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Abstract

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of phenotypic
heterogeneity. Although the predominant focus of scRNA-seq analyses has been assessing gene
expression changes, several approaches have been proposed in recent years to identify changes
at the DNA level from scRNA-seq data. In this study, we evaluated the relative performance of six
strategies for calling single-nucleotide variants from scRNA-seq data using 381 single-cell
transcriptomes from five cancer patients. Specifically, we focused on the quality of the inferred
genotypes and the resulting single-cell phylogenies. We found that scAllele, Monopogen, and
Monovar consistently returned phylogenetically informative genotype calls, providing more
precise signals of discrimination between tumor and normal cells within heterogeneous samples
and among distinct subclonal lineages in longitudinal samples. In addition, we evaluated the
evolution of gene expression along the cell phylogenies. While most transcriptomic variation was
very plastic and did not correlate with the cell phylogeny, a group of genes associated with cell
cycle processes showed a strong phylogenetic signal in one of the patients, underscoring a
potential link between gene expression patterns and lineage-specific traits in the context of
cancer progression. In summary, our study highlights the potential of scRNA-seq data for inferring
cell phylogenies to decipher the evolutionary dynamics of cell populations.

Key-words: scRNA-seq data variant calling; single-cell phylogenies; cancer evolution;
transcriptional plasticity

Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful technology that allows researchers to
explore the gene expression profiles of individual cells, providing insights that are impossible to
obtain through traditional RNA sequencing methods (Heumos et al. 2023; Jovic et al. 2022; Lim,
Lin, and Navin 2020). While the majority of scRNA-seq analyses have focused on uncovering
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gene expression differences within complex tissues, recent efforts have emerged to identify DNA
changes from scRNA-seq data (F. Liu et al. 2019; Quinones-Valdez et al. 2022; Dou et al. 2023;
Muyas et al. 2023; X. Liu et al. 2023). This broadening of scRNA-seq's applicability, leveraging the
wealth of existing datasets, has the potential to reveal the genetic variation that drives cellular
heterogeneity and contributes to disease pathogenesis (García-Nieto, Morrison, and Fraser 2019).

Nevertheless, several challenges complicate the detection of genomic variants from scRNA-seq
data. Beyond the inherent issues of low coverage and high drop-out rates typical in scRNA-seq
(Ziegenhain et al. 2017), factors such as allele-specific expression and alternative splicing may
also introduce significant uncertainty in the genotype calls (Kim et al. 2015). Consequently,
subsequent inferences based on these calls might be influenced by their quality.

In this study, we evaluate the performance of distinct variant calling strategies for identifying
single-nucleotide variants (SNVs) from scRNA-seq data and their impact on downstream
evolutionary inferences. The methods assessed include scAllele (Quinones-Valdez et al. 2022),
SCOMATIC (Muyas et al. 2023), Monopogen (Dou et al. 2023), and Phylinsic (X. Liu et al. 2023),
specifically tailored for scRNA-seq data, as well as HaplotypeCaller (Poplin et al. 2017) and
Monovar (Zafar et al. 2016), initially designed for bulk and single-cell DNA sequencing data,
respectively.

To showcase a compelling application of scRNA-seq genotypes in the context of cancer
evolution, we explored the relationship between genetic changes along cell lineages and gene
expression heterogeneity at the single-cell level. Our findings offer a glimpse into the potential of
scRNA-seq data for simultaneously unraveling the complex landscape of cancer genomics and
transcriptional heterogeneity.

Material & Methods

Data retrieval

We retrieved 381 scRNA-seq datasets from the Sequence Read Archive (SRA), corresponding to
22, 85, and 102 cells from three breast cancer (BC) patients (BC01, BC03, BC07) (Chung et al.
2017) and 45 and 127 cells from two multiple myeloma (MM) patients (MM16, MM34) (Fan et al.
2018). All the datasets except for MM34 included healthy and tumor cells. MM34 is a
treatment-refractory patient with a bone marrow (BM) sample collected at the time of diagnosis
and an extramedullar (EM) sample collected after two months of treatment. Cells in the BM
sample are labeled as BM-like and EM-like cells. We also downloaded whole-exome sequencing
data from healthy (hbWES) and tumor (tbWES) bulk samples for the BC patients. A list of the
individual datasets and corresponding accession codes is available in Table S1.
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Read alignment

For the scRNA-seq datasets, we aligned the raw reads to the human reference genome GRCh38
using STAR (Dobin et al. 2013) (v2.7.9a). Following the GATK best practices for RNA-seq data
(https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-S
NPs-Indels), we marked PCR duplicates using Picard MarkDuplicates (v2.25.5), split the reads into
individual exon segments using GATK SplitNCigarReads (v4.2.6.1), and performed base quality
score recalibration with GATK BaseRecalibrator and GATK ApplyBQSR.

For the bulk WES datasets, we aligned the raw reads to the human reference genome GRCh38
using BWA-mem (H. Li and Durbin 2009). After mapping, we followed the GATK data
pre-processing workflow
(  https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-d
iscovery), which involved marking PCR duplicates using Picard MarkDuplicates, and performing
base quality score recalibration with GATK BaseRecalibrator and GATK ApplyBQSR.

Variant calling

We called somatic single-nucleotide variants (SNVs) using six different strategies detailed below.
scAllele (Quinones-Valdez et al. 2022), SCOMATIC (Muyas et al. 2023), Monopogen (Dou et al.
2023), and Phylinsic (X. Liu et al. 2023) were specifically developed for scRNA-seq data, while
GATK HaplotypeCaller (Poplin et al. 2017) and Monovar (Zafar et al. 2016) were designed for bulk-
and single-cell DNA-seq data, respectively. To ensure a fair comparison, we ran all tools under
default settings and, when possible, applied the same filtering strategy for the resulting calls.

We only considered biallelic SNVs. We defined 0 as the reference allele and 1 as the alternative
allele. Accordingly, the possible genotypes were homozygous for the reference allele (0/0),
heterozygous (0/1), and homozygous for the alternative allele (1/1).

HaplotypeCaller

We ran GATK HaplotypeCaller in multisample mode following the authors' guidelines. First, we
generated GVCF files for each BAM file (one per cell) using the “-ERC GVCF” option, followed by
CombineGVCFs and GenotypeGVCFs to merge all variant calls from the same patient into a
single VCF. The full command lines were as follows:

gatk HaplotypeCaller -R hg38.fa -I ${sample}.bam -O ${sample}.g.vcf.gz -ERC GVCF

gatk CombineGVCFs -R hg38.fa --variant ${sample1}.g.vcf.gz --variant ${sample2}.g.vcf.gz
--variant (...) -O ${patient}-HC.g.vcf.gz

gatk GenotypeGVCFs -R hg38.fasta -V ${patient}-HC.g.vcf.gz -O ${patient}-HC.vcf.gz
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We only kept biallelic SNVs displaying a “PASS” flag. For the breast cancer patients, we removed
germline single-nucleotide polymorphisms (SNPs) identified in the bulk samples (see below). In
addition, we set as missing data any genotype supported by less than five reads and 0/1 and 1/1
genotypes with less than two reads for the alternative allele.

Monovar

We ran Monovar using the authors' recommended settings (see
https://github.com/KChen-lab/MonoVar). We converted all the single-cell BAM files from the same
patient into a single mpileup with samtools mpileup and used it as input for Monovar. The
command line was as follows:

samtools mpileup -BQ0 -d10000 -f hg38.fa -q 40 -b ${patient_mpileup}.Path | monovar.py -p
0.002 -a 0.2 -t 0.05 -f hg38.fa -b ${patient_mpileup}.Path -o ${patient}-Monovar.vcf

Afterward, we filtered the resulting calls using the same strategy described above for
HaplotypeCaller.

scAllele

For each patient, we ran scAllele under default settings using the following command line:

scAllele -b ${list_of_BAM_files} -o ${patient}-scAllele.vcf -g hg38.fa

Importantly, scAllele does not output genotype calls, but allele count estimates for each SNV site.
We thus followed the author's suggestions and genotyped all cells, considering the number of
reads for the reference (REF) and alternative (ALT) alleles plus their sum (DP). For a given cell and
SNV, if DP ≥ 5 and ALT = 0, the genotype was set as 0/0. If DP ≥ 5, REF > 0, and ALT ≥ 2, the
genotype was set as 0/1. If DP ≥ 5 and REF = 0, the genotype was 1/1. Otherwise, the genotype
was set as missing. As before, we removed non-biallelic SNVs. In addition, we removed the
germline variants for the breast cancer patients.

SCOMATIC

Since SCOMATIC requires barcoded BAM files, we added a “CB” tag (cell-barcode tag) to each
single-cell BAM using appendCB (https://github.com/ruqianl/appendCB). Then, we merged the
individual BAM files into a single BAM file with reads from healthy and tumor cells for each
patient. Following the SCOMATIC guidelines (https://github.com/cortes-ciriano-lab/SComatic), we
ran the BaseCellCounter.py script to generate the read counts. We then used the
MergeBaseCellCounts.py script to merge the read counts for all cells for each patient. Next, we
ran the BaseCellCalling.py script to obtain the variant calls. As recommended by the authors, we
applied the variant intersection command to remove SNVs located in “low-quality” regions of the
human genome (e.g., repeats or regions of low complexity). The command lines used were:

4

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.17.589871doi: bioRxiv preprint 

https://github.com/KChen-lab/MonoVar
https://doi.org/10.1101/2024.04.17.589871
http://creativecommons.org/licenses/by-nc/4.0/


# base cell counter
python3.7 BaseCellCounter.py --bam ${sample}-merged.bam --ref hg38.fa --chrom all --out_folder
${path} --min_bq 10 --min_dp 2 --tmp_dir ${path_temp} --min_cc 1

# merge cell counts
python3.7 MergeBaseCellCounts.py --tsv_folder ${path} --outfile ${patient}-Fullset.tsv

# variant calling step 1
python3.7 BaseCellCalling.step1.py --infile ${patient}-Fullset.tsv --outfile ${patient}-Fullset --ref
hg38.fa --min_cells 2 --min_ac_cells 1 --min_ac_reads 1 --min_cell_types 1

# variant calling step 2
python3.7 BaseCellCalling.step2.py --infile ${patient}-Fullset.calling.step1.tsv --outfile
${patient}-Fullset --editing RNAediting/AllEditingSites.hg38.txt --pon
PoNs/PoN.scRNAseq.hg38.tsv

# remove variable sites in low-quality regions of the human genome:
bedtools intersect -header -a ${patient}-Fullset.calling.step2.tsv -b
UCSC.k100_umap.without.repeatmasker.bed | awk '$1 ~ /^#/ || $6 == "PASS"' >
${SAMPLE}-Fullset.calling.step2.pass.tsv

Finally, we used the SingleCellGenotype.py script to extract the read counts for each cell and site.
Considering that SCOMATIC only outputs the read counts for either the reference or the
alternative allele, we could not apply the same filters described before. In this case, we set the
genotypes to missing data if the site had less than two reported reads, otherwise to homozygous
reference if reads were for the reference allele, and to heterozygous if reads were for the
alternative allele. Note that in this case, we could not call homozygous alternative genotypes.

Monopogen
We ran Monopogen following the recommended workflow
(https://github.com/KChen-lab/Monopogen). Using the “CB-tagged” BAM files generated for
SCOMATIC for each patient (which contains the aligned reads from all healthy and tumor cells),
we ran the preProcess script to remove reads with more than three alignment mismatches.
Afterward, we called germline SNPs for each chromosome with the corresponding 1000
Genomes imputation panel
(https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/workin
g/20201028_3202_phased/). Finally, we ran a three-step procedure to identify somatic SNVs and
to obtain the set of genotypes across cells. The full workflow was set as follows:

#pre-process step
Monopogen.py preProcess -b ${patient_bam}.lst -o ${patient} -a ${monopogen_apps}
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#SNP calling
Monopogen.py germline -s all -o ${patient} -g hg38.fa -a ${monopogen_apps} -p
${phase_panel_chr} -r ${chr}.lst

#SNV calling
Monopogen.py somatic -a ${monopogen_apps} -i ${patient} -r ${chr}.lst -l ${patient_samples}.csv
-s featureInfo -g hg38.fa

Monopogen.py somatic -a ${monopogen_apps} -i ${patient} -r ${chr}.lst -l ${patient_samples}.csv
-s cellScan -g hg38.fa

Monopogen.py somatic -a ${monopogen_apps} -r ${chr}.lst -i ${patient} -l ${patient_samples}.csv
-s LDrefinement -g hg38.fa

For downstream analysis, we kept only SNVs showing an “LDrefine_merged_score > 0.25” (a
metric used to distinguish somatic from germline variants) and an alternative allele frequency
above 0.3. Since Monopogen already removes germline variants and performs genotype
imputation for all cells and variable sites, we did not apply additional filters.

Phylinsic

Although Phylinsic was primarily designed to work with 10X Genomics scRNA-seq data, we
followed the author's suggestions to adjust the snakefile to Smart-seq2 data
(https://github.com/U54Bioinformatics/PhylinSic_Project/issues/1). Cell categories were set as
“healthy” or “tumor” –except for patient MM34, where we followed the labels described in the
original publication. To execute the full Phylinsic pipeline, we used the following command line:

snakemake --snakefile updated_snakefile.txt

Like Monopogen, Phylinsic already filters out germline variants and performs genotype
imputation; hence, we did not apply additional filters.

Bulk WES variant calling

We also identified germline and somatic mutations in the bulk WES samples. For the germline
mutations, we ran GATK HaplotypeCaller on the healthy bulk samples. Afterward, we ran the
Variant Quality Score Recalibration (VQSR) pipeline to remove low-quality variants. We used the
paired healthy/tumor variant calling approach implemented in the MuTect2 software to identify
somatic mutations. The output somatic callsets were then filtered using the FilterMutectCalls.
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Evaluation of the scRNA-seq variant calls

In order to evaluate the relative reliability of the scRNA-seq genotypes, we computed four
different measures for each scRNA-seq variant calling strategy, two at the population level and
two at the single-cell level:

SNV patient recall is the proportion of SNVs inferred in the tbWES datasets also identified in the
scRNA-seq data from the same patient.

SNP patient recall is the proportion of SNPs inferred in the hbWES datasets that were also
identified in the scRNA-seq data from the same patient. This measure was only calculated for the
three methods that do not directly filter out germline variants - HaplotypeCaller, Monovar, and
scAllele.

SNP cell recall is, for a given cell, the proportion of SNPs in the hbWES datasets also identified in
the scRNA-seq data.

Allelic dropout rate is, for a given cell, the proportion of scRNA-seq genotypes at hetSNP sites in
the hbWES dataset that were identified as homozygous (0/0 or 1/1).

Cell phylogeny estimation

It is relatively well-established that missing data can compromise phylogenetic accuracy (Smith et
al. 2020). As such, prior to the phylogenetic reconstruction, we removed sites displaying more
than 75% missing genotypes for either healthy or tumor cells and cells with more than 75%
missing genotypes for any of the scRNA-seq variant calling strategies. As a consequence, some
datasets experienced a reduction. The final number of cells was 22, 59, 88, 39, and 113 for BC01,
BC03, BC07, MM16, and MM34, respectively.

We used CellPhy (Kozlov et al. 2022) to reconstruct the cell phylogenies using maximum
likelihood under the GT16 model with 100 bootstrap replicates of the genotype matrix. Branch
support estimates were obtained using the transfer bootstrap expectation metric (Lemoine et al.
2018). The command line for all runs was:

cellphy.sh RAXML --all --msa ${set}.vcf --model GT16+FO+E --msa-format auto --prefix ${set}
--bs-tree autoMRE{100} --bs-metric tbe --prob-msa off.

Reliability of the cell phylogeny

The actual cell phylogeny is unknown, but we would like to have some measure of the reliability
of the inferred cell trees. For that purpose, we employed two different strategies that focus on
how well the trees differentiate among healthy and tumor cells, as we expect tumor cells to form
an exclusive cluster with a single origin (in phylogenetic terms, a monophyletic group, or clade).
First, we measured the mean phylogenetic distance between cells belonging to the same class
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(i.e., healthy vs. tumor) using the “distTips” function from the adephylo R package (Jombart,
Balloux, and Dray 2010). In parallel, we computed Moran's I index (Moran 1950) with the R
package “PATH” (Schiffman et al. 2022) to assess the phylogenetic autocorrelation within healthy
and tumor cells. We computed both measures based on the 100 bootstrap trees previously
generated with CellPhy to account for the uncertainty in the cell trees.

Phylogenetic signal of gene expression

Cell phylogenies derived from scRNA-seq data enable the assessment of how a cell's gene
expression levels are statistically dependent on its evolutionary history, providing insights into the
"phylogenetic signal" embedded within gene expression patterns. Here, we measured the
phylogenetic signal of gene expression in the tumor cells with Pagel’s lambda (Pagel 1999), using
the function “tree_physig” from the sensiPhy R package (Paterno, Penone, and Werner 2018) and
the cell phylogenies obtained with the scAllele genotypes. Again, to incorporate the phylogenetic
uncertainty of the cell tree estimates in the analysis, we computed lambda across the 100
bootstrap trees previously generated with CellPhy. To measure the gene expression levels, we
obtained read counts for all cells from the NCBI Gene Expression Omnibus database (accession
codes available in Table S1) and normalized them using the DESeq2 R package (Love, Huber, and
Anders 2014). For each patient, a principal component analysis (PCA) was used to visualize the
patterns of similarity in gene expression between cells (fig. S1). Finally, we performed an
enrichment analysis for those genes whose expression showed a significant phylogenetic signal
(mean lambda > 0.5 and upper-CI p-value < 0.05) using the “gseGO” function of the clusterProfiler
R package (Wu et al. 2021). The parent terms for each GO were obtained using the “getParents”
function in the GOSim R package (Fröhlich et al. 2007).

Variant annotation and mapping

We annotated the scAllele SNV calls from the MM34 patient using Annovar (Wang, Li, and
Hakonarson 2010) and mapped all non-synonymous SNVs to the corresponding cell tree using
the mutmap function in CellPhy (Kozlov et al. 2022).

Results

Different strategies result in distinct scRNA-seq genotype calls

The number of somatic SNVs identified varied considerably depending on the strategy used to
call them. Across patients, Monovar and HaplotypeCaller consistently identified the largest
amount, with counts being, in most cases, one order of magnitude higher than for the other
strategies specifically designed for scRNA-seq data (fig. 1A). In contrast, SCOMATIC returned the
lowest number of SNVs across all sets evaluated; for the multiple myeloma patients, it only
identified four SNVs when other methods identified hundreds to thousands of SNVs.
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Figure 1. Variant calling from scRNA-seq data. A. Barplots depicting the number of SNVs called by the different
strategies across breast cancer (BC) and multiple myeloma (MM) patients. Note the log scale in the x-axis. B. SNP
patient recall for the BC patients. Only HaplotypeCaller (HC), Monovar, and scAllele are included here, as all other
methods do not call germline variants. The number of SNPs is shown above each bar C. SNP cell recall for the BC
patients combined. D. Allelic dropout rate for the BC patients combined. E. SNV patient recall for BC patients. The
number of SNVs is shown above each bar.

SNP and SNV recall rates are low; allelic dropout is rampant

Germline SNPs are expected to be present in all cells from a given patient, making them
particularly valuable for evaluating scRNA-seq variant calling strategies. We computed SNP recall
by comparing the scRNA-seq calls - obtained with the three variant calling methods that do not
distinguish germline from somatic variants (HaplotypeCaller, Monovar, and scAllele) - with the
SNP calls from the bulk healthy WES (bhWES) data. When considering the calls made for a given
patient, all three methods showed low SNP recall rates, always below 11%. scAllele consistently
identified the highest proportion of SNPs, corresponding to ~14,000 - 46,000 SNPs (fig. 1B). At
the individual cell level, we observed minimal SNP recall rates, that varied notably from cell to
cell, with scAllele still showing the largest values (fig. 1C). Interestingly, the variant allele
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frequency distributions obtained with scAllele were quite similar to those derived from the bhWES
data, while this was not the case for Monovar and, mainly, HaplotypeCaller (fig. S2). The
observed allelic dropout (ADO) rates were particularly high for scAllele (ADO ~ 0.8) and
HaplotypeCaller (ADO ~ 0.75), but half of that for Monovar (ADO ~ 0.37) (fig. 1D). However, it is
worth noting that Monovar tends to genotype variable sites as heterozygous (i.e., 0/1) even when
reads are only observed for the alternative allele, which could partly explain this result. Finally,
only a very small fraction (0-8%) of the SNVs identified in the bulk tumor WES (btWES) data were
also detected in the corresponding scRNA-seq datasets, with HaplotypeCaller, Monovar, and
scAllele returning the largest numbers, in the scale of dozens (fig. 1E).

The inferred cell phylogeny depends on the scRNA-seq variant calling
approach

Different strategies for obtaining SNV genotypes from scRNA-seq data result in distinct cell
phylogenies (fig. 2). In the case of HaplotypeCaller, for instance, the inferred trees exhibit long
terminal branches and relatively short internal ones. While this pattern is expected in the
phylogenies of cells sampled from growing populations, most HaplotypeCaller trees display
healthy cells intermixed with tumor cells, a result that seems unrealistic. Similar patterns were
observed for SCOMATIC where, despite a strong bootstrap support for many nodes, the trees
contain many polytomies (i.e., unsolved relationships), and tumor cells often fail to cluster
together. In contrast, the trees derived from the scAllele, Monovar, and Monopogen genotypes
showed tumor cells predominantly grouping with high support. Finally, Phylinsic calls resulted in
trees with incomplete separation between healthy and tumor cells.

In the case of patient MM34, most cell phylogenies provide a fairly clear separation between cells
sampled at different time points (i.e., EM vs. BM-like and EM-like cells), strongly supporting a
monoclonal extramedullary seeding event. Nevertheless, none of the methods supported two
distinct genetic lineages within the bone marrow corresponding to BM-like and EM-like cells.
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Figure 2. Cell phylogenies inferred from scRNA-seq data. CellPhy trees for all patients according to different
scRNA-seq variant calling approaches. For display purposes, all trees were rooted within each patient using the same
arbitrary cell as outgroup. For BC01, BC03, BC07, and MM16, the colored tips represent different cell categories or
sampling locations: healthy cells - blue; primary tumor cells - dark red; lymph-node tumor cells - dark orange. For
MM34, tip colors represent different cell categories: EM: dark red; EM-like: light red; BM-like: dark orange. Only
bootstrap values above 50% are depicted, using a continuous transparency scale where solid black circles represent a
100% value. Because SCOMATIC only detected four SNVs for the MM patients, the cell phylogenies were not estimated
in this case.

To better estimate the reliability of these cell trees beyond a visual inspection, we computed the
pairwise phylogenetic distance between cells of the same class, i.e., healthy vs. tumor (fig. 3).
Remarkably, scAllele, Monopogen, and Monovar repeatedly returned the lowest phylogenetic
distance among cells of the same type. Phylinsic, on the other hand, resulted in relatively large
phylogenetic distances in BC01 and MM16 but smaller ones in BC03 and BC07. Finally, both
HaplotypeCaller and SCOMATIC often yielded the highest phylogenetic distances between cells
of the same type. We obtained similar results using Moran’s autocorrelation index (fig. S3). Across
all datasets, the highest autocorrelation scores corresponded again to scAllele, Monopogen, and
Monovar.

Figure 3. Intra-class phylogenetic distances. Boxplots depicting the phylogenetic distance between cells in the same
class (Top=healthy; Bottom=Tumor). Each data point represents the average cell-to-cell phylogenetic distance across
100 bootstrap trees. HC = HaplotypeCaller.
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Strong phylogenetic signal in MM34

Considering its better performance for variant calling and phylogenetic estimation, we estimated
the phylogenetic signal for gene expression using only the cell phylogenies derived from the
scAllele genotypes. Nevertheless, we obtained similar results when using the genotypes inferred
by Monovar (fig. S4).

We found a statistically significant phylogenetic signal – measured with the lambda statistic (see
Methods) – only in patients BC07 and MM34. In BC07, three genes, PTPRC, CD69, and CYTIP,
displayed significant (p-value < 0.05) mean lambda scores ≥ 0.5, suggesting moderate to high
phylogenetic signal (fig. S5). Notably, in MM34, 1,877 genes showed a significant mean lambda
score ≥ 0.5 (fig. 4A). A gene set enrichment analysis of these genes uncovered a significant
overrepresentation in cell cycle and chromosome organization processes (fig. 4B), suggesting
potential alterations in cell division rates between bone marrow (BM-like and EM-like) and
extramedullary disseminated (EM) cells. The same genes were mostly down-regulated in the
bone marrow without apparent differences in expression levels between the BM-like and the
EM-like subgroups (fig. 4C). In addition, we identified a non-synonymous mutation in the NDUFB9
gene along the single branch leading to the EM cell population (fig. 4C). Interestingly, although
the down-regulation of NDUFB9 has been linked to increased proliferation and metastatic
dissemination in breast cancer (Li et al. 2015), we did not find statistically significant differences in
expression levels between the EM and the BM cells (fig. 4D).
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Figure 4. Phylogenetic signal of gene expression in patient MM34. A. Mean lambda score for each gene. Genes
showing moderate to high phylogenetic signal (i.e., mean lambda score ≥ 0.5 and p-value < 0.05) are colored in red. B.
Top 15 GO terms in GSEA for genes showing a significant lambda score. C. MM34 phylogenetic tree using the scAllele
genotypes along with cell-level gene expression profiles for genes comprising GO:0007059. Tip colors represent
different cell categories: EM: dark red; EM-like: light red; BM-like: dark orange. Only bootstrap support values equal to
or above 50 are indicated, using a continuous transparency scale (with solid black circles representing a branch
support of 100%). A non-synonymous mutation in NDUFB9 is highlighted on the branch leading to the most recent
common ancestor of the EM cells. Cells in the tile plot are ordered according to the phylogenetic tree. D. Boxplots
depicting the expression levels of NDUFB9 for BM and EM samples. Each data point represents an individual cell,
color-coded according to the scheme used in the phylogenetic tree. The t-test p-value is shown on top.

Discussion

scRNA-seq has emerged as a powerful tool in unraveling the intricate phenotypic heterogeneity
present within complex tissues. Nonetheless, the value of scRNA-seq data extends beyond
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understanding cellular diversity. It provides a unique opportunity to identify genomic changes and
leverage this information to reconstruct cell phylogenies, ultimately enabling us to trace the
evolutionary patterns of gene expression. In this study, we evaluated the potential of six SNV
calling strategies to explore the evolutionary history of tumors using scRNA-seq data.

Our findings suggest that some methods result in more reliable evolutionary relationships among
cell lineages. Notably, scAllele, Monopogen, and Monovar consistently demonstrated the ability
to yield phylogenetically informative genotypes. These methods facilitated the discrimination
between tumor and normal cells within heterogeneous samples and enabled the identification of
distinct subclonal lineages. For example, the majority of the MM34 scRNA-seq phylogenies
suggest a monoclonal extramedullary seeding event, aligning with previous observations derived
from copy number profiles (Fan et al. 2018). However, in contrast to the original study, none of the
cell phylogenies clustered the bone marrow sampled cells into BM-like and EM-like subgroups. At
the same time, we observed that the statistical support for branches within cell categories was
relatively low. This limitation in resolving fine-scale evolutionary relationships within
subpopulations may stem from the inherent complexities involved in detecting subtle genetic
differences at the single-cell level using scRNA-seq data, emphasizing the need for a more
cautious interpretation.

A significant benefit of using scRNA-seq data to build cell phylogenies is that it allows us to study
the evolution of gene expression along cell lineages. Shared ancestry can lead to phenotypic
similarity between related cell lineages, a phenomenon known in evolutionary biology as
“phylogenetic signal” (Revell, Harmon, and Collar 2008). Consequently, assessing the
phylogenetic signal of gene expression holds considerable potential in identifying mutations that
drive phenotypic diversity and uncovering signatures of adaptive evolution. Within patient MM34,
a notable proportion of genes associated with cell cycle processes exhibited altered expression
levels along the cell phylogeny. Remarkably, these genes were particularly active within a specific
lineage, suggesting potential differences in proliferation rate, which may have contributed to the
rapid extramedullary dissemination of the disease.

We found a notable discrepancy in the phylogenetic signal of gene expression across datasets,
with only MM34 exhibiting a strong phylogenetic signal for many genes. We hypothesize that the
well-structured phylogeny within MM34, where cells from different spatial locations and distinct
microenvironments form established populations with high phylogenetic support, contributes
significantly to this observation. In contrast, cell trees for the remaining patients exhibited
intermixed cell populations across sampling locations, potentially limiting the detection of
phylogenetic signal. It is important to note that the majority of genes in all datasets did not display
a significant phylogenetic signal for expression. This outcome is consistent with previous results
and underscores the prevalence of transcriptional plasticity (Househam et al. 2022).

Furthermore, our findings emphasize the need to consider phylogenetic uncertainty when
estimating the phylogenetic signal for cellular traits. The limited bootstrap support observed in
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the scRNA-seq phylogenies can result in considerably unstable lambda scores (fig. S6).
Therefore, ad hoc approaches like the one proposed here should be considered when
interpreting these trees. Alternatively, Bayesian approaches offer a natural framework for
addressing the challenges posed by phylogenetic uncertainty. While acknowledging the
limitation of our analysis, centered on a restricted number of datasets with varying cell counts, it
is noteworthy that the overall patterns remained remarkably consistent across these datasets.
However, these results may only be partially generalizable, particularly to datasets generated
using different technologies, such as 10X genomics, where read coverage is often much lower.

In conclusion, our study highlights the valuable insights that can be gained from scRNA-seq data,
shedding light on the genomic diversity within cell populations and facilitating a deeper
understanding of the evolutionary changes that occur in gene expression along specific cell
lineages. Our results offer a comprehensive benchmark for variant detection and phylogenetic
reconstruction using scRNA-seq data, providing a valuable guideline for exploring the
evolutionary dynamics of cell populations through the analysis of single-cell transcriptomes.
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