311 

the analysis of the complex response of the plant to the pathogen. 312 

 313 

Phenotypic analysis of mixed Z. tritici / F. graminearum infections 314 

We decided to test our image analysis set up to process images from coinfections with F. 315 

graminearum, (the Fusarium species which triggers the highest percentage of necrosis), and 316 

the hemibiotroph Z. tritici. Nine days-old wheat plants were put in control conditions inside 317 

the chamber until they were infected with Z. tritici spores. The chamber is equipped with an 318 

opening that allows infect the plants with an admixture of spores from different Z. tritici isolates 319 

or a mock solution with an air gun. At 3 dpi, leaf segments were collected from infected and 320 

mock plants and inoculated with a suspension of F. graminearum spores at a concentration of 321 

10, 100 and 250 spores/μl (see Material & Methods). After an additional 5 days after F. 322 

graminearum infection we took pictures of the leaf segments, and we analyzed the levels of 323 

necrosis and chlorosis using our pipeline (Figure 6A). The NB algorithm recognized higher 324 

levels of necrosis and chlorosis in leaf segments infected at a concentration of 10 spores/μl in 325 

comparison with the negative controls, although the differences are not consistent enough to 326 

be statistically significant (Figure 6B). Leaf segments inoculated with a concentration of 100 327 

and 250 spores/μl showed similar levels of necrosis and chlorosis, although leaf segments 328 

inoculated at 250 spores/μl tend to have more severe disease symptoms (Figure 6B, 6C). 329 

Interestingly, differences in necrotic and chlorotic areas between leaf segments from Z. tritici 330 

infected plants and mock plants are detected by the NB algorithm, indicating an effect of 331 

primary infection with Z. tritici on secondary infection with F. graminearum.  332 

 333 

Finally, we further assessed the performance of the set up in two different wheat cultivars. We 334 

developed a similar coinfection assay, evaluating disease severity symptom in 4 dpi (accession 335 

MG5323, tetraploid wheat) or 5 dpi (cv. Fielder, hexaploid wheat) after F. graminearum 336 

inoculation. Consistent with previous results, the image analysis reveals differences that are 337 

clear throughout visual inspection of the leaf segments (Figure 7A). Accession MG5323 seems 338 

less resistant to F. graminearum in comparison to Fielder (Figure 7B). Moreover, our pipeline 339 

can detect a trend in Z. tritici infected Fielder plants to develop less necrosis in comparison 340 

with mock plants, although this difference is not statistically significant. Additionally, even 341 

though we cannot detect differences in the chlorotic area between mock and Z. tritici infected 342 

Fielder plants, neither visually nor with our pipeline, our set up still detects an inhibition of the 343 
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chlorotic area in Z. tritici infected MG5323 plants in comparison with mock. In fact, this 344 

difference is statistically significant and can be confirmed visually. 345 

 346 

Together, these results suggest that Z. tritici infection can modify the host response to F. 347 

graminearum. This modulation seems to depend on the wheat genotype/specie (tetraploid or 348 

hexaploid). In fact, this is coherent with our results from Fusarium coinfections, as we can 349 

group genotypes by their specific response to each Fusarium combination. Besides, our results 350 

indicate that our pipeline can detect disease interactions throughout changes in the phenotype. 351 

Moreover, the NB algorithm has detected changes related with Z. tritici infection in the 352 

necrosis, relatively easy to assess visually, and in the chlorosis, a difficult phenotypical trait to 353 

measure, allowing us to catch these changes in the plant response to F. graminearum. It means, 354 

our set up seems to allow a meticulous and objective analysis of the phenotypical responses of 355 

wheat to different pathogens and pathogen combinations. 356 

 357 

Discussion 358 

Experimental set up 359 

In this study we present an original set up allowing the study of disease interactions in wheat. 360 

The detached leaf assay is highly suitable for large scale screens due to the relatively short time 361 

from seed to inoculation, and the low requirements of space. In fact, the full procedure can be 362 

performed in 17 days facilitating the screening of large populations. Another advantage of the 363 

system is the increased consistency between replicates, particularly when using our chamber 364 

where the air is saturated with Z. tritici spores during the infection. As with other systems, our 365 

strategy has also some limitations, and the predictive power of such approach must be carefully 366 

evaluated in a pathosystem-specific manner. However, it has been demonstrated that detached 367 

leaf assays can be used to predict resistance traits, thus giving us confidence that our strategy 368 

is suitable for resistance screenings (Diamond & Cooke, 1999; Niks & Skinnes, 1998). 369 

 370 

Image analysis strategy 371 

Currently, advances in computer sciences and machine learning algorithms have enabled the 372 

use high-throughput imaging to analyze disease symptoms in a quantitative manner 373 

(Bohnenkamp et al., 2021; Gehan et al., 2017; Karisto et al., 2018; Rousseau et al., 2013; 374 

Shoaib et al., 2022; Stewart et al., 2016; Stewart & McDonald, 2014). Here, we present the 375 

application of one of these machine learning algorithms, Naïve Bayes, to the detection and 376 

quantification of phenotypical differences in disease severity. The image analysis set up based 377 
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on the PlantCV package allows us to detect and quantify these differences. The algorithm has 378 

been demonstrated to be robust enough to analyze pictures with different parameters of 379 

exposition time and lens aperture. Moreover, this strategy facilitates an objective quantification 380 

of the disease symptom severity. There are several advantages of our pipeline in comparison 381 

with previous pipelines (Laflamme et al., 2016; Peressotti et al., 2011; Perochon & Doohan, 382 

2016). This includes for example the possibility of normalizing the disease area to the total area 383 

of the leave, the possibility to analyzed complex, multilayered phenotype (necrosis and 384 

chlorosis), and the capacity of parallelize the script and automatize the extraction of data from 385 

large datasets. 386 

 387 

Additionally, our results show that the image analysis can detect differences in the necrotic area 388 

in early stages of the infection (4 dpi) even at low spore concentration (10 spores/μl), 389 

demonstrating that our set up is highly sensitive. Although it seems that the percentage of 390 

necrosis is the most similar characteristic in the manual disease scoring, we cannot exclude the 391 

percentage of chlorosis as another valuable phenotype. Necrosis usually appears in the leaf as 392 

a dark lesion. This characteristic color, well differentiated from the green of the leaf, facilitates 393 

the training of the algorithm. Chlorosis, however, lays near the yellow color, which is adjacent 394 

to the green in the visible spectrum, plus it could also be triggered abiotic stress. This is 395 

especially relevant as chlorosis is a disease symptom which is difficult to quantify and can give 396 

us valuable clues about changes at molecular level in pathogen-host interactions. 397 

 398 

Statistical observations and their meaning 399 

We have performed a robust ANOVA over our linear model as our data did not pass normality 400 

tests. As we did not obtain a high enough number of samples, even in the case the data follows 401 

the assumptions of normality and homoscedasticity the small size of the population would 402 

make the data sensitive to bias due to outliers and influential points, making it almost 403 

impossible to pass the tests. In any case, differences are robust enough to be significative with 404 

parametric and non-parametric methods, suggesting that our analysis pipeline can detect 405 

differences that could be biologically meaningful. 406 

 407 

Although F. graminearum and F. culmorum seem to be more aggressive than F. avenaceum, 408 

still, each genotype has a typical response for each pathogen and pathogen combination, 409 

indicating that there are specific interactions between cultivars and pathogens. This is 410 

especially evident as we can aggregate cultivars in clusters depending on their specific 411 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.14.589412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589412


14 
 

responses to each pathogen and pathogen combination. The clustering analysis of the PCA 412 

coordinates also reveals patterns in the data collected manually and by the NB algorithm. There 413 

are several tools to analyze putative clusters such as K-means clustering or model-based 414 

clustering, but Hierarchical Clustering is a standard in this type of analysis with a relatively 415 

low computational requirement. AGNES is one of the most commons Hierarchical Clustering 416 

algorithms but has disadvantages as it is sensitive to outliers. Despite this, the clustering is 417 

coherent with our data, showing that manual scoring and ML scoring are similar. In fact, 418 

clusters based on ML scoring are more consistent, suggesting an increased accuracy of the 419 

algorithm. 420 

 421 

Biological relevance  422 

Our results show that F. graminearum induced the highest levels of necrosis in leaves in 423 

comparison to F. avenaceum and F. culmorum. Interestingly, different combinations of 424 

Fusarium species trigger specific different responses in the host. We found a statistical 425 

difference between single F. graminearum infections compared with F. culmorum and F. 426 

graminearum combined, where the latter developing less necrotic areas than F. gramineaurm 427 

alone. Despite the small populations size, our results strongly support the hypothesis that 428 

Fusarium species do interact in a way that changes the host response. This idea is especially 429 

relevant as FHB is a disease with different, interacting, causal agents. Similarly, Z. tritici - F. 430 

graminearum coinfections also reveal that pathogen-pathogen interactions are measurable and 431 

genotype-specific manner, which we argue is an important observation suggesting that traits 432 

controlling MDR could be genetically mapped using mixed infection strategies. 433 

  434 
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Figures  639 

 640 

 641 

 642 

 643 

Figure 1. Generic overview of the phenotyping pipeline.  644 

(A) Step 1: 11-days-old Z. tritici (an hemibiotroph) culture is scratched from YMS plates, resuspended 645 

in TWEEN 0.01% (B) Step 2: wheat seedlings are inoculated with Z. tritici and kept in a closed infection 646 

chamber kept until the appropriate stage. (C) Step 3: after 3 days, leaf fragments are harvested, 647 

mounted on agar plates. and infected with a spore suspension of Fusarium spp. (D) Step 4: after 4-7 648 

days of incubation, pictures of the disease symptoms were taken with a DSLR camera. The pictures 649 

were analyzed with a combination of ImageJ, PlantCV python scripts, and R statistical software.5 650 
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 652 

 653 

Figure 2. Infection of wheat leaf segments with single and mixed Fusarium sp. 654 

The cultivar Fielder was inoculated with F. avenaceum, F. culmorum and F. graminearum isolates from 655 

Sweden. Pictures were taken at 8 dpi. Two independent experiments with 8 biological replicates per 656 

treatment we performed. 657 
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 659 

 660 

Figure 3. Analysis of disease symptoms using image segmentation and pixel classification.  661 

(A) Unprocessed images of symptoms caused by F. greaminearum on wheat leaves (B-E) NB image 662 

segmentation and pixel classification of tissue types into (B) necrosis, (C) chlorosis, (D) healthy tissue, 663 

and finally (D) background. (F) Visualization and reconstruction of the original image using pre-defined 664 

pseudo colors classes for necrosis (red), chlorosis (yellow), healthy tissue (green), and background 665 

(gray). (G) Quantification of the pixel areas from the image in (F) and visualization as a bar plot. 666 
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 668 

 669 

Figure 4. Quantification of disease severity using the Naïve Bayes algorithm.  670 

Pictures from Figure 2 were analyzed using the pipeline described in Figure 3. The percentage of pixel 671 

area corresponding to ‘necrosis’ as described in Figure 3 was calculated. Statistically significant group 672 

are indicated with a letter code a-e (two-way robust ANOVA: p < 0.05)   673 

  674 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.14.589412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589412


26 
 

 675 

 676 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.14.589412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589412


27 
 

 677 

Figure 5. Cluster analysis of genotype responses to infections with single and mixed Fusarium species  678 

(A) Cluster obtained from manual scoring of the symptoms. Cluster derived from NB analysis of the 679 

phenotypic classes (B) for ‘necrosis’, (C) for ‘chlorosis’, and (D) for ‘necrosis’ and ‘chlorosis’ combined. 680 

The Agglomerative nesting (AGNES) algorithm was applied to the distance matrix of the mean value of 681 

the PCA coordinates of each sample to develop the dendrogram. The defined number of clusters is 5 682 

(k = 5). The exact content of each cluster is provided in Supplementary Tables 2, 3, 4, and 5. 683 
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 686 

 687 

Figure 6. Dose-dependent F. graminearum symptom severity in coinfections assays with Z. tritici  688 

(A) Original pictures from one experiment with 5 biological replicates applied to our image analysis 689 

pipeline. (B) Soring of the percentage necrosis using the NB algorithm. (C) Scoring of the percentage 690 

of chlorosis using the NB algorithm. In (B-C) control treatment where primary infection with Z. tritici was 691 

replaced by Mock are indicated in ‘red’. Treatments where plants were coinfected with Z. tritici and F. 692 

graminearum are indicated in ‘blue’. The letters a-b refer to two groups of treatments with statistically 693 

significant differences (two-way robust ANOVA: p < 0.05). 694 
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 696 

Figure 7. Comparison of F. graminearum / Z. tritici coinfections of ‘Fielder’ and ‘MG5323’ 697 

(A-B) Original pictures from one experiment with 6 biological replicates with the cultivar ‘Fielder’ applied 698 

to our image analysis pipeline. (A) Experimental controls for (B) where Z. tritici is replaced by Mock 699 

(upper panel), and a double negative control where both pathogens are replaced with Mock (lower 700 

panel) – both pictures are from the same experiment (B) Coinfections with Z. tritici and F. graminearum 701 

(upper panel) and the corresponding double negative control (lower  panel). (C-D) Original pictures from 702 

one experiment with 6 biological replicates with the accession ‘MG5323’ applied to our image analysis 703 

pipeline. (C) Experimental controls for (D) as described in (A). (D) Coinfections with Z. tritici and F. 704 

graminearum and the corresponding control as described in (B). (E) Soring of the percentage necrosis 705 

caused on ‘Fielder’ vs. ‘MG5323’ where F. geaminearum was inoculated alone (red bars) or in 706 

combination with Z. tritici (blue bars). (E) Soring of the percentage chlorosis caused on ‘Fielder’ vs. 707 

‘MG5323’ where F. geaminearum was inoculated alone (red bars) or in combination with Z. tritici (blue 708 

bars). The letters a-b refer to two groups of treatments with statistically significant differences (two-way 709 

robust ANOVA: p < 0.05). 710 
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