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ABSTRACT: 15 
 16 
Evolution by natural selection is expected to be a slow and gradual process. In particular, the 17 
mutations that drive evolution are predicted to be small and modular, incrementally improving a 18 
small number of traits. However, adaptive mutations identified early in microbial evolution 19 
experiments, cancer, and other systems often provide substantial fitness gains and 20 
pleiotropically improve multiple traits at once. We asked whether such pleiotropically adaptive 21 
mutations are common throughout adaptation or are instead a rare feature of early steps in 22 
evolution that tend to target key signaling pathways. To do so, we conducted barcoded second-23 
step evolution experiments initiated from five first-step mutations identified from a prior yeast 24 
evolution experiment. We then isolated hundreds of second-step mutations from these evolution 25 
experiments, measured their fitness and performance in several growth phases, and conducted 26 
whole-genome sequencing of the second-step clones. Here, we found that while the vast 27 
majority of mutants isolated from the first-step of evolution in this condition show patterns of 28 
pleiotropic adaptation - improving both performance in fermentation and respiration growth 29 
phases - second-step mutations show a shift towards modular adaptation, mostly improving 30 
respiration performance and only rarely improving fermentation performance. We also identified 31 
a shift in the molecular basis of adaptation from genes in cellular signaling pathways towards 32 
genes involved in respiration and mitochondrial function. Our results suggest that the genes in 33 
cellular signaling pathways are particularly capable of providing large, adaptively pleiotropic 34 
benefits to the organism due to their ability to coherently affect many phenotypes at once. As 35 
such, these genes may serve as the source of pleiotropic adaptation in the early stages of 36 
evolution, and once these become exhausted, organisms then adapt more gradually, acquiring 37 
smaller, more modular mutations.   38 
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INTRODUCTION 39 
 40 
As organisms adapt to their environment, they face a multi-dimensional optimization problem. 41 
To be advantageous, new mutations must improve one or more traits under selection without 42 
imposing strong costs on other traits. Theoretical analyses of adaptive walks in multi-43 
dimensional trait spaces suggest that mutations that generate small phenotypic shifts in few 44 
traits are more likely to be beneficial overall than mutations of large phenotypic effect on many 45 
traits (Orr 2000). Consequently, adaptive mutations are expected to both provide small fitness 46 
benefits and to be modular – that is, affect only a few traits without affecting others.  47 
 48 
Despite these theoretical expectations, microbial evolution experiments have revealed that early 49 
adaptation often proceeds by single mutations that provide large fitness benefits (Y. Li, Petrov, 50 
and Sherlock 2019; Wiser, Ribeck, and Lenski 2013; Levy et al. 2015; Johnson et al. 2021; 51 
Venkataram et al. 2016). Moreover, in the cases where the improvement of these mutations has 52 
been decomposed into distinct trait performances, it is often observed that these mutations 53 
improve multiple traits simultaneously (as illustrated in Figure 1A) (Y. Li, Petrov, and Sherlock 54 
2019; Y. Li et al. 2018; Bono et al. 2017; Jasmin and Kassen 2007).  55 
 56 
The observation of adaptive mutations improving multiple performances at once, which we here 57 
term “pleiotropic adaptation”, can be easily seen in a series of evolution experiments 58 
conducted with barcoded yeast in which a comprehensive set of adaptive mutations was 59 
profiled for their effects on likely orthogonal trait performances (Levy et al. 2015; Venkataram et 60 
al. 2016; Y. Li, Petrov, and Sherlock 2019; Y. Li et al. 2018). Li et al (2018) in particular showed 61 
that ~85% of first-step adaptive mutations isolated from their evolution experiment improve 62 
performance in both fermentation and respiration growth phases, both of which are under 63 
selection during the yeast growth cycle. These pleiotropic mutants from this initial step of 64 
adaptation, many of which harbor only a single mutation in the Ras/PKA pathway, are also 65 
strongly adaptive, providing fitness benefits of up to 120% per growth cycle (roughly 15% per 66 
generation) (Venkataram et al. 2016). Such large-effect Ras/PKA pathway mutations are 67 
commonly found in early evolution in other systems, such as cancer progression (Bailey et al. 68 
2018). As the study we present here follows on from our previous series of findings, we use 69 
these yeast mutations as a motivating example throughout the rest of the introduction.  70 
 71 
How do we reconcile our observations of pleiotropic adaptation (Y. Li et al. 2018) with 72 
theoretical expectations that these mutations should affect only a small number of traits? One 73 
possibility is that fermentation and respiration performances are not as distinct as we believe. 74 
However, a number of adaptive mutations do improve only one of these performances, 75 
demonstrating that it is in fact possible to shift one performance without affecting the other.  76 
 77 
The other possibility is that the Ras/PKA pathway is wired in such a way that mutations that 78 
target this pathway are capable of being both pleiotropic and adaptive, affecting many 79 
phenotypes of the organism but in a coherent and coordinated fashion. It might be that 80 
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mutations in general might not have these patterns of pleiotropic adaptation and instead exhibit 81 
“modular adaptation”, improving only a subset of the traits under selection. Thus, isolating and 82 
characterizing the effects of subsequent mutations, which may be less likely to target this 83 
already-mutated pathway, might better reflect the pleiotropic properties of adaptive mutations 84 
beyond these extremely beneficial first-step mutations in the Ras/PKA pathway. One way in 85 
which we can assess whether the observed adaptive pleiotropy is a common feature of adaptive 86 
mutations is to conduct adaptive walks, evolving populations further in the same environment. 87 
We can then ask whether later adaptive mutations continue to show pleiotropic adaptation or 88 
not.  89 
 90 
One possibility is that pleiotropic adaptation is indeed common. This may be true if there are 91 
many pathways in the cell that can be mutated to yield simultaneous improvement of the traits 92 
under selection or, instead, if the signaling pathways mutated early can continue to be optimized 93 
beyond the first adaptive step. In this scenario, second-step adaptive mutations would continue 94 
to improve both traits under selection (Figure 1B, red points) and longer adaptive walks would 95 
also continue to show this pattern of pleiotropic adaptation (Figure 1B arrows). 96 
 97 
Alternatively, pleiotropic adaptation may be rare, and first-step mutations target the only (or one 98 
of few) signaling pathway(s) which can result in simultaneous improvement of multiple traits 99 
(performance in both fermentation and respiration growth phases in the case of the yeast 100 
evolution experiments). For adaptation to continue, it would need to engage the modules that 101 
can independently control the performance in each growth phase. Individual second-step 102 
mutations under this scenario would then be expected to exhibit a pattern of “modular 103 
adaptation”, improving only one performance under selection or the other (Figure 1C). The 104 
longer adaptive walks could continue down this route of specialization in either a single 105 
performance (blue or magenta arrows) or instead improve both performances under selection, 106 
but via sequential improvement of one performance and then the other (orange arrows).  107 
 108 
Thus, to characterize the nature of single-step adaptive mutations and whether the observation 109 
of pleiotropic adaptation of first-step mutations is a general feature of individual adaptation-110 
driving mutations or instead a rare feature of early adaptive mutations, we need to 111 
experimentally conduct high-resolution adaptive walks, wherein we can isolate adaptive 112 
mutations, quantify their effects on traits relevant to fitness, and identify the molecular basis of 113 
adaptation. The yeast barcoding system developed by (Levy et al. 2015) is particularly well-114 
suited for this set of experiments, as we can isolate hundreds of mutations per evolution 115 
experiment and study their properties via pooled fitness measurement experiments.  116 
 117 
In this study, we perform second-step evolution experiments using a set of five first-step 118 
adaptive mutations isolated from a glucose-limited evolution experiment (Levy et al. 2015) as 119 
new ancestors. We then isolate hundreds of mutants from these evolution experiments and 120 
measure their performance in the growth phases that make up the evolution condition. We find 121 
a shift in the nature of adaptation over this two-step adaptive walk. While first-step mutations 122 
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primarily demonstrate pleiotropic adaptation, improving performance in both growth phases 123 
under selection, second-step mutations instead primarily exhibit modular adaptation, improving 124 
performance in only a single growth phase under selection (Figure 1C). Whole genome 125 
sequencing reveals an associated shift in the molecular basis of adaptation: from first-step 126 
mutations in general signaling pathways to second-step mutations in genes related to 127 
mitochondrial function and respiration. Finally, we sample rare adaptive clones that showed 128 
patterns of adaptive pleiotropy and discovered that they harbor multiple additional mutations. 129 
This suggests that these populations have not yet reached physiological constraints but rather 130 
that adaptive walks may be constrained by genetic modules which prevent adaptive mutations 131 
from improving multiple performances in a single step.  132 
 133 
This shows that early adaptation, here represented by the first-step in our evolution experiment, 134 
can engage signaling pathways that allow for rapid, large step pleiotropic adaptation but later 135 
adaptation is more likely to be modular, as expected by theory. We thus expect that longer term 136 
evolution will indeed progress through smaller, and ultimately more modular, adaptive 137 
mutations. 138 

 139 
Figure 1. Theoretical illustration: Pleiotropy may be a generic feature of adaptation or specific to 140 
the first-step of evolution. (A) First-step adaptive mutations (each mutation depicted as a dot) in 141 
evolution often exhibit patterns of pleiotropic adaptation - improving performance in multiple traits 142 
simultaneously (falling into the gray square). Gray curved line represents the limits of combinations of 143 
performances reached by the first-step of evolution. (B) If pleiotropic adaptation is common, then second-144 
step adaptive mutations (depicted in red) would continue to improve multiple performances at once. 145 
Longer adaptive walks would also continue to show these patterns (orange arrows). (C) If pleiotropic 146 
adaptation is rare and largely constrained to the first adaptive step, then second-step adaptive mutations 147 
might show a shift in their improvement, instead primarily improving one performance or the other (light 148 
red circles). In this scenario, longer term adaptive walks may continue to specialize in one performance or 149 
the other (depicted by blue and magenta arrows), or instead continue to collectively improve both 150 
performances, albeit in a stepwise manner (orange arrows).   151 
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RESULTS 152 
 153 
Isolating second-step adaptive clones and measuring performance in growth phases 154 
 155 
When yeast are grown in an environment under glucose-limitation in batch culture, they 156 
experience several growth phases (Figure 2A). First, the yeast experience lag phase, where 157 
they acclimate to the environment and allocate cellular resources to consuming glucose. Then, 158 
the yeast ferment the glucose, converting it to ethanol. Once the glucose is consumed, the 159 
yeast then undergo the diauxic shift and respire on the ethanol they produced during 160 
fermentation. Finally, once the supply of ethanol has been depleted, the yeast experience 161 
stationary phase, where they allocate resources to surviving without a carbon source. These 162 
growth phases are typically thought of as independent processes, with distinct transcriptional, 163 
proteomic, and metabolomic profiles that characterize and drive yeast physiology (DeRisi, Iyer, 164 
and Brown 1997; Schlossarek et al. 2022; Zampar et al. 2013; Murphy et al. 2015).  165 
 166 
Previously, a population of barcoded yeast was evolved in a 2-Day transfer environment under 167 
glucose limitation, where they experienced lag, fermentation, and respiration but not stationary 168 
phases before being transferred to fresh medium (Levy et al. 2015; Venkataram et al. 2016). 169 
Adaptive mutations isolated from this experiment gained substantial fitness benefits, primarily by 170 
constitutively activating one of two glucose-sensing pathways: Ras/PKA and TOR/Sch9 171 
(Venkataram et al. 2016). Additionally, 85% of these mutants improved performance in both 172 
fermentation and respiration phases, despite the supposed independence of these growth 173 
phases. Interestingly, with additional evolution experiments designed to maximize individual 174 
performances, Li et al (2019) were able to find evidence of constraints on the first step of 175 
evolution such that no single mutation is able to simultaneously maximize both fermentation and 176 
respiration performances to the largest extreme of each performance observed individually.  177 
 178 
To understand whether pleiotropic adaptation is common or if instead first-step mutations 179 
represent rare solutions that improve both traits under selection, we carried out second-step 180 
evolution experiments in the same 2-Day transfer environment, isolated adaptive mutants, 181 
identified causative mutations underlying adaptation, and characterized the mutations’ effects 182 
on performance in the environment’s growth phases. Aggeli et al. (Aggeli, Li, and Sherlock 183 
2021) previously performed second-step evolution experiments using barcoded populations that 184 
carried one of three mutations identified in the first step of evolution: a gain-of-function mutation 185 
in CYR1, a loss-of-function mutation in GPB2, and a gain-of-function mutation in TOR1. Here, 186 
we used additional barcoded populations derived from two distinct mutations in IRA1: one 187 
missense mutation and one nonsense mutation (see Methods). We then evolved 2 replicates of 188 
each barcoded population in the 2-Day transfer condition, labeled here “Evo2D”, for 22 transfers 189 
(~176 generations) and isolated adaptive clones (Figure 2B,C). As we were also interested in 190 
how the number of traits under selection alters the extent of pleiotropic adaptation, we also 191 
evolved the same barcoded populations in a 3-Day transfer condition, herein termed “Evo3D”, 192 
where populations experienced an additional 12 hours of respiration and 12 hours of stationary 193 
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phase, and isolated adaptive clones from this additional set of evolution experiments (Figure 194 
2A-C; see Methods).  195 
 196 
To assess the extent to which physiological and genetic constraints affect the second-step of 197 
adaptation, we quantified each mutant’s performance in fermentation, respiration, and stationary 198 
growth phases using pooled barcoded fitness assays, as developed previously (Figure 2B; 199 
(Venkataram et al. 2016; Y. Li et al. 2018; Y. Li, Petrov, and Sherlock 2019; Kinsler, Geiler-200 
Samerotte, and Petrov 2020; Kinsler et al. 2023). Briefly, we pooled all isolated second-step 201 
mutants together with the barcoded mutants from the first step of evolution. We then mixed this 202 
pool of barcoded yeast with a set of barcoded neutral lineages and the ancestral strain, such 203 
that the barcoded pool started at either 2% or 5% frequency in the population and the neutral 204 
barcoded lineages collectively represented 2% of the population (see Methods). We then 205 
measured the fitness of each mutant by serially transferring ~5x10^7 cells for five cycles in 1-, 206 
2-, 3-, and 5-Day transfer intervals. At each transfer, we froze down the remaining cells, 207 
extracted their DNA, amplified the barcode region with PCR, and then sequenced the barcode 208 
region. We then calculated each mutant’s fitness relative to the ancestor by comparing each 209 
mutant’s frequency change with the pool of neutral lineages (Figure 2B, see Methods).  210 
 211 
During the analysis of fitness measurement data, we observed that the detected fitness effects 212 
of each mutant varied systematically over the course of serial transfers during the fitness 213 
measurement of the isolated adaptive clones. Specifically, in the 2-Day transfer condition, many 214 
adaptive mutants showed very high fitness when the ancestral strain was at or above 80% of 215 
the population but showed much lower fitness at later time intervals when the pool of adaptive 216 
lineages dominated the population. We note that this effect is not due to change in population 217 
mean fitness, as this is already accounted for in these fitness values. While intriguing, we 218 
avoided these frequency dependent fitness effects in our data by using only early timepoints, 219 
where the ancestor dominated the population, as these reflect the fitness in the environment set 220 
by the ancestor and where the fitness of mutants isolated from the original evolution experiment 221 
matched their fitness measurements in previous experiments (Figure S1).  222 
 223 
Second-step adaptive mutations provide substantial yet smaller fitness benefits than 224 
first-step mutations  225 
 226 
We sequenced the barcodes in these populations to monitor the dynamics of evolution and to 227 
quantify the distribution of fitness effects. Using the approach implemented in software FitMut1 228 
(Levy et al. 2015; F. Li, Tarkington, and Sherlock 2023), we quantified the distribution of fitness 229 
effects for these populations and the original evolution experiment. Because auto-diploidization 230 
is a common mode of adaptation in evolution experiments with haploid yeast, we also used a 231 
benomyl assay to determine the ploidy of the isolated adaptive clones (Figure 2C). We then 232 
categorized mutants according to their ploidy status and fitness across pooled fitness 233 
measurement experiments as neutral haploids, pure diploids, adaptive haploids, or high-fitness 234 
diploids (diploids that have additional beneficial mutations, see Methods). 235 
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We found that the rate of beneficial mutations is reduced in the second-step of evolution in the 236 
2-Day environment, with adaptive mutations that provide fitness benefits of 1.0 or greater (per 237 
cycle) becoming much rarer (Figure 2D). This is consistent with the patterns of diminishing 238 
returns epistasis commonly observed in microbial evolution experiments (Wiser, Ribeck, and 239 
Lenski 2013; Johnson et al. 2021; Aggeli, Li, and Sherlock 2021; Good and Desai 2015; 240 
Wünsche et al. 2017; Chou et al. 2011; Kryazhimskiy et al. 2014). While we see this general 241 
decrease in the magnitude of the fitness benefit of adaptive mutations, we nonetheless find that 242 
many second-step adaptive mutations still have substantial fitness gains in the 2-Day transfer 243 
evolution condition. Across all isolated second-step adaptive mutants (excluding auto-diploids 244 
and neutral haploids), the average fitness benefit provided is 82% per cycle relative to the 245 
parental strain. This is similar across mutants isolated from both 2- and 3-Day evolution 246 
experiments (Figure 2E,F). We also sampled rare mutants with fitness advantages as high as or 247 
even higher than the most extreme fitnesses observed in the first step of evolution. For 248 
example, two mutants isolated from the Evo3D IRA1-missense evolution experiments provide a 249 
benefit of ~200% above the parental IRA1-missense strain, which corresponds to a ~350% 250 
fitness advantage per 2-Day cycle over the original ancestor strain (Figure 2E,F). As will be 251 
discussed later, these extremely fit mutants represent rare and complex mutations, sometimes 252 
consisting of up to four distinct adaptive mutations.  253 
 254 
We also calculated the relative fitness improvement provided by auto-diploidization alone by 255 
comparing the fitness of the pure diploid population to the neutral haploids for each parental 256 
strain. Consistent with the pattern of diminishing epistasis observed from the evolution 257 
trajectories, we find that the fitness benefit of auto-diploidization has decreased in the second 258 
step of evolution from 95% per cycle in the first-step of evolution to 63% on average across all 259 
second-step auto-diploids (Figure 2F). However, this number varied by parental strain, with 260 
TOR1 auto-diploids providing the largest fitness benefit of 81% per cycle and auto-diploids of 261 
Ras/PKA parental strains providing fitness benefits of 55%, 48%, and 52% per cycle to CYR1, 262 
GPB2, and IRA1-missense, respectively (Figure 2F). Surprisingly, we did not isolate any auto-263 
diploids from the IRA1-nonsense evolution experiments. We suspect this could be due to 264 
differences in the fitness benefit provided by auto-diploidization to IRA1-nonsense strains 265 
compared to other beneficial mutations in the same evolving population or reduced auto-266 
diploidization rate in this genetic background. 267 
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Figure 2. Summary of experiments and fitness effects of isolated adaptive mutants. (A) A 268 
schematic of yeast growth phases under the nutrient conditions used in this study. The yeast experience 269 
4 hours of lag phase, 16 hours of fermentation and 4 hours of respiration phase in the first 24 hours of 270 
growth. (B) Schematic of barcoded evolution experiments and fitness measurement experiments. (C) 271 
Table of mutants used in this study, including ploidy, and publication source.(D) Probability density of 272 
mutational fitness coefficients. The black line refers to first-step mutants from Levy et al 2015. Colored 273 
lines depict the inferred density of fitness effects of mutations from second-step evolution experiments in 274 
the 2Day transfer environment (Evo2D). (E) Fitness effects per cycle in 2-Day transfer of all mutants, 275 
relative to WT ancestor. First violin plot for each parental strain shows neutral haploids. Second shows 276 
pure diploids. Third column is all other 2-Day adaptive mutants, including adaptive haploids and high-277 
fitness diploids. Fourth column is all other 3-Day adaptive mutants. (F) As in (E), but relative to parental 278 
strain.  279 
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Second-step adaptive clones demonstrate a shift from pleiotropic to modular adaptation 280 
 281 
Next, to determine whether the pattern of pleiotropic adaptation observed over the first-step of 282 
evolution is maintained in the second step, we compared changes in performance for each 283 
mutant to its parental strain. To calculate each mutant’s performance in fermentation, 284 
respiration, and stationary phases, we leveraged differences in each mutant’s fitness in 285 
experiments of different transfer lengths, which was previously shown to be a good proxy for the 286 
direct performance in each growth phase (Y. Li et al. 2018; Y. Li, Petrov, and Sherlock 2019). In 287 
particular, a mutant’s respiration performance per hour was calculated as the difference 288 
between its 2-Day fitness and 1-Day fitness, divided by the 24 hours in respiration phase 289 
experienced over the second day (Figure 3A). We then used this respiration performance to 290 
extrapolate the mutant’s relative fitness at 20 hours, the time at which the population undergoes 291 
the diauxic shift from fermentation metabolism to respiration metabolism, with which we can 292 
calculate its fermentation performance per hour (Figure 3A). Finally, we calculated a mutant’s 293 
stationary performance by taking the difference between 5- and 3-Day fitness and dividing it by 294 
the 48 hours of stationary phase experienced over these two days (Figure 3A). Importantly, the 295 
growth phase performances calculated here reflect compound measurements of several 296 
parameters important to fitness during and between growth phases, including energy 297 
metabolism, sensing of changing nutrient gradients, and survival.  298 

 299 
We found that while 85% (±3%) of isolated first-step adaptive mutants improved performance in 300 
both fermentation and respiration phases (black points within gray square in Figure 3B), only 301 
35% (±1%) (p<0.001, re-sampling test) of isolated second step adaptive haploids evolved in the 302 
same 2-Day transfer environment improved performance over their first-step parental strain in 303 
both phases (light orange points within gray square in Figure 3B). Second-step mutants that 304 
were isolated from Evo3D, which encompasses the growth phases of Evo2D, show an even 305 
stronger shift from adaptive pleiotropy than the second-step mutants from the Evo2D, with only 306 
13% (±1%) of these mutants improving performances in both fermentation and respiration 307 
(darker colored points labeled “Evo3D” in Figure 3B, C). This shift is also seen for each parental 308 
strain individually (Figure 3C), with Evo2D second-step mutants isolated from each first-step 309 
parental strain showing a reduction in the number of mutations that improve performance in 310 
both fermentation and respiration, albeit with some variability in magnitude. For example, only 311 
25% (±2%) and 17% (±2%) of second-step Evo2D mutants from IRA1-missense and IRA1-312 
nonsense parental strains, respectively, improved both fermentation and respiration 313 
performances (Figure 3C). At the same time 51% (±4%), 65% (±10%), and 65% (±5%) of 314 
second-step Evo2D mutations improve both fermentation and respiration performances from 315 
CYR1, GPB2, and TOR1. Thus while the second step adaptive mutations are still capable of 316 
improving fermentation and respiration performances at the same time, the probability of 317 
mutations being pleiotropically adaptive is lower.  318 
 319 
In addition to a reduction in the number of second-step mutations that improve performance in 320 
both fermentation and respiration phases, we noticed that second-step mutants were much 321 
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more likely to improve respiration performance than fermentation performance. Across all 322 
second-step Evo2D mutants, 98% (±1%) improved respiration performance. 61% (±1%) of 323 
these mutants improved respiration at the cost to fermentation performance (Figure 3B). This 324 
effect is even stronger for Evo3D mutants, where 86% (±1%) improve respiration at a cost to 325 
fermentation performance (Figure 3B). This trend holds across most parental strains, with the 326 
strongest pattern seen for mutants evolved from the IRA1-nonsense parental strain, where 81% 327 
(±2%) of Evo2D mutants and 96% (±2%) of Evo3D mutants improved respiration performance 328 
at the cost of fermentation performance. Note that while many of these mutants reduce 329 
fermentation performance from the initial first-step parental strains, only a small number of 330 
mutants have fermentation performances worse than the original ancestor strain (Figure 3C, 331 
vertical black dashed line in each subplot).  332 
 333 
At the same time, improving performance in only the fermentation phase is rare. Only 2% of 334 
second-step Evo2D mutants and no isolated second-step Evo3D mutants improve fermentation 335 
alone, despite the fact that an equivalent improvement in fermentation performance would result 336 
in similarly high fitnesses for those mutants in the 2-Day condition these populations were 337 
evolved in (see fitness isoclines in Figure 3C).  338 
 339 
Despite these general patterns revealing a shift from pleiotropic to modular adaptation, there are 340 
several examples of very strongly adaptive clones which improve both performances. For 341 
example, one clone isolated from the IRA1-missense population has a fitness advantage of 342 
340% per cycle relative to the initial ancestor (or 210% relative to the IRA1-missense parental 343 
strain). This mutant does improve performance in both fermentation and respiration growth 344 
phases, albeit with most of its fitness gain coming from respiration (Figure 3C, IRA1-missense 345 
panel, labeled with red arrow). We isolated other rare examples of very fit clones that improve 346 
both growth phases from other parental strains (Figure 3C, IRA1-nonsense panel, labeled with 347 
red arrows), suggesting that the yeast have not yet reached functional constraints on the ability 348 
to improve both fermentation and respiration performance and that it is still possible to improve 349 
both performances beyond the evolutionary constraints observed for the first step of adaptation. 350 
As discussed below, some of these very fit clones have acquired third or fourth adaptive steps, 351 
allowing them to achieve these high fitnesses.  352 
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Figure 3. Second-step adaptive mutants tend to improve respiration performance and not 354 
fermentation performance. (A) Performance calculation in each growth phase. Respiration performance 355 
(per hour) is calculated as the difference between a mutant’s 2-Day and 1-Day fitness, divided by 24 356 
hours. To calculate fermentation performance (per hour), we remove four hours of 1-Day fitness that is 357 
due to the mutant’s respiration benefit. The remaining fitness is then divided by 16 hours of fermentation 358 
phase. Stationary phase performance (per hour) is calculated as the difference between 5- and 3-Day 359 
fitness divided by 48 hours. Example fitnesses and performances are shown for the TOR1 and IRA1-360 
nonsense mutations used as parental strains for the second-step of evolution. (B) Comparison of 361 
changes in performances from first- to second-step mutants relative to each parental strain. Note that 362 
first-step mutants are shown relative to the initial ancestor (the same as their measured fitness). Second-363 
step mutants are shown relative to the relevant parental strain (i.e. second-step mutants from IRA1-364 
missense are shown relative to neutral IRA1-missense parental lineages). Percentages in corners 365 
indicate estimated fraction of mutants in each quadrant as determined by re-sampling of mutants with 366 
fitness measurement error. (C) Performance of isolated mutants separated by parental strain. Each 367 
mutant’s performance in fermentation and respiration growth phases is shown, separated into subfigures 368 
by the initial ancestor for each mutant. KDE estimates represent the density of neutral haploids (solid 369 
lines) and pure diploids (dashed lines) for each ancestor. Crosses represent the barcoded mutants 370 
carrying the first-step mutation from the initial evolution experiment. Black line depicts a convex hull of the 371 
most extreme first-step mutants. Fitness isoclines show the 2-Day fitness advantage per cycle relative to 372 
ancestral strain associated with each location in the performance space.  373 
 374 
Adaptively modular second-step mutants are more likely to improve performance in 375 
stationary phase  376 
 377 
We next asked how the shift from adaptive pleiotropy to adaptive modularity of performances 378 
under selection affects how these mutants perform in other tasks not under selection in the 379 
Evo2D environment. For example, Li et al (2018) (Y. Li et al. 2018) showed that many of the 380 
first-step mutations, which tended to improve both fermentation and respiration performances, 381 
exhibited costs in stationary phase performance. Does the shift towards adaptive modularity 382 
reduce the likelihood or magnitude of costs in other performances, potentially indicating that 383 
these mutants are more modular overall? Or do these costs to other performances remain? 384 
 385 
To address these questions, we calculated each mutant’s performance in stationary phase 386 
(Figure 2A). As previously described (Y. Li et al. 2018), first-step mutants are more likely to 387 
incur a cost in stationary phase than to improve it (Figure 4A), with 30% (36/119) of mutants 388 
showing such a cost (Figure 4B) and less than 2% (2/119) showing any improvement in 389 
stationary performance. The most fit first-step mutants which improve both fermentation and 390 
respiration performance to substantial degrees tend to have larger costs in the stationary phase. 391 
In particular, the IRA1-nonsense mutants, which were the most fit in the first-step, have the 392 
strongest costs in stationary phase performance, up to -4% per hour (Figure 4A).  393 
 394 
We find that many Evo2D second-step mutants do pay a cost in stationary phase. In particular, 395 
42% of second-step Evo2D adaptive mutants have lower stationary performance than their 396 
parental strain. At the same time, these costs to stationary performance tend to be somewhat 397 
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minor, exhibiting costs of less than -2% per hour for second-step mutants derived from CYR1, 398 
GPB2, TOR1, or IRA1-missense parental strains (Figure 4B). Note that this was not the case for 399 
the second-step mutants isolated from IRA1-nonsense populations, which exhibited the 400 
strongest costs to stationary phase in the first-step of evolution. These second-step mutants had 401 
further costs to stationary performance as extreme as -10% per hour (see supplemental figures 402 
S3 and S4).  403 
 404 
However, in contrast to the first-step of evolution where stationary performance was rarely 405 
improved, 25% (77/306) of second-step Evo2D mutants show an increase in stationary 406 
performance (Figure 4A). We further stratified the second-step mutants based on their 407 
combined fermentation and respiration performances. Specifically, we asked whether mutants 408 
that only improve respiration performance showed behavior in stationary phase that was distinct 409 
from those that improved both fermentation and respiration performance. We find that second-410 
step Evo2D mutants that only improved respiration performance had varied effects on stationary 411 
performance, with 36% (70/197) showing increased stationary performance and 39% (76/197) 412 
showing a cost to stationary performance. By contrast, second-step Evo2D mutants that 413 
improved both fermentation and respiration performances were much less likely to improve 414 
stationary performance, with only 6% (7/109; p<1e-8 compared to by respiration-only improvers 415 
by Fisher’s exact test) of these mutants showing stationary improvement and 49% (53/109) 416 
imposing a cost on yeast’s ability to survive stationary phase.   417 
 418 
Thus, it appears that mutations that are capable of improving both fermentation and respiration 419 
at the same time are more likely to incur costs in stationary phase. This inherent relationship 420 
may explain the reduction in Evo3D mutants that improve both fermentation and respiration 421 
performances (Figure 3B, 4A), as stationary phase is additionally under selection in this 422 
condition. Indeed, 79% (160/202; p<1e-8 compared to Evo2D by Fisher’s exact test) of Evo3D 423 
mutants show an improvement in stationary phase, 97% (155/160) of which do not improve 424 
fermentation. While 7% (15/202) of Evo3D mutants do exhibit a cost in stationary phase, these 425 
costs are relatively minor and are primarily found in mutants with combined fermentation and 426 
respiration performances that compensate for these costs to stationary performance (Figure 4A 427 
and B). These data indicate that the shift from mutants that improve both fermentation and 428 
respiration performances to those that primarily improve respiration performance is 429 
accompanied by a change in stationary phase performance. This pattern is true even when the 430 
other performance (stationary phase) is not under selection, as is in the case of Evo2D, 431 
suggesting that the pleiotropic “side effects” - that is phenotypic effects of mutations that are not 432 
primarily under selection (Kinsler, Geiler-Samerotte, and Petrov 2020) - of these second-step 433 
mutants may differ more generally from those of the first-step mutants.  434 
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 435 
Figure 4. Mutations that improve respiration performance only exhibit less extreme costs in stationary phase 436 
compared to those that improve fermentation and respiration performances. (A) Each panel depicts mutant 437 
performance relative to their parental strain, colored by the relative stationary phase performance of the parental 438 
strain (see color bar). The first panel shows all first-step mutants. The second and third panels depict second-step 439 
mutants isolated from Evo2D and Evo3D conditions, respectively. (B) Each panel shows the stationary performance 440 
relative to the mutants’ respective parental strains. Mutants are split according to the effect on fermentation and 441 
respiration performances. Those which improve both fermentation and respiration are categorized as “Ferm+Resp 442 
Improvers” and all other mutants are categorized as “Resp-only improvers”. Black points represent those with 443 
measurement error that does not overlap 0. Gray points have measurement error that show no significant change in 444 
stationary performance relative to the parental strain. Panels are organized as in (A). Kernel density estimates show 445 
the relative density for respiration-only improvers (dashed line) and fermentation and respiration-improving mutants 446 
(solid line).  447 
 448 
Changes in selection pressure and physiological limitations do not explain the shift 449 
towards modular adaptation 450 
 451 
Thus far, we have shown that there is a general shift in the effect that adaptive mutations have 452 
on performance in growth phases over the course of a two-step adaptive walk. In particular, we 453 
find that while first-step mutations exhibit adaptive pleiotropy, improving both fermentation and 454 
respiration performances, second-step mutations isolated from the same Evo2D environment 455 
tend to be adaptively modular, improving only respiration performance and often at the cost to 456 
fermentation performance. What could be driving this shift? There are three primary possibilities 457 
for this observation. One possibility is that, while care was taken to ensure the evolution 458 
condition was as consistent as possible to the first step of evolution, the selection pressure in 459 

A

B
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the second-step evolution experiments was shifted to favor respiration performance more than 460 
fermentation performance. A second possibility is that the populations have reached 461 
physiological limits on the yeast’s ability to ferment glucose, such that there is more room to 462 
improve respiration performance. Finally, it could be that genetic and signaling pathways are 463 
wired such that there are only a limited number of mutational targets available to further improve 464 
both fermentation and respiration performances in the second-step of evolution. 465 
 466 
The first possible explanation for the shift towards modular adaptation is that the second-step of 467 
evolution was accompanied by a change in the relative contribution of fermentation and 468 
respiration growth phases to fitness in the 2-Day transfer condition. While we took care to 469 
ensure that the population sizes, transfer times, media conditions, and other details were 470 
identical to the conditions used in the first-step evolution experiment, it could be possible that 471 
differences remain. For example, the identity of the strain comprising the majority of the 472 
population in second-step evolution experiments may have shifted the selection pressures to 473 
increase the importance of respiration performance compared to the first step of evolution. To 474 
test whether there was such a shift, we compared the fitness effects of mutations in the 475 
evolution experiment itself with our fitness measurement experiments, which more closely mimic 476 
the first-step evolution experiments because the ancestral strain comprises the majority of the 477 
population. Specifically, we calculated the partial correlation between respiration performance 478 
and fitness during the evolution experiment, accounting for the fitness inferred from our fitness 479 
measurement experiments. If respiration performance contributes more to evolution fitness than 480 
expected from our fitness measurement experiments, we would expect a positive partial 481 
correlation after this adjustment. However, this is not the case (r=-0.02, p=0.74), indicating that 482 
the shift from pleiotropic to modular adaptation is not due to a change in selection pressure (see 483 
Methods, Differences in selection pressure do not drive shift towards modular adaptation).  484 
 485 
The second possible explanation for the shift towards modular adaptation is that the yeast have 486 
reached physiological limits on the ability to improve fermentation performance. To test whether 487 
yeast have reached the upper limits of fermentation performance, we performed additional 488 
evolution experiments in a 1-Day transfer environment, which primarily selects for fermentation 489 
performance. From these experiments, we isolated at least one second-step mutation from the 490 
IRA1-nonsense population that improved fermentation performance above the highest 491 
fermentation performances achieved by first- or second-step mutations evolved in the 2-Day 492 
and 3-Day environments (see Fig S2). This suggests that while a fermentation performance 493 
maximum has not yet been reached, the pre-existing wiring of genetic and signaling pathways 494 
may be such that it is much easier to find mutations that improve respiration performance at the 495 
cost of fermentation performance than it is to find mutations that improve both fermentation and 496 
respiration performances or even fermentation performance at the cost to respiration 497 
performance.  498 
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Second step adaptive mutations reveal a shift from mutational targets in general nutrient-499 
sensing pathways to specific processes involved in mitochondrial function 500 
 501 
To better understand these patterns of pleiotropy and to identify the genetic basis of adaptation 502 
in these environments, we performed whole-genome sequencing on 324 adaptive mutants and 503 
called variants (see Methods). To identify the likely adaptive mutations, we compared the genes 504 
across all isolated mutants from all evolution experiments and labeled genes that were hit more 505 
than three times across all mutants as putatively causal. After identifying pathways that were 506 
recurrently targeted, we further identified genes belonging to the same pathways and called 507 
these as putatively causal as well.  508 
 509 
From this whole-genome sequencing, we found some adaptive targets in nutrient-sensing 510 
pathways that were previously identified in the first-step of evolution. The first-step of adaptation 511 
typically involved mutations in one of two signaling pathways responsible for sensing glucose 512 
and instructing the cells to grow: the Ras/PKA and TOR/Sch9 pathway (Venkataram et al. 513 
2016), Table 1). Most of these mutations resulted in loss of function in negative regulators of the 514 
pathway or modification of function in positive regulators, ultimately driving constitutive 515 
activation of these pathways (Venkataram et al. 2016). In an analysis of the second-step of 516 
evolution for TOR1, CYR1, and GPB2 mutants in the 2-Day environment, Aggeli et al (2021) 517 
identified Ras/PKA pathway mutations as an adaptive route for TOR1 mutants and TOR/Sch9 518 
mutants as an adaptive route for CYR1 and GPB2 mutants. The additional sampling we’ve 519 
conducted here, including sequencing mutants isolated from the two IRA1 populations under 520 
Evo2D and Evo3D, further confirm that TOR/Sch9 pathway mutations are commonly observed 521 
in the background of Ras/PKA mutants. In particular, we find that mutations in the gene KSP1, a 522 
PKA-activated kinase which inhibits autophagy via TORC1 (Umekawa and Klionsky 2012; 523 
Chang and Huh 2018), are common across all of the Ras/PKA parental strains (Table 1). These 524 
mutations were most commonly isolated from IRA1-nonsense populations, where 42% (32/77) 525 
of Evo2D mutants and 91% (30/33) of Evo3D mutants harbored a KSP1 mutant. Unlike the 526 
TOR/Sch9 pathway mutants observed in the first-step of evolution, which putatively result in 527 
increased TORC1 activity, increased cell growth, and decreased autophagy (Wilson and Roach 528 
2002; Venkataram et al. 2016), many of the observed second-step KSP1 mutations are loss-of-529 
function . This indicates that these mutations may be acting in the opposite direction of first-step 530 
mutations in this pathway, potentially allowing for the up-regulation of TOR despite (or in 531 
compensation of) increased activation of PKA associated with the Ras/PKA mutants. 532 
 533 
Beyond mutations in nutrient-sensing signaling pathways commonly being observed in the first-534 
step of adaptation, our sampling reveals a shift towards mutational targets related to 535 
mitochondrial function and respiration, which likely affect the respiration performance of mutants 536 
measured in our study (Table 1). In particular, we find that 36% (22/64) of adaptive mutants 537 
isolated from IRA1-missense populations in the 2-Day evolution condition acquire mutations in 538 
or near genes involved in the TCA cycle (CIT1, KGD1, MDH1, MAE1, ALD5). Interestingly, all of 539 
these mutations are either missense or putatively regulatory mutations in enzymes directly 540 
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responsible for respiration, suggesting they may modify the function or expression of these 541 
enzymes, potentially changing respiratory flux (Suissa, Suda, and Schatz 1984; Kurita and 542 
Nishida 1999; Navarro-Aviño et al. 1999; Repetto and Tzagoloff 1989; Ait-El-Mkadem et al. 543 
2017; Reinders et al. 2007; McAlister-Henn and Thompson 1987; Boles Eckhard, de Jong-544 
Gubbels Patricia, and Pronk Jack T. 1998). In addition, we identified mutations in several genes 545 
related to the regulation of respiration and mitochondrial function, with 25% (16/64) of isolated 546 
2-Day IRA1-missense mutants identified as carrying a mutation in the RTG pathway, which is 547 
responsible for the regulation of genes important for respiration. In particular, we observe 548 
putative loss-of-function mutations in MKS1, a negative regulator of the RTG pathway, and 549 
missense mutations in RTG2, a positive regulator of the pathway (Liu et al. 2003; Liao and 550 
Butow 1993; Komeili et al. 2000; T. Sekito, Thornton, and Butow 2000; Takayuki Sekito et al. 551 
2002). This suggests that these mutations may be up-regulating the RTG pathway and the 552 
genes it regulates, indirectly increasing metabolic flux through the TCA cycle. Moreover, 19% 553 
(12/64) of these mutants carry a mutation in other genes related to the regulation of 554 
mitochondrial biogenesis (PUF3, PAB1, PAN1, PAN2, AIM17), many of which are related to 555 
post-transcriptional modification of mRNA molecules related to mitochondrial function or 556 
respiration (Chaithanya and Sinha 2023; C.-D. Lee and Tu 2015; Lapointe et al. 2018). 557 
 558 
These patterns are also observed in other populations harboring different first-step mutants. In 559 
particular, while our sampling for IRA1-nonsense and IRA1-missense populations allowed us to 560 
detect the largest number of mutational targets, mutations in genes involved in the TCA cycle, 561 
RTG pathway, and mitochondrial biogenesis were found in populations from nearly all first-step 562 
mutations, with a few exceptions. These exceptions, for example the absence of HOG-pathway 563 
mutations from IRA1-missense and IRA1-nonsense backgrounds, is suggestive of historical 564 
contingency, where the identity of further mutations is dependent on mutations acquired earlier 565 
in evolution (Blount, Borland, and Lenski 2008; Harms and Thornton 2014; Park, Metzger, and 566 
Thornton 2022; Bakerlee et al. 2021). While some of these genes were detected in previous 567 
work (Aggeli, Li, and Sherlock 2021), additional sampling from new evolution experiments in the 568 
3-Day condition and additional parental strains (IRA1-missense and IRA1-nonsense) allowed us 569 
to more confidently identify recurrently mutated genes and to group the observed sets of 570 
mutations and genes into functional categories and pathways.  571 
 572 
Mutations isolated from the 3-Day evolution experiment are a subset of 2-Day adaptive 573 
mutants 574 
 575 
We next examined whether there was a difference in the mutational targets isolated from 2- and 576 
3-Day evolution experiments, given that we observed that Evo2D mutants were more likely to 577 
improve both fermentation and respiration performances than Evo3D mutants (Figure 3), and 578 
Evo3D mutants were more likely to improve stationary performance than Evo2D (Figure 4). In 579 
particular, we wondered whether the addition of stationary phase as a selective pressure 580 
allowed for new mutational targets to be adaptive because of their effect on stationary phase, or 581 
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if instead, the addition of stationary phase restricted the Evo3D mutational targets to a subset of 582 
the Evo2D mutations that were not costly to stationary performance. 583 
 584 
By comparing the sets of mutated genes for well-sampled parental strains IRA1-missense and 585 
IRA1-nonsense, we saw that all genes mutated in the 3-Day evolution experiments were also 586 
identified in the 2-Day evolution experiments (see Table 1). In particular, PUF3, PAB1, and 587 
MTH1 mutants are entirely absent as single mutations from the 3-Day IRA1-nonsense 588 
experiments, shifting the molecular targets to essentially just those in KSP1. Similarly, RTG and 589 
TCA cycle mutants are reduced in frequency or absent from the 3-Day IRA1-missense 590 
experiments, respectively. As expected, these mutations that are reduced in frequency show 591 
costs in stationary performance and thus have reduced fitness in the 3-Day transfer 592 
environment (Figs S7 and S8). 593 
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Table 1. Identified mutations by ancestral genotype and evolution condition. Boxes with gray text 594 
and asterisks indicate genes mutated only in the context of other putatively causal mutants. The column 595 
on the far right indicates the putative functional effect of the mutations on the gene. If any stop-gained or 596 
frameshift mutations were identified in this gene, it was classified as harboring “loss of function” 597 
mutations. If instead, only missense or nearby non-genic mutations were identified, the gene is classified 598 
as “modification of function”.  599 

CYR1GPB2TOR1 IRA1-missense IRA1-nonsense
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The exhaustion of mutational targets in nutrient-sensing signaling pathways drives the 600 
shift towards modular adaptation 601 
 602 
To understand how the shift from pleiotropic to modular adaptation over the two-step adaptive 603 
walk is reflected on a molecular basis, we examined how each of these mutations moved the 604 
organisms in the performance space. The first step of evolution, which primarily hit mutational 605 
targets in the Ras/PKA pathway, shows strong patterns of pleiotropic adaptation, with these 606 
mutations improving both fermentation and respiration performances (Figure 5A).  607 
 608 
Of the second-step adaptive haploids, those with mutations in the Ras/PKA pathway (Figure 5B, 609 
blue circles), which were isolated primarily from the TOR1 populations, also display pleiotropic 610 
adaptation, improving both fermentation and respiration performance. This suggests that 611 
mutations which putatively increase the activity of the Ras/PKA pathway are indeed generally 612 
adaptively pleiotropic. 613 
 614 
In addition to Ras/PKA mutations, other haploids with mutations in ARO80 (Figure 5B, pink 615 
circles) and GSH1 (Figure 5B, gold circles), show recurrent patterns of pleiotropic adaptation 616 
across parental strains, notably across CYR1 and IRA1-missense genetic backgrounds (Figures 617 
S5 and S6). Mutations in these genes, which are involved in amino acid catabolism (Iraqui et al. 618 
1999; K. Lee and Hahn 2013) and glutathione biosynthesis (Kistler, Maier, and Eckardt-Schupp 619 
1990), respectively, may be adaptively pleiotropic due to their involvement in processes entirely 620 
orthogonal to, or upstream of, both fermentation and respiration. 621 
 622 
Many of the remaining mutational targets improve respiration performance at the cost of 623 
fermentation performance. In particular, haploid mutants which harbor mutations in genes 624 
involved in the TCA cycle (Figure 5B, green circles), mitochondrial biogenesis (orange, red 625 
circles), or the RTG pathway (brown circles) improve respiration performance at the cost to 626 
fermentation performance in CYR1, GPB2, TOR1, and IRA1-missense backgrounds when 627 
present (Figure 5). Notably, haploids that harbor mutations in these genes have similar fitness in 628 
the 2-Day transfer environment to mutants with mutations in ARO80 and GSH1, which exhibit 629 
adaptive pleiotropy. Despite these similar fitnesses, there is an 8-fold increase in observed 630 
adaptively modular genetic targets than those that are adaptively pleiotropic in the IRA1-631 
missense 2-Day evolution experiments (41 mutants in TCA and RTG with fitnesses between 2.0 632 
and 2.5 compared to 5 in GSH1 and ARO80 for IRA1-missense).   633 
 634 
There are also single point mutations in MKT1 which achieve very high 2-Day fitness by greatly 635 
improving respiration performance and showing little cost to fermentation performance (Figure 636 
5B - chartreuse circles). Interestingly, all adaptive mutations in this gene occur at the same 637 
nucleotide, changing from 89A to C,G, or T. Thus, while these mutations are driven by only a 638 
single mutation, their lower frequency reflects the reduced target size compared to the other 639 
haploid mutations which have multiple targets within the gene (e.g., those in RTG pathway, TCA 640 
cycle, etc.). The 89A allele is a derived allele in the parental S288C yeast strain used for all of 641 
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these experiments and reflects an ancestral reversion in the case of A89G. This A89G reversion 642 
has been previously observed in other evolution experiments in glucose limitation and the 89G 643 
allele has been shown to stabilize mRNA of mitochondrial genes that are targets of Puf3 644 
(Chaithanya and Sinha 2023; Gupta et al. 2015). Interestingly, 89C and 89T alleles each 645 
provide similar fitness benefits as the 89G allele in our experiments despite resulting in distinct 646 
amino acids, suggesting that the 89A allele and the resulting aspartic acid may be particularly 647 
costly to MKT1 function. 648 
 649 
Beyond adaptive mutations in haploids, auto-diploidization is a common mode of adaptation. In 650 
particular, we see that in addition to diploidy being adaptively pleiotropic by itself (pure diploids 651 
shown as topographical Kernel Density Estimates in Figure 5), high-fitness diploids that co-652 
occur with other mutations (colored triangles in Figure 5) also show patterns of adaptive 653 
pleiotropy, improving both fermentation and respiration performances. This seemingly universal 654 
benefit without cost likely explains the high frequency of auto-diploidization observed across 655 
genetic backgrounds and environmental conditions in many yeast evolution experiments (Tung 656 
et al. 2021; Venkataram et al. 2016; Levy et al. 2015; Hong and Gresham 2014; Fisher et al. 657 
2018). While these high-fitness diploids provide a much larger benefit than haploids that harbor 658 
mutations in the same genes, their reduced frequency is likely due to a lower mutation rate, as 659 
these mutants needed to acquire both a mutation in an adaptive target and auto-diploidize, 660 
together improving respiration to a larger extent and mostly eliminating costs to fermentation 661 
performance associated with the mutation. Notably, most of the point mutations are 662 
homozygous, indicating they likely occurred before the auto-diploidization event. 663 
 664 
In addition to these general trends, we sampled a small number of mutations that have a total of 665 
three or four putatively causal mutations since the original ancestor. These mutants provide 666 
hints about how adaptation might proceed over longer adaptive walks. In one case, as 667 
demonstrated by the IRA1-nonsense + KSP1 + PUF3 mutant depicted in the second panel of 668 
Figure 5C, we observe adaptation as continuing down a route towards specialization in 669 
respiration performance. We also observe three examples where the collective effect of the 670 
mutations instead drives evolution towards generalism – improving both fermentation and 671 
respiration performance – despite being composed of second-, third-, and fourth-step mutations 672 
which tend to improve only one performance or the other. For instance, one IRA1-missense 673 
mutant acquired an IRA1-nonsense mutation, an MKT1 A89G mutation which improves only 674 
respiration by itself in this background, and acquired a mutation in SPB1 (Suppressor of PAB1), 675 
which is expected to improve only fermentation with a modest cost to respiration, assuming 676 
additive mutational effects in the performance space (Figure 5C, first panel). We see similar 677 
examples for two IRA1-nonsense mutants: one of which acquired both KSP1 and GSH1 678 
mutations and the other of which acquired KSP1 and TAN1 mutations (Figure 5C, third and 679 
fourth panels), where the collective effects of the observed mutations ultimately continue to 680 
push the population towards improving both traits. These rare mutants demonstrate that, at 681 
least on short evolutionary timescales, navigation of the performance space seems to be more 682 
driven by constraints imposed by the genetic wiring of the cell, which influences the relative 683 
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ease of improving one performance or the other, rather than fundamental or physiological 684 
constraints upon improving the performances themselves. 685 
 686 

Figure 5. Adaptive modularity is driven by the accessibility of mutational targets that improve 687 
respiration at the cost of fermentation. (A) Ras/PKA and TOR/Sch9 mutants from the first-step of 688 
adaptation to improve both fermentation and respiration performance. (B) Most common second-step 689 
mutational targets tend to improve respiration at the cost of fermentation (centroids depicted as colored 690 
circles), except for rare Ras/PKA (blue), ARO80 (pink), or GSH1 (yellow) mutants; haploids shown as 691 
circles. Auto-diploids exhibit adaptive pleiotropy (dashed KDE estimate for all parental strains, colored by 692 
first-step mutation). Auto-diploidization is also adaptively pleiotropic on the background of other point 693 
mutations (triangles colored by pathway or gene category). Note that only centroids for each category of 694 
gene with at least 3 observed mutants were included. (C) Triple and quadruple mutants can ultimately 695 
drive adaptation towards adaptive pleiotropy (or adaptive modularity) despite being primarily composed of 696 
adaptively modular mutations. Note that the mutations beyond the first step are depicted in no particular 697 
order in these subpanels.  698 
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DISCUSSION 699 
 700 
In this study, we sought to understand the frequent observation that single adaptive mutations 701 
observed in experimental evolution, especially those of large effect, can pleiotropically improve 702 
multiple distinct performances at once. This observation is puzzling because theoretical work 703 
suggests that as pleiotropy increases, large effect adaptive mutations should become less 704 
probable. This expected “cost of complexity” is the reason for why modularity is often seen as 705 
the necessary condition and the expected consequence of evolution of complex organisms by 706 
natural selection (Orr 2000; Welch and Waxman 2003; Wagner and Zhang 2011; Wagner, 707 
Pavlicev, and Cheverud 2007; Wagner and Altenberg 1996; Melo et al. 2016; Hartwell et al. 708 
1999).  709 
 710 
We focused on one striking example of pleiotropic adaptation that comes from previous studies 711 
of yeast evolving in a glucose-limited environment (Levy et al. 2015) in which 85% of the first-712 
step single adaptive mutations improved performance in both fermentation and respiration 713 
growth phases (Fig1A, Fig3B) (Levy et al. 2015; Venkataram et al. 2016; Y. Li et al. 2018), 714 
despite these growth phases as being thought to be physiologically distinct.  715 
 716 
Here, we investigated whether adaptation in the same low-glucose environment and 2-Day 717 
transfer as the original experiment (Levy et al. 2015) will continue following the path of adaptive 718 
pleiotropy (Fig. 1B) or will shift to become more modular (Fig. 1C). We thus further evolved 5 719 
different first-step mutants, four in the Ras/PKA pathway (IRA1-nonsense, IRA1-missense, 720 
CYR1, and GPB2) and one in the Tor/Sch9 pathway (TOR1), sampled a large number of 721 
adaptive mutants, and evaluated their effects on the fermentation and respiration performances.   722 
 723 
In all five cases, the results were qualitatively similar. First, adaptation proceeded to improve 724 
fitness, albeit to a somewhat muted degree. Second, while a number of mutants were adaptively 725 
pleiotropic, improving both fermentation and respiration performances, the dominant trend 726 
switched towards more modular adaptation. Specifically, nearly all adaptive mutants improved 727 
respiration performance sharply and many had no or only weakly positive or even negative 728 
effects on the fermentation performance (Fig. 3B). These results support a model of adaptation 729 
wherein early adaptation is driven by mutations of large effect that improve multiple 730 
performances at once. Then, after these mutations have become exhausted, adaptation may 731 
proceed via more modest mutations that improve performances in a stepwise manner (Figure 732 
1C).  733 
  734 
One remaining question is how pleiotropic adaptation is possible in the first place. The 735 
prevalence of the pleiotropic adaptation in the first step may be due to these mutations being 736 
primarily in Ras/PKA pathway genes. We thus hypothesized that the adaptive pleiotropy is a 737 
consequence of the way this pathway has evolved to shift rates of metabolism in both 738 
fermentation and respiration in a substantial, coordinated, and beneficial fashion (Wilson and 739 
Roach 2002). The notion is that even though these metabolic functions are distinct, they are 740 
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often required to be carried out in tandem, as respiration commonly follows fermentation for 741 
yeast. It is possible that sensing and signaling pathways such as the Ras/PKA pathway evolved 742 
to affect them together. This might be a general feature of signaling pathways as they must shift 743 
multiple functions and performances together and this ability then represents an attractive target 744 
for adaptive genetic changes.  745 
 746 
If pleiotropic adaptation is a feature of the Ras/PKA pathway, the prediction is that 2nd step 747 
adaptive Ras/PKA pathway mutations will remain adaptively pleiotropic. This is indeed the case. 748 
Second-step mutations in the Ras/PKA pathway, mainly arising in the TOR1 background, do 749 
improve both fermentation and respiration performances. A small number of second-step 750 
adaptive mutations outside of this pathway, in ARO80 and GSH1, are also pleiotropically 751 
adaptive and improve both respiration and fermentation, but to a smaller degree than Ras/PKA 752 
pathway mutants. This suggests that the Ras/PKA pathway is virtually unique in its ability to 753 
modulate both fermentation and respiration performances together to a substantial degree in an 754 
adaptive manner, a notion also supported by the fact that we observe the shift towards 755 
modularity adaptation already in the second adaptive step. 756 
 757 
A small number of adaptive clones in the second step improved both fermentation and 758 
respiration performances to a substantial degree. Sequencing of these clones showed that they 759 
acquired multiple mutations, and several of these clones improved both performances by the 760 
addition of two or more orthogonal steps. This suggests that adaptation can continue improving 761 
both performances but the adaptive walk needs to engage multiple modules and multiple 762 
mutations, making such adaptation slower than the first step of adaptation. This might be part of 763 
the reason why adaptation in general slows down over the course of evolution (Wiser, Ribeck, 764 
and Lenski 2013; Johnson et al. 2021; Good and Desai 2015; Aggeli, Li, and Sherlock 2021).  765 
 766 
We argue that signaling pathways such as Ras/PKA have the capacity of generating “coherent 767 
pleiotropy”, where the output of many cellular processes can be affected without disrupting the 768 
proper regulation and function of each process. As such, signaling pathways that have been 769 
evolutionarily pre-wired to control combinations of selective pressures may be easily modified 770 
by mutation to coherently improve the performances under selection. The ability of signaling 771 
pathways to generate coherent pleiotropy implies that many adaptive mutations should hit 772 
signaling pathways. Indeed, this is what we see. For example, in cancer, the key oncogenes are 773 
located along cellular signaling pathways and engage either receptors of signals or represent 774 
key relay stations in these pathways (Bailey et al. 2018; Sanchez-Vega et al. 2018; Pawson and 775 
Warner 2007; Sondka et al. 2018; Hanahan and Weinberg 2011; Hanahan 2022).  776 
 777 
On the other hand, this coherent pleiotropy of signaling pathways does not necessarily indicate 778 
that such mutations have no costs in other traits. Indeed, we see that many of the Ras/PKA 779 
mutants exhibit costs in stationary phase. Moreover, in previous work, we find that the Ras/PKA 780 
mutants have additional phenotypic effects with minor contributions to fitness in the Evo2D 781 
evolution condition but substantial effects in other conditions (Kinsler, Geiler-Samerotte, and 782 
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Petrov 2020). Thus, we might expect these signaling pathways to be most likely to be targeted 783 
by adaptation in relatively simple environments where the beneficial pleiotropic effects can be 784 
realized with only minor other costs.  785 
 786 
In addition to cellular signaling pathways, other gene-regulatory, hormonal, and neuronal 787 
systems allow for organisms to be phenotypically plastic and involve coherent control of many 788 
traits of an organism. As such, these systems may also be attractive targets for evolutionary 789 
change, as they can serve as high-leverage routes for altering many traits simultaneously. The 790 
evolution of phenotypic plasticity hence paves the way for subsequent large-effect evolutionary 791 
shifts in local adaptation. 792 
 793 
Finally, we believe that the existence of these high-leverage pleiotropic routes of adaptation 794 
must be incorporated into our thinking of the evolution of complex systems. Indeed, we 795 
commonly think of pleiotropy as purely random, with mutations shifting multiple traits at once in 796 
a random and thus largely incoherent way. This generates expectations that pleiotropy should 797 
be costly, as such incoherent shifts lead to a generically disorganized state. Given that actual 798 
organisms have low-dimensional but pleiotropic signaling and regulatory systems, pleiotropy 799 
can often be coherent and thus might often enhance adaptive potential and allow for surprisingly 800 
large-effect adaptive mutations. It is therefore important to think of regulation and adaptation as 801 
two sides of the same problem of how to change complex and tightly integrated systems in an 802 
adaptive manner.   803 
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METHODS 1022 
 1023 
Constructing barcoded populations from first-step mutants 1024 
To conduct second-step evolution experiments, we constructed barcoded populations for each 1025 
of five mutations (see table 1) that arose in the original 2-Day evolution experiment (Levy et al. 1026 
2015). Construction of the barcoded populations of CYR1, GPB2, and TOR1 mutations was 1027 
previously described (Aggeli, Li, and Sherlock 2021). To barcode IRA1-nonsense and IRA1-1028 
missense mutants, we followed a similar procedure. Specifically, we backcrossed the IRA1 1029 
mutants (MATα) to GSY5375, a MATa ancestral S288C strain that harbors the pre-landing pad 1030 
locus (Aggeli, Li, and Sherlock 2021). After sporulation and tetrad dissection, we performed 1031 
Sanger sequencing to identify segregants that were MATα, carried the IRA1 variant of interest, 1032 
and the pre-landing pad allele at the barcode locus, ensuring the removal of the barcode initially 1033 
labeling this strain. These segregants were used for downstream transformation of barcodes. 1034 
 1035 
We then barcoded these strains with a low and high complexity barcode as described in Aggeli 1036 
et al. We first transformed in the low-complexity barcode by PCR-amplifying a region from the 1037 
L001 library, which harbors a NatMX selectable marker, half of URA3, an artificial intron, a low-1038 
complexity barcode sequence, and a lox66 site. We then selected for successful transformants 1039 
using YPD + Nat plates and isolated 4 and 8 colonies for IRA1-missense and IRA1-nonsense 1040 
strains, respectively, each with a unique low-complexity barcode. For each of these strains, we 1041 
then transformed a library of high-complexity barcodes (pBAR3). After transformation, cells 1042 
were grown in YP + 2% galactose for 16hrs to induce Cre recombinase expression prior to 1043 
selection on SC-ura plates with 2% glucose. We then estimated the number of unique 1044 
transformants by counting the number of colonies grown from plating a dilution. We additionally 1045 
estimated the relative number of unique transformants by amplicon Illumina sequencing using 1046 
the sequencing primers described below.  1047 
 1048 
To construct populations for evolution experiments, we pooled together transformants from 1049 
multiple high-complexity transformations, such that each barcode was equally represented in 1050 
each pool. This resulted in pools of ~100,000 high-complexity barcodes for each evolution 1051 
experiment with the exception of Evo2D IRA1-missense evolution pool which contained ~40,000 1052 
high-complexity barcodes. Transformants were pooled such that each low-complexity barcode 1053 
was only present in one evolution pool, allowing us later to identify evolution conditions based 1054 
on the identity of the low-complexity barcode. For Evo1D experiments, a pool of IRA1-missense 1055 
and IRA1-nonsense transformants was used, containing equal numbers in abundance, albeit 1056 
with ~32,000 unique IRA1-missense barcodes and ~60,000 IRA1-nonsense barcodes. A single 1057 
pool that contained barcoded populations of CYR1, GPB2, and TOR1 mutants was used for the 1058 
second-step Evo1D and Evo3D experiments for these genotypes.  1059 
 1060 
Conducting evolution experiments. 1061 
We conducted evolution experiments with barcoded populations under identical conditions to 1062 
the original evolution experiment. Briefly, ~10^8 cells of each evolution population pool was 1063 
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inoculated in 50 mL of SC-ura + 2% dextrose + hygromycin in 500 mL Delong flasks and grown 1064 
overnight at 30°C with shaking at 223 rpm. 500 µL of saturated overnight culture was then 1065 
transferred to 100 mL of glucose-limited M3 medium (5x delft medium with 4% ammonium 1066 
sulfate and 1.5% dextrose) in 500 mL Delong flasks for the evolution experiment. For most of 1067 
the evolution experiments, the culture was split into 2 replicate flasks at this point. Second-step 1068 
Evo3D experiments from IRA1-missense or IRA1-nonsense mutants used 3 replicates each. 1069 
Cultures then propagated every 24, 48, or 72 hours for Evo1D, Evo2D, and Evo3D conditions, 1070 
respectively. At the time of transfer, a set volume was transferred into 100 mL of fresh medium. 1071 
In order to keep the bottleneck size consistent at ~5x10^7 viable cells, the volume varied by 1072 
condition. Evo2D conditions used 400 µl of transfer volume. Evo1D and Evo3D conditions used 1073 
500 µL of transfer volume, which accounted for decreased cell density and decreased cell 1074 
viability in these conditions, respectively. Two 1 mL volumes of saturated culture were frozen as 1075 
glycerol stocks. The remaining culture was spun down, resuspended in 5 mL of sorbitol freezing 1076 
solution (0.9M sorbitol, 100mM Tris pH 7.5, 100mM EDTA) and frozen at -20°C for subsequent 1077 
genomic DNA extraction and barcode library sequencing preparation.  1078 
 1079 
Isolation of clones from evolution experiments. 1080 
 1081 
To isolate clones for fitness measurement experiments, quantification of growth phase 1082 
performances, and whole genome sequencing, we sorted individual cells as previously 1083 
described (Y. Li, Petrov, and Sherlock 2019) . Specifically, we sorted 480 individual cells (five 1084 
96-well plates) from each replicate evolution experiment into single wells of a 96-well plate with 1085 
100 µL of YPD medium. This resulted in a total of 80 plates (~7,680 sorted cells) across the 16 1086 
evolution experiments. Sorted cells were then grown at 30°C for 3 days without shaking until the 1087 
cells reached saturation. Saturated cultures (5µl) were then transferred to deep-well 96-well 1088 
plates with 300 µL of YPD. After 2 days of growth at 30°C without shaking, 100 µL of culture 1089 
were mixed with glycerol and frozen at -80°C. 20 µL of saturated culture were transferred to 96-1090 
well PCR plates and frozen at -20°C. for barcode identification. Saturated culture was also 1091 
plated onto Benomyl plates to assay ploidy (Venkataram et al. 2016). 1092 
 1093 
Barcode identification by Metagrid. 1094 
To identify the barcode associated with each well and ensure that multiple clones with the same 1095 
barcode were not kept for downstream fitness measurement experiments, we performed 1096 
sequencing on the barcodes of the clones in each well. Saturated culture (20µl) was transferred 1097 
to 96-well plates and frozen at -20°C. Cells were then lysed by incubation at 95°C for 15 min. 5 1098 
µL of lysed culture were used as the template for PCR amplification of the barcode region. We 1099 
performed two steps of PCR. In the first-step of PCR, we used a set of 72 forward and 64 1100 
reverse first-step primers, each with a unique 8-bp multiplexing tag, to combinatorially label 1101 
each well. After the first-step of PCR, 5 µL of each well’s PCR product from 5 plates was pooled 1102 
together and the appropriate 250bp band was isolated using gel purification. A second-step of 1103 
PCR was then performed with standard Nextera primers. Amplicon libraries were then 1104 
sequenced on Illumina MiSeq or HiSeq machines.  1105 
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 1106 
To computationally identify the barcodes associated with each well, we used BarcodeCounter2 1107 
to extract the multiplexing indexes and barcode regions from each read. We then associated 1108 
barcodes with each well by taking the barcode with the most reads per well, provided the well 1109 
had at least 200 reads, the barcode was at least 60% of the well’s reads, and it received more 1110 
than 1.5x the second-highest barcode in the well. This resulted in identifying the locations of 1111 
1785 unique barcoded clones. This is lower than the highest possible number of 7,680 clones 1112 
due to a combination of some wells receiving multiple clones, multiple wells receiving cells of 1113 
the same barcode, and drop out due to sequencing depth. To further validate our approach, we 1114 
randomly selected 3 wells per plate and performed Sanger sequencing of their barcodes. Of the 1115 
wells where both barcodes were identified using the metagrid approach and Sanger reads were 1116 
of sufficiently high quality, over 85% of the barcodes matched. We subsequently pooled each 1117 
uniquely barcoded clone by evolution condition and parental strain, resulting in 4 pools of 1118 
barcoded lineages to be used for fitness measurement experiments. 1119 
 1120 
Benomyl ploidy test. 1121 
To characterize the ploidy of each sorted clone, we performed a high-throughput ploidy test that 1122 
was previously developed (Venkataram et al. 2016). Saturated culture from cell sorting was 1123 
pinned onto YPD agar plates containing 20 mg/mL benomyl. Plates were then grown at 25°C for 1124 
2 days and then imaged. Clones with inhibited growth on the benomyl medium were identified 1125 
as diploids. Clones with normal growth on the benomyl medium were identified as haploids. See 1126 
“Mutation and ploidy classification” section below. 1127 
 1128 
Constructing barcoded pools 1129 
To construct a pool of lineages for fitness measurement experiments, we generated one large 1130 
pool of barcoded lineages isolated from previous evolution experiments and the evolution 1131 
experiments described in this study. Briefly, one tube of each barcode pool was thawed and 1132 
grown in YPD at 30°C overnight. After the overnight growth, we pooled all barcode-sub pools 1133 
together, adjusting for the number of barcodes in each pool and the OD600 of the culture, such 1134 
that each barcode was equally represented in this big pool. This big pool was then split into 1 1135 
mL glycerol stock aliquots and frozen at -80°C.  1136 
 1137 
To precisely measure the mean fitness of the population, we constructed two pools of 60 neutral 1138 
lineages from Venkataram 2016 and Li 2019. Briefly, we identified barcodes that exhibited 1139 
neutral fitness estimates across all previous experiments done with these pools of barcoded 1140 
lineages (Venkataram et al. 2016; Y. Li et al. 2018; Y. Li, Petrov, and Sherlock 2019; Kinsler, 1141 
Geiler-Samerotte, and Petrov 2020). We then streaked out from glycerol stocks onto YPD 1142 
plates. A single colony was picked from each barcoded lineage and grown in 96-well deep-well 1143 
plates for 2 days. Wells for each collection of 60 neutrals were then pooled equally by volume. 1144 
Then, glycerol stocks were created with 1 mL of pooled culture and frozen at -80°C.  1145 
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 1146 
Fitness measurement experiments 1147 
To quantify fitness effects, we performed fitness measurement experiments. We streaked out 1148 
DPY256 (an ancestor strain which harbors an ApaLI restriction site in the barcode region) onto 1149 
a YPD plate. After two days of growth, a colony was picked and grown up in 50 mL of YPD 1150 
overnight. Additionally, one tube each of the 60-neutral pool from Venkataram 2016 and one 1151 
tube of the 60-neutral pool from the Li 2019 pool was thawed and grown separately in 50 mL of 1152 
YPD overnight.  1153 
 1154 
5x10^7 cells from DPY256 ancestor, each of the two neutral pools, and the big pool (see 1155 
Constructing barcoded pools) were then separately inoculated into four 500 mL Delong flasks 1156 
containing 100 mL of M3 medium for one cycle of pre-culture in the selective condition. This 1157 
resulted in a total of 16 flasks of culture, corresponding to each set of barcoded cells and the 1158 
four conditions. 1159 
 1160 
After one cycle of growth (which corresponded to 24h for the 1-Day transfer condition, 48h for 2-1161 
Day, 72h for 3-Day, and 120h for 5-Day), the cultures were pooled by volume such that the big 1162 
pool of barcoded lineages represented 2% or 5% of the population. In the 2% flasks, 2% of the 1163 
population was the big pool of evolved lineages, 2% were Venkataram 2016 neutrals, 2% were 1164 
Li 2019 neutrals, and 94% of the population was DPY256 ancestor. In the 5% flasks, 5% of the 1165 
population was the big pool of evolved lineages, 2% were Venkataram 2016 neutrals, 2% were 1166 
Li 2019 neutrals, and 91% of the population was DPY256 ancestor. These pools of lineages is 1167 
considered “Timepoint 0” for each condition and pooling percentage.  1168 
 1169 
We then transferred a set volume of this pool to replicate flasks (2 replicates for 1- and 2-Day 1170 
experiments, 3 replicates for 3- and 5-Day experiments) containing 100 mL M3 medium such 1171 
that ~5x10^7 of viable cells were transferred. This volume was 500 µL for 1-, 3-, and 5-Day 1172 
experiments and 400 µL for 2-Day experiments. The culture was then grown at 30°C in an 1173 
incubator shaking at 223 RPM. After the set amount of time corresponding to each condition, a 1174 
fixed volume of culture (500 µL for 1-, 3-, and 5-Day experiments and 400 µL for 2-Day 1175 
experiments) to fresh 100 mL of M3 medium in 500 mL DeLong flasks. This serial dilution was 1176 
continued for until transfer 6 for 1- and 2-Day experiments and until transfer 2 for 3- and 5-Day 1177 
experiments.  1178 
 1179 
After each transfer, the remaining culture was frozen for downstream DNA extraction, barcode 1180 
amplification, and sequencing. To freeze the culture, we transferred the culture to 50 mL conical 1181 
tubes, spun down at 3000 rpm for 5 min, resuspending in 5 mL sorbitol freezing solution !"#$%&%1182 

'()*+,(-.%"#/%&%0)+'1234%52%6#7.%"#/%&%890:%52%;#"<.%=-+>?(,@A%+B,(%,C)@@%/#7%D4%,?*@'.%=BA%1183 

',()@A%=,%E;"F3# 1184 
 1185 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.17.589938doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.17.589938
http://creativecommons.org/licenses/by/4.0/


 
 
 

 
 
 

35 

Genomic DNA extraction 1186 
Genomic DNA was extracted from frozen cells as described previously (Aggeli, Li, and Sherlock 1187 
2021). Briefly, 400 µL of frozen cells in sorbitol solution was spun down at 3500 rpm for 3 min. 1188 
After discarding the supernatant, the cell pellet was then washed in 400 µL of sterile water and 1189 
spun down at 3500 rpm for 3 min and the supernatant was discarded. The cell pellet was then 1190 
re-suspended in 400 µL of extraction buffer (0.9 M sorbitol, 50 mM Na phosphate pH 7.5, 1191 
240 µg/mL zymolase, 14 mM β-mercaptoethanol) and incubated at 37°C for 30min. We then 1192 
added 40 µL of 0.5 M EDTA, 40 µL of 10% SDS, and 56 µL of proteinase K (Life Technologies 1193 
25530-015), vortexing after each addition. The mixture was then incubated at 65°C for 30 min. 1194 
After the incubation, tubes were placed on ice for 5 min and then 200 µL of 5 M potassium 1195 
acetate were added and tubes were shaken to mix. Following a 30 min incubation on ice, the 1196 
samples were spun for 10 min at 17,000 rpm. The supernatant was transferred to a new 1.5 mL 1197 
tube containing 750 µL of isopropanol and placed on ice for 5 min. We then spun the samples at 1198 
17,000 rpm for 10min and discarded the supernatant. The DNA pellet was then washed twice 1199 
with 750 µL 70% ethanol, each time vortexing very briefly, spun at 17,000 rpm for 2 min, and 1200 
discarding the supernatant. After allowing the DNA pellet to dry completely, it was resuspended 1201 
in 50 µl 10 mM Tris ph 7.5 or 50 µL nuclease free water. We then added 1 µL of 20 mg/mL 1202 
RNase A and subsequently incubated at 65°C for 30 min. DNA was then quantified using the 1203 
Qubit Range dsDNA assay kit.   1204 
 1205 
Restriction digest of ancestral strain’s barcode 1206 
Because over 90% of the initial population during the fitness measurement experiments consists 1207 
of the ancestral strain, we sought to reduce the proportion of reads that represented its barcode 1208 
to reduce sequencing costs. We thus performed restriction digestion using the ApaLI restriction 1209 
site (GTGCAC) engineered into the barcode region of the DPY256 ancestral strain on DNA for 1210 
each sample prior to (and following) PCR amplification. We added 1 µL of ApaLI (NEB 1211 
#R0507L) and 5.5 µL of Cutsmart Buffer (NEB #R0507L) to genomic DNA and incubated at 1212 
37°C for at least 1hr. Note that no barcode strains besides the ancestral strain contain this 1213 
restriction site, due to the design of the barcode region.  1214 
 1215 
Barcode sequencing library preparation 1216 
To prepare sequencing libraries of the barcodes, we used a two-step PCR amplification 1217 
protocol, as previously described (Venkataram et al. 2016; Kinsler, Geiler-Samerotte, and 1218 
Petrov 2020; Y. Li et al. 2018). In the first step of PCR, we use HPLC-purified primers that 1219 
contain “inline indices” to label samples and 8-bp Unique Molecular Identifiers (UMIs) to identify 1220 
barcode reads from the same yeast cell that have been sequenced multiple times due to PCR 1221 
amplification.  1222 
 1223 
  1224 
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Step 1 forward primers: 1225 
F201 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)CGATGTT TAATATGGACTAAAGGAGGCTTTT 

F202 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)ACAGTGT TAATATGGACTAAAGGAGGCTTTT 

F203 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)TGACCAT TAATATGGACTAAAGGAGGCTTTT 

F204 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)GCCAATT TAATATGGACTAAAGGAGGCTTTT 

F205 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)ATCACGT TAATATGGACTAAAGGAGGCTTTT 

F206 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)CAGATCT TAATATGGACTAAAGGAGGCTTTT 

F207 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)GGCTACT TAATATGGACTAAAGGAGGCTTTT 

F208 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)TAGCTTT TAATATGGACTAAAGGAGGCTTTT 

F209 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)TTAGGCT TAATATGGACTAAAGGAGGCTTTT 

F210 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)ACTTGAT TAATATGGACTAAAGGAGGCTTTT 

F211 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)GATCAGT TAATATGGACTAAAGGAGGCTTTT 

F212 TCGTCGGCAGCGTC AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)CTTGTAT TAATATGGACTAAAGGAGGCTTTT 

 1226 
Step 1 reverse primers: 1227 
R301 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)TATATACGC TCGAATTCAAGCTTAGATCTGATA 
R302 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)CGCTCTATC TCGAATTCAAGCTTAGATCTGATA 
R303 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)GAGACGTCT TCGAATTCAAGCTTAGATCTGATA 
R304 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)ATACTGCGT TCGAATTCAAGCTTAGATCTGATA 
R305 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)ACTAGCAGA TCGAATTCAAGCTTAGATCTGATA 
R306 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)TGAGCTAGC TCGAATTCAAGCTTAGATCTGATA 
R307 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)CTGCTACTC TCGAATTCAAGCTTAGATCTGATA 
R308 GTCTCGTGGGCTCGG AGATGTGTATAAGAGACAG (N1:25252525)(N1)(N1) (N1)(N1)(N1) (N1)(N1)GCGTACGCA TCGAATTCAAGCTTAGATCTGATA 

 1228 
For the first step for PCR, we performed 8 or 16 reactions per sample, using ~4.8ug (ranging 1229 
between 3ug and 7.5ug) of DNA per sample across all reactions. Each set of eight 50 µL 1230 
reactions included 16 µ of 50mM MgCl2, 8 µL of 10 µM forward primer, 8 µL of 10 µM reverse 1231 
primer, template DNA, and 200 µL of OneTaq HotStart 2X Master mix (NEB #M0484L). Three 1232 
cycles of PCR was then carried out with the following steps: 1233 

1. 94°C for 10min 1234 
2. 94°C for 3min 1235 
3. 55°C for 1min 1236 
4. 68°C for 1 min 1237 
5. Repeat steps 2-4 twice for a total of 3 cycles 1238 
6. 68°C for 1min 1239 
7. Hold at 4°C 1240 

 1241 
The first-step PCR product was then column purified using the GeneJET Gel Extraction Kit 1242 
(#K0692). Briefly, 100 µL of orange binding buffer were added to each 50 µL reaction. All 8 or 1243 
16 reactions from a given sample were pooled into the same purification column in a vacuum 1244 
manifold. We then washed the column with 750 µL of wash buffer over vacuum. Then, each 1245 
column was spun for 30s at max speed to remove residual wash buffer. We then eluted into 47 1246 
µL of nuclease free water by centrifuging and stored the samples at 4°C for the second step of 1247 
PCR. 1248 
 1249 
The second step of PCR further amplifies the barcodes and attaches Illumina indices as well as 1250 
P5, P7 sequences for compatibility with Illumina sequencing, as done previously (Kinsler, 1251 
Geiler-Samerotte, and Petrov 2020; Kinsler et al. 2023). We used Nextera Index Xt v2 primers 1252 
(Illumina #FC-131–2004) with the following sequences: 1253 
 1254 
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S513 AATGATACGGCGACCACCGAGATCTACACTCGACTAGTCGTCGGCAGCGTC 

S515 AATGATACGGCGACCACCGAGATCTACACTTCTAGCTTCGTCGGCAGCGTC 

S516 AATGATACGGCGACCACCGAGATCTACACCCTAGAGTTCGTCGGCAGCGTC 

S517 AATGATACGGCGACCACCGAGATCTACACGCGTAAGATCGTCGGCAGCGTC 

S518 AATGATACGGCGACCACCGAGATCTACACCTATTAAGTCGTCGGCAGCGTC 

S520 AATGATACGGCGACCACCGAGATCTACACAAGGCTATTCGTCGGCAGCGTC 

S521 AATGATACGGCGACCACCGAGATCTACACGAGCCTTATCGTCGGCAGCGTC 

S522 AATGATACGGCGACCACCGAGATCTACACTTATGCGATCGTCGGCAGCGTC 

N716 CAAGCAGAAGACGGCATACGAGATTAGCGAGTGTCTCGTGGGCTCGG 

N718 CAAGCAGAAGACGGCATACGAGATGTAGCTCCGTCTCGTGGGCTCGG 

N719 CAAGCAGAAGACGGCATACGAGATTACTACGCGTCTCGTGGGCTCGG 

N720 CAAGCAGAAGACGGCATACGAGATAGGCTCCGGTCTCGTGGGCTCGG 

N721 CAAGCAGAAGACGGCATACGAGATGCAGCGTAGTCTCGTGGGCTCGG 

N722 CAAGCAGAAGACGGCATACGAGATCTGCGCATGTCTCGTGGGCTCGG 

N723 CAAGCAGAAGACGGCATACGAGATGAGCGCTAGTCTCGTGGGCTCGG 

N724 CAAGCAGAAGACGGCATACGAGATCGCTCAGTGTCTCGTGGGCTCGG 

N726 CAAGCAGAAGACGGCATACGAGATGTCTTAGGGTCTCGTGGGCTCGG 

N727 CAAGCAGAAGACGGCATACGAGATACTGATCGGTCTCGTGGGCTCGG 

N728 CAAGCAGAAGACGGCATACGAGATTAGCTGCAGTCTCGTGGGCTCGG 

N729 CAAGCAGAAGACGGCATACGAGATGACGTCGAGTCTCGTGGGCTCGG 

 1255 
Note that because of increased risk of index swapping associated with sequencing amplicons 1256 
on Illumina machines with ExAmp technology (Kinsler et al. 2023), we labeled each sample with 1257 
a unique combination of inline and Illumina indices. This allows for reads associated with index 1258 
swapping due to mis-incorporation of indices or template swapping on the sequencing machine 1259 
to be identified and removed from downstream analysis.  1260 
 1261 
For the second step of PCR, we performed 3 reactions per sample. For each set of thee 50 µL 1262 
reactions, we used 45 µL of column purified Step 1 PCR product, 2.5 µL of the designated 1263 
forward Nextera XT Index V2 primer (e.g., N716), 2.5 µL of the designated reverse Nextera XT 1264 
Index V2 primer (e.g., S513), 3 µL of 10mM dNTP (Fisher Scientific #PR-U1515), 1.5 µL of Q5 1265 
polymerase (NEB #M0491L), 30 µL of Q5 buffer (NEB #M0491L), and 65.5 µL of nuclease free 1266 
water. We then ran the following program on the thermocycler to amplify for 20 cycles: 1267 
 1268 
1. 98°C 30s 1269 
2. 98°C 10s 1270 
3. 62°C 20s 1271 
4. 72°C 30s 1272 
5. Repeat steps 2-4 19 times (20 cycles total) 1273 
6. 72°C 3min 1274 
7. Hold at 4 C 1275 
 1276 
We then performed column purification following a similar procedure to the purification from step 1277 
1, eluting instead into 30 µL of nuclease free water.  1278 
 1279 
Following the second step of PCR, in order to further remove any residual ancestral barcode 1280 
that were not digested before PCR amplification, we performed a second round of ApaLI 1281 
digestion, adding 3.5 µL of Cutsmart buffer and 1 µL of ApaLI restriction enzyme (NEB 1282 
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#R0507L) to each sample’s Step 2 PCR product, digesting for at least 1 hr at 37°C. We then 1283 
performed gel extraction using the GeneJet gel purification kit for each sample, keeping the 1284 
350bp band representing intact barcode sequences. We then quantified the DNA concentration 1285 
for each sample using Qubit HS kit (ThermoFisher #Q32854), pooled such that each sample 1286 
was equally represented in the final library, and submitted for sequencing on Illumina 1287 
sequencing machines. 1288 
 1289 
Tracking evolution  1290 
To track the dynamics of the evolution experiment, estimate the fitness of lineages during the 1291 
evolution experiment, and infer the distribution of fitness effects, we extracted DNA and used 1292 
PCR amplification to generate libraries for sequencing as described above, with the exception of 1293 
not performing the ApaLI restriction digestion.  1294 
 1295 
In order to identify barcode counts over time, we followed previously used custom scripts along 1296 
with bartender (https://github.com/Sherlock-1297 
Lab/Barcode_seq/blob/master/bartender_BC1_BC2.py) to extract and cluster barcodes from 1298 
timepoints along the evolution trajectory.  1299 
 1300 
To infer fitness effects, the mean fitness of the population, and infer the from the evolution 1301 
experiments themselves, we used FitMut1 (Levy et al. 2015; F. Li, Mahadevan, and Sherlock 1302 
2023). To infer the distribution of fitness effects from this data, we used an approach developed 1303 
in Levy et al 2015. The general idea of this approach is to infer the distribution of fitness effects 1304 
by counting the number of mutants arising with selection coefficients in the interval [s, s+ds] 1305 
across the course of the evolution experiment. To infer a rate, we adjust the amount of time that 1306 
this mutant could have arisen and been detected based on the mean fitness of the population, 1307 
the time it takes for the mutant to establish, and its ability to rise to a detectable frequency in the 1308 
population. Specifically, the number of mutations in the interval [s, s+ds] is expected to be: 1309 
 1310 

number	of	mutations	in	𝑑𝑠	 = 	𝜇(𝑠)𝑑𝑠	 ×	(𝑠/𝑐) 	×	𝑁!	8 𝑒#$̄(')𝑑𝑡
'#()/+),-(-!+/.)

/
 1311 

 1312 
Where 𝑁!	 = 7x10^7 is the effective population size, �̄�(𝑡) is the mean fitness of the population 1313 
over time, c~3.5 is the offspring number variance, and 𝑛/~1000 is the effective lineage size. We 1314 
invert this function to estimate 𝜇(𝑠). 1315 
 1316 
Counting barcodes and calculating fitness from fitness measurement sequencing data 1317 
We used BarcodeCounter2 (Venkataram et al. 2016; BarcodeCounter2: Count DNA Barcodes 1318 
Version 2, n.d.) to assign reads to their associated samples and barcodes. Briefly, we extracted 1319 
the inline index, barcode, and UMI regions from each read using BLAST (Altschul et al. 1990) to 1320 
the known constraint region in the amplicon sequence. Then, we associated each read to its 1321 
corresponding condition and timepoint based on its combination of Illumina and inline indices. 1322 
We then used Bowtie2 (Langmead and Salzberg 2012) to map the extracted barcode regions to 1323 
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our known list of barcodes in the experiment, used UMIs to avoid over-counting duplicate reads, 1324 
and counted the number of barcodes per sample.  1325 
 1326 
To infer fitness values, we used the fitness inference procedure as developed previously. In 1327 
each time interval, a mutant’s fitness is calculated as it’s log-frequency change, adjusted by the 1328 
mean fitness of the population. We infer the mean fitness of the population by calculating the 1329 
log-frequency change of the set of 60 neutral lineages from Venkataram 2016.  1330 
 1331 
 1332 
Frequency dependence 1333 
During the analysis of the fitness measurement data, we noticed a systematic shift of fitness 1334 
over the course of the experiment, with many barcoded mutants showing a decline in fitness 1335 
fitness in 1- and 2-Day experiments as the fraction of the population that was adaptive 1336 
increased, even after adjustment for changes in mean fitness (Figure S1). These trends were 1337 
not identified in previous experiments, and we suspect that this is due to frequency-dependent 1338 
fitness effects driven by the very strongly adaptive mutants. To avoid the influence of these 1339 
effects, we used only the first timepoint interval from 2-Day experiments (from timepoint 0 to 1340 
timepoint 1), as this kept our fitness measurements consistent with previous studies [cite 1341 
Kinsler, Li]. Throughout the rest of the study, 2-Day fitness refers to this measurement using 1342 
only early timepoints. 1343 
 1344 
Quantifying performances 1345 
 1346 
To quantify mutant performances in each phase of growth, we quantified differences between 1347 
fitnesses inferred from 1-, 2-, 3-, and 5-Day transfer experiments. Because the time interval 1348 
between 24 and 48 hours only contains respiration phase, we quantified respiration 1349 
performance per hour as: 1350 

ResPerHour = 2-Day fitness - 1-Day fitness / 24hrs 1351 
 1352 
To calculate fermentation performance, we removed the 4 hours worth of respiration 1353 
performance from the 1-Day fitness and divided the remaining fitness into the 16 hours of 1354 
fermentation performance (accounting for ~4 hours of lag phase): 1355 

FerPerHour = (1-Day fitness - 4*ResPerHour) / 16hrs 1356 
 1357 

Because 1-Day fitness measurements are used for both respiration and fermentation 1358 
performances, there is the potential for noise in 1-Day measurements to introduce a relationship 1359 
between fermentation and respiration performances. To eliminate measurement noise from 1360 
having this influence, we used different replicates of the 1-Day fitness to calculate fermentation 1361 
and respiration performance. Specifically, we used the replicate 2 flasks to calculate respiration 1362 
performance and the replicate 1 flasks to calculate fermentation performance. 1363 
 1364 
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To infer stationary phase performance, we took the difference between 5- and 3-day fitness and 1365 
divided by 48hrs of time: 1366 
StaPerHour = (5-Day fitness - 3-Day fitness) / 48hrs 1367 
 1368 
To calculate the uncertainty of performances, we used error propagation from the estimated 1369 
errors of fitness. To calculate performances relative to parental strain, we computed the 1370 
difference between each mutant’s performance and its parental strain. For CYR1, GPB2, TOR1, 1371 
and IRA1-missense second-step mutations, we used the mean of the neutral barcode strains as 1372 
the parental reference measurement. For IRA1-nonsense second-step mutations, for which no 1373 
neutral clones were isolated, we used the parental barcoded barcoded mutant present in the 1374 
pool of first-step mutants (denoted with a “+” in main text figures).  1375 
 1376 
Differences in selection pressure do not drive the shift towards modular adaptation 1377 
 1378 
To evaluate whether a systematic shift in selection pressure occurred during the second-step 1379 
evolution experiments, we identified mutants for which we called their evolution fitness from the 1380 
estimation of the distribution of fitness effects. Because many of the remaining mutants are pure 1381 
diploids whose spread may be dominated by measurement noise, we removed these mutants 1382 
from the list. This resulted in a set of 185 second-step mutants. We then performed a partial 1383 
correlation analysis between respiration performance and evolution fitness, accounting for 1384 
fitness measurement fitness. We find no evidence of such a relationship (p=0.74, r=-0.02). 1385 
Similarly, we find no relationship between fermentation performance and evolution fitness after 1386 
accounting for fitness measurement fitness (r=0.38, p=0.613).  1387 
 1388 
1-Day evolution experiment analysis 1389 
 1390 
To evaluate whether yeast adapting to a 1-Day transfer could further improve their fermentation 1391 
performance, we quantified the performance of 1-Day mutants as above. We identified several 1392 
mutants with fermentation performances meeting or exceeding the maximum fermentation 1393 
performance achieved by first-step mutants. Using a threshold of at least 2 standard errors 1394 
(which corresponds to a FDR of p<0.05) a single second-step mutant that arose in the Evo1D 1395 
IRA1-nonsense population had fermentation performance that exceeded the first-step 1396 
maximum. 1397 
 1398 
Whole genome sequencing 1399 
We selected mutants for whole genome sequencing based on their fitness and performance in 1400 
the growth phase, such that we selected as many unique mutants as possible based on their 1401 
performances and those that had barcodes confidently identified by the metagrid. This resulted 1402 
in a total of 346 clones targeted for sequencing.  1403 
 1404 
Clones that were selected for sequencing were grown in 500 µL of YPD in 96-well deep well 1405 
plates for 2 days at 30°C without shaking. 400 µL of saturated culture was collected from each 1406 
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well for genomic DNA extraction using the Invitrogen PureLink Pro 96 Genomic DNA Kit. 1407 
Libraries were prepared using a ⅕ dilution protocol of the Illumina DNA prep, using Illumina 1408 
Unique Dual Indexing primers.  1409 
 1410 
Variant calling 1411 
To identify variants from the sequencing data, we used bwa (H. Li and Durbin 2009) to align all 1412 
reads to the S288C reference genome (R64-1-1-20110203). We then used picard 1413 
(https://broadinstitute.github.io/picard/) to fix read groups and marked duplicate reads. We then 1414 
used GATK (version 4.2.0.0) (Van der Auwera and O’Connor 2020) to generate individual 1415 
GVCF files, merge GVCF files, and call genotypes on all samples. After removing samples with 1416 
less than 20x coverage, we removed variants according to the following filters: QD < 5, FS < 60, 1417 
SOR < 3, M! < 50, MQRankSum < -3.0, ReadPosRankSum < -5.0. After this filtering, we further 1418 
removed ancestral variants present in all samples, mitochondrial variants, variants with GQ less 1419 
than 70. This filtering resulted in 727 sites that were variable across our samples. We then 1420 
manually inspected all called variants, resulting in 631 manually verified variants. We then used 1421 
bcftools (H. Li 2011) to filter the vcf file to these verified variants and used snpEff (Cingolani et 1422 
al. 2012) to annotate variants.  1423 
 1424 
We then assigned variants to the corresponding barcoded mutants based on plate position. To 1425 
check that our assignment was correct, we also verified the barcodes from the whole genome 1426 
sequencing reads. For the 326 mutants for which we had sufficient coverage of the barcode 1427 
region (at least 4 successfully-mapped barcode reads), 324 had the correct barcode identified. 1428 
We opted to not use sequencing information from the 2 samples with mismatching barcodes 1429 
between the sequencing and expected based on clone isolation barcode sequencing. 1430 
 1431 
We further identified pre-existing mutations in which identical mutations were present in several 1432 
sequenced mutants of a given low-complexity barcode. These mutations were classified as 1433 
“pre-existing” mutations and ignored in downstream analyses except in cases where they 1434 
belonged to a putatively causal gene (see “Mutation and ploidy classification” section).  1435 
 1436 
Mutation and ploidy classification  1437 
 1438 
To identify mutations likely responsible for driving fitness gains in these experiments, we 1439 
identified putative adaptation-driving mutations by identifying mutations that occurred in genes 1440 
that were recurrently mutated across adaptive clones. Specifically, genes with 4 or more 1441 
mutations were classified as likely adaptation-driving. After classifying genes based on their 1442 
function, we further identified additional mutations as adaptation-driving due to their effect on 1443 
similar processes as recurrently mutated genes.  1444 
 1445 
To classify the ploidy of mutations, we initially classified mutants according to their performance 1446 
in the benomyl assay. We additionally classified mutants as “pure diploids” and “neutral 1447 
haploids” by their similarity to the large cluster of haploids and diploids in terms of their fitness 1448 
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effects across all the conditions. Mutants that were within this large cluster of diploids but initially 1449 
classified as haploids according to the benomyl assay were classified as pure-diploids.  1450 
 1451 
From this initial ploidy classification, the majority of mutants which exhibited mutations in PAB1 1452 
were classified as diploids, perhaps reflecting a sensitivity of PAB1 mutants to benomyl. We re-1453 
classified all PAB1 mutants as adaptive haploids with respiration performance relative to 1454 
parental strain less than 0.06. PAB1 mutants with greater respiration performance were 1455 
classified as high-fitness diploids, consistent with the effect that auto-diploidization had on 1456 
mutations from other genes. Similarly, PAN2 and PAN3 mutants were classified as diploids and 1457 
have previously been shown to be susceptible to benomyl (Brown et al. 2006). Given we had 1458 
few of these mutations, we did not have enough information to reclassify these mutations as we 1459 
did for PAB1. 1460 
 1461 
Data availability 1462 
Raw sequencing data is available on Short Read Archive under BioProject Number: 1463 
PRJNA1098711. Processed frequency counts, fitness data, performance data, and mutational 1464 
calls are available on Github: https://github.com/grantkinsler/EvolvingFront. All yeast strains are 1465 
available upon request.  1466 
 1467 
Code availability 1468 
Code for all data processing and figure generation is available on Github:  1469 
https://github.com/grantkinsler/EvolvingFront 1470 
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SUPPLEMENTARY FIGURES 1471 

 1472 
Fig S1. Evidence for frequency dependence in fitness measurement experiments. The 1473 
vertical axis of each subplot depicts the percent deviation from Li 2019 fitness values for the set 1474 
of adaptive haploids that were present in Li 2019 fitness measurements and this study. The 1475 
horizontal axis is the fraction of the population that is adaptive. Points show the deviation for 1476 
each mutant, with the median across all mutants depicted by the heavy circle. Blue and orange 1477 
points are from experiments initiated with the adaptive barcode pool consisting of 2% and 5% of 1478 
the population, respectively. Red dotted line indicates the deviation for the overall fitness 1479 
measurement used throughout the paper. Red box in (B) refers to the timepoints used. 1480 
Subpanels A-D refer to Fit1D, Fit2D, Fit3D, and Fit5D fitness values, respectively. 1481 

A B

C D
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Fig S2. 1-Day evolution experiments identify mutants that improve fermentation 1482 
performance. Fermentation and respiration performances for mutants discussed in the main 1483 
text and Evo1D mutants (in red). Despite less dense sampling, we find at least one Evo1D 1484 
mutant (indicated with red arrow) with fermentation performance that exceeds the highest 1485 
fermentation performance from first-step mutants (blue vertical line). 1486 
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 1487 
Fig S3. Fermentation and stationary phase performances by parental strain. Each 1488 
subpanel depicts a scatter plot with the fermentation and stationary performances for each 1489 
parental strain. Lighter points indicate Evo2D mutants, darker points indicate Evo3D mutants. 1490 
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 1491 
Fig S4. Respiration and stationary phase performances by parental strain. Each subpanel 1492 
depicts a scatter plot with the respiration and stationary performances for each parental strain. 1493 
Lighter points indicate Evo2D mutants, darker points indicate Evo3D mutants.  1494 
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 1495 
Fig S5. Molecular targets of adaptation by gene. Performance effects of mutations separated 1496 
by biological process or pathway as in Table 1. Points are colored by gene, and shape indicates 1497 
ploidy (circles are haploids, triangles diploids). KDE estimates show density of neutral haploids 1498 
for each parental strain (solid lines) and pure diploids for each parental strain (dashed lines). (A) 1499 
First-step mutants. (B) Second-step mutants depicted, with performances measured relative to 1500 
parental strain.  1501 
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 1502 
Fig S6. Molecular targets of adaptation by gene. Colored by gene, shape depicts ploidy 1503 
(circles are haploids, triangles diploids). KDE estimates show density of neutral haploids for 1504 
each parental strain (solid lines) and pure diploids for each parental strain (dashed lines).  1505 
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 1506 
Fig S7. Mutational effects on fermentation and stationary phase performance. Colored by 1507 
gene, shape depicts ploidy (circles are haploids, triangles diploids). KDE estimates show 1508 
density of neutral haploids for each parental strain (solid lines) and pure diploids for each 1509 
parental strain (dashed lines).  1510 
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 1511 
Fig S8. Mutational effects on respiration and stationary phase performance. Colored by 1512 
gene, shape depicts ploidy (circles are haploids, triangles diploids). KDE estimates show 1513 
density of neutral haploids for each parental strain (solid lines) and pure diploids for each 1514 
parental strain (dashed lines).  1515 
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