
A theory of brain-computer interface learning via1

low-dimensional control2

J. A. Menéndez, J. A. Hennig, M. D. Golub, E. R. Oby, P. T. Sadtler, A. P. Batista, S.3

M. Chase, B. M. Yu, P. E. Latham4

5

A remarkable demonstration of the flexibility of mammalian motor systems is primates’ ability to6

learn to control brain-computer interfaces (BCIs). This constitutes a completely novel motor behavior,7

yet primates are capable of learning to control BCIs under a wide range of conditions. BCIs with8

carefully calibrated decoders, for example, can be learned with only minutes to hours of practice. With9

a few weeks of practice, even BCIs with randomly constructed decoders can be learned. What are the10

biological substrates of this learning process? Here, we develop a theory based on a re-aiming strategy,11

whereby learning operates within a low-dimensional subspace of task-relevant inputs driving the local12

population of recorded neurons. Through comprehensive numerical and formal analysis, we demonstrate13

that this theory can provide a unifying explanation for disparate phenomena previously reported in14

three different BCI learning tasks, and we derive a novel experimental prediction that we verify with15

previously published data. By explicitly modeling the underlying neural circuitry, the theory reveals an16

interpretation of these phenomena in terms of biological constraints on neural activity.17
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Introduction18

A core property of mammalian motor systems is their capacity to adapt to novel environments. Through19

learning, mammals are able to tailor their movements to an astonishing variety of previously unexpe-20

rienced tasks, often needing only minutes to hours of practice to do so.1–7 A particularly remarkable21

demonstration of this is offered by brain-computer interfaces (BCIs), where the movement of a cursor on22

a screen is determined by cortical activity via an external decoder.8–10 Despite the unfamiliarity of this23

motor task, human and non-human primates are capable of learning to control BCIs under a wide range24

of conditions, often with little practice. With a carefully calibrated BCI decoder, proficient control of25

the BCI cursor can be learned after only minutes of experience.11–14 But even effectively random BCI26

decoders can be learned as well, provided the subject undergoes a more extensive training procedure27

(e.g. a few weeks).15,16 The purpose of this study is to develop a theory of the algorithm(s) underlying28

this learning process.29

Previous models of motor cortical BCI learning have postulated that synaptic plasticity within motor30

cortex underlies learning a BCI.17–20 Indeed, models of the synaptic connectivity required for a recurrent31

network to solve a BCI reaching task19 and the plasticity rules by which that connectivity might be32

learned20 can account for slow and fast learning of different BCI decoders. However, a fundamental limi-33

tation of synaptic plasticity is the curse of dimensionality: motor cortex contains trillions of synapses, so34

learning via optimization of their weights would entail solving an extremely high-dimensional optimiza-35

tion problem. In the best of cases – when the objective function and its gradient are explicitly known –36

solving such problems typically requires vast amounts of training data. In the case of BCI learning, the37

subject’s motor system has no explicit access to the BCI decoder, so the relationship between internal38

neural activity and movement – and, by extension, task performance – is unknown. This means that39

gradients of task performance with respect to internal biological parameters must be estimated through40

trial and error,20,21 which is notoriously slow in high dimensional spaces.22,23 Moreover, this estimation41

problem is made even more difficult by the biological constraints of neurons and synapses, which impose42

noise in the learning signals available to each synapse24 and preclude synaptic plasticity rules from back-43

propagating gradients through the many layers of neural circuitry.25–27 These considerations suggest that44

BCI learning by synaptic plasticity in motor cortex should be slow and highly limited.45

Such slow and limited learning is inconsistent with the strikingly fast and flexible learning observed in46

many BCI experiments, where non-human primates are observed to achieve proficient control after only47

a single session of 10’s to 100’s of trials of practice.11–14,28 Moreover, the hypothesis that motor cortex48

undergoes substantial synaptic changes over learning is inconsistent with two additional observations.49

First, the statistical structure of motor cortical activity remains remarkably conserved after learning: the50

repertoire of activity patterns employed for BCI control is unchanged after training on a new decoder51
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for a few hours,18,29,30 and single neuron tuning to manual reaches also remains largely unchanged after52

performing a BCI reaching task.31 Second, learning a BCI task can occur without interfering with natural53

limb control31 (but see32).54

Together, these observations suggest that synaptic plasticity in motor cortex is not the primary55

mechanism underlying BCI learning, at least for the short timescales of learning observed in the studies56

cited above. Instead, they suggest that the brain might take a more parsimonious learning strategy, in57

which (1) learning is reduced to a low-dimensional optimization problem to enable data-efficient learning,58

and (2) the motor cortical machinery for natural movements is kept intact.59

A learning strategy that satisfies these two criteria is that of “re-aiming”11,12,33 or “intrinsic variable60

learning”.34,35 Under this strategy, the animal exploits the pre-existing motor cortical circuitry by learn-61

ing an association between intended BCI movements and internal motor commands that would otherwise62

be used during natural motor behavior. For example, if the BCI decoder were such that motor cortical63

activity generated during a leftward arm reach would lead to an upward BCI movement, then the animal64

would learn to employ the motor command usually reserved for leftward arm reaches to achieve this65

upward BCI movement (fig. 1a). This strategy satisfies criteria 1 and 2 above: the dimensionality of the66

learning problem is kept low because both BCI movements – typically movements of a 2D or 3D cursor –67

and natural motor commands36–41 are low-dimensional, and the motor cortical circuit can be kept intact68

because the patterns of activity used for manual and BCI control are the same.69

Previous experimental results have suggested that re-aiming can account for some34,35 but not70

all11,12,33 of the changes in motor cortical activity that occur after learning a novel BCI decoder. How-71

ever, this evidence has typically been interpreted through the lens of a feed-forward spatial tuning curve72

model of motor cortex, which does not take into account the influence of additional motor variables73

beyond reach direction, and omits biological constraints on the dynamics of cortical circuits. Here, we74

address these limitations by modeling motor cortex as a non-linear recurrently connected network of75

neurons and modeling re-aiming as an optimization over low-dimensional motor commands driving this76

network. Via simulation and analysis, we derive predictions of this theory about how neural activity77

and behavior should change under a pure re-aiming learning strategy, for three distinct BCI learning78

tasks. These predictions reveal a potentially unifying explanation of disparate phenomena observed in79

BCI learning.80
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Results81

2.1 Re-aiming as optimization of low-dimensional inputs to motor cortex82

We begin by modeling motor cortex as a recurrent neural network driven by an upstream population of

neurons (fig. 1b),

τ
dxi

dt
= −xi +

N∑
j=1

W rec

ij rj +
M∑
j=1

W in

ijuj , (1a)

ri = ϕ(xi) = max(0, xi), (1b)

where r1, r2, . . . , rN and u1, u2, . . . , uM denote the firing rates of the motor cortical and upstream neurons,83

respectively. A rectified linear activation function ϕ(·) is used to ensure that firing rates are strictly non-84

negative. We assume that firing rates are low at the start of each trial of BCI control, and thus set85

the initial conditions to 0, xi(t = 0) = 0. The weights W rec
ij and W in

ij represent the strengths of the86

synaptic connections between neurons within motor cortex and from the upstream population to motor87

cortex, respectively. To avoid making any strong commitments about the structure of these connections,88

we use randomly connected networks throughout the main text; simulations with other, more realistic,89

connectivity patterns yield similar results (see Supplementary Figure S1).90

Next, we consider the upstream inputs to motor cortex, {ui(t)}. Inspired by recent models and91

theories of motor cortex,42–46 we assume that the rich intrinsic dynamics of the local motor cortical92

circuit suffice to generate the complex patterns of cortical activity necessary to execute a given motor93

behavior. Which behavior is executed at a given time is selected by an upstream “motor command”94

that drives motor cortex via these upstream inputs. These inputs are therefore assumed to fluctuate95

on a much slower timescale than the motor cortical firing rates they drive. In the analysis presented96

below, we take these to be constant in time; results for more complex input dynamics are presented in97

Supplementary Materials Section S.1.6.98

Motivated by the fact that motor behaviors are generally low-dimensional,36–41 we assume that the99

motor commands setting these inputs also have low dimensionality. We formalize this by representing100

the motor command as a K-dimensional vector, θ ∈ RK , constituted by K ≪ N command variables101

θ1, θ2, . . . , θK . These command variables could correspond to extrinsic motor variables, such as reach102

speed or direction, or to more abstract motor-related information, such as parameters of prepared,103

observed, or imagined movements. Fundamentally, we make no commitments as to the nature of these104

intrinsic command variables beyond them influencing the upstream activity driving motor cortex. This105

assumption is formalized by having the upstream firing rates depend on the low-dimensional motor106
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b

of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
Arrow colours as in c.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
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trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
performance with the intuitive mappings; red and blue dots, performance
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mapping) just after the perturbation was introduced for sessions in Fig. 2a and
Fig. 2b; red and blue asterisks, best performance during those perturbation
sessions; dashed line, maximum learning vector for the session in Fig. 2a. The
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RESEARCH LETTER

4 2 4 | N A T U R E | V O L 5 1 2 | 2 8 A U G U S T 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

y∗
θ

a

Figure 1: The re-aiming learning strategy.
a. Re-aiming strategy for BCI learning. If activity evoked by imagining a leftward planar movement moves the BCI cursor
right, then the animal learns to use this motor command to move the cursor to the right. Critically, the space of imagined
planar movements is low-dimensional.
b. Proposed model of re-aiming. Upstream inputs to motor cortex, uj , depend on a low-dimensional motor command
vector, θ (depicted here as two-dimensional). The BCI readout, y, is a 2D linear readout of motor cortical firing rates
through a decoding matrix, D. Re-aiming is formalized as identifying the motor command, θ, that ensures the BCI readout
gets as close as possible to a given target readout, y∗ (cf. equation 4).

command via a set of encoding weights, Uij ,107

ui(θ) = ϕ

(
K∑
j=1

Uijθj

)
. (2)

The rectified linear activation function, ϕ(·), is again used here to enforce non-negative firing rates. For108

simplicity, we set the encoding weights Uij randomly.109

During BCI control, motor cortical firing rates, r(t) = (r1(t) · · · rN (t)) ∈ RN , are directly translated110

to behavior of an external effector (e.g. a cursor on a screen) through a linear readout,111

y(t) = D (r(t)− c) . (3)

As is typically done in BCI experiments with linear decoders, we include a constant offset c to center112

the strictly positive firing rates (see Methods Section 4.8). The readout, y(t), determines behavior in113

the BCI task by specifying, for example, the position47,48 or velocity11,12,14,15,49 of a cursor. Regardless114

of how exactly how the readout maps to cursor movements, performing a given task (e.g. moving the115

cursor towards a target) demands a particular sequence of target readouts, which we denote by y∗(t).116

A subject learning to perform a BCI task with a given decoder must therefore find a way to generate117

motor cortical activity patterns that will produce these target readouts.118

Our hypothesis is that subjects do so only by optimizing the upstream motor commands, θ. A key119

feature of this learning strategy is that it reduces the dimensionality of the learning problem. That120

reduction can be huge: from the number of synaptic weights to the number of command variables121

specifying the motor command, K – a factor that can easily reach 109. Moreover, not all K command122

variables need to be optimized – we will argue below that, in certain settings, subjects may be optimizing123

only a subset of the task-relevant command variables, sometimes as few as 2. Such a reduction in the124

number of optimized parameters allows efficient learning in the absence of gradient information. However,125

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.589952doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.589952


it also limits the space of available solutions to the BCI task. Here we develop a formal theory of re-aiming126

to understand the implications of these limitations, and, importantly, show that they are consistent with127

empirical data.128

We analyze a simplified model of re-aiming in which the motor command, θ, is optimized to produce129

a target readout, y∗, at a single endpoint time, tend,130

θ̂(y∗) = argmin
θ1,θ2,...,θK̃

∥∥y(tend;θ)− y∗∥∥2 + γ

M

M∑
i=1

ui(θ)
2. (4)

The vector y(tend;θ) is the BCI readout at time tend resulting from driving the model motor cortical net-131

work with the motor command θ. The integer K̃ denotes the number of command variables optimized by132

re-aiming; for simplicity, the remaining command variables that are not optimized, θK̃+1, θK̃+2, . . . , θK ,133

are set to 0. The second term on the right-hand side quantifies the metabolic cost of the upstream134

firing rates induced by the motor command, θ, included in the objective function to ensure that only135

biologically plausible solutions are allowed.136

Solutions to equation 4 constitute a concrete hypothesis about what subjects learn. In the following,137

we analyze these optimal motor commands to evaluate whether this hypothesis is consistent with empiri-138

cal observations from BCI learning experiments. The question of how subjects might learn these optimal139

motor commands is left for future work. We also briefly acknowledge here that equation 4 constitutes an140

incomplete description of the true BCI learning problem, since controlling the BCI effector’s movement141

typically requires specifying a whole sequence of readouts over time (rather than at just one target time,142

tend) and relies on closed-loop feedback of the effector’s state.50–52 That said, this simplified model of143

re-aiming will prove useful to intuit general principles of the re-aiming learning strategy, which, as we144

show in Supplementary Materials Section S.1.6, extend to more complex settings such as closed-loop145

control. After all, being able to produce a target readout at a fixed future time is, loosely, a pre-requisite146

to solving the full closed-loop control problem.147

2.2 Re-aiming implies neural constraints on short-term learning148

We begin by modelling the BCI experiment designed by Sadtler et al. (2014).14 In this task, subjects learn149

to perform center-out movements with a 2D cursor on a screen, with the velocity of the cursor controlled150

by the readout from a linear BCI decoder, as in equation 3. Prior to learning, subjects first engage in151

a “calibration task”, in which neural activity is recorded while the subject passively views center-out152

cursor movements to eight radial targets (fig. 2a). Sadtler et al. observed that neural responses to these153

stimuli occupy a low-dimensional subspace, termed the “intrinsic manifold”. This subspace – identified154

via linear dimensionality reduction – is subsequently used to construct three types of BCI decoders.155

First, a “baseline decoder” is constructed by fitting the decoding matrix, D, to the neural responses156
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Figure 2: BCI learning task of Sadtler et al. (2014).
a. Schematic of task structure. Subjects first engage in a “calibration task” whereby they passively observe center-out cursor
movements on a screen. Recorded neural activity in motor cortex is used to construct the baseline decoder and estimate the
intrinsic manifold. Subjects are then instructed to perform center-out cursor movements under BCI control, first using the
baseline decoder and then with a perturbed decoder, constructed by perturbing the baseline decoder. This perturbation
can either preserve the baseline decoder’s alignment with the intrinsic manifold (a within-manifold perturbation, or WMP)
or disrupt it (an outside-manifold perturbation, or OMP).
b. Low-dimensional illustration of the intrinsic manifold and its relationship to the decoders (defined in equation 3) used
in this task. Colored dots represent activity patterns recorded during different trials of the calibration task, colored by the
cursor velocity presented on that trial. The cursor velocities of these stimuli are depicted by color-matched arrows in the
inset in the top right, with the cursor targets used in the subsequent cursor control task depicted by green diamonds. The
evoked neural activity patterns reside predominantly within the two-dimensional plane depicted by the gray rectangle, the
so-called intrinsic manifold. Three hypothetical one-dimensional decoders are depicted by colored arrows, labelled baseline
decoder, WMP, and OMP. The corresponding component of the linear readouts, y1, from these decoders can be visualized
by projecting individual activity patterns onto the corresponding decoder vector. This is illustrated for one activity pattern
marked in green, whose projections onto each of the three decoders is shown. Because this activity pattern resides close to
the intrinsic manifold, it yields a large readout (i.e. far from the origin, at the intersection of the three decoders) from the
baseline decoder and WMP, which are both well aligned with the intrinsic manifold. In contrast, this activity pattern’s
readout through the OMP is much weaker (i.e. its projection onto this decoder is much closer to the origin), since this
decoder is oriented away from the intrinsic manifold. It is important to keep in mind that this illustration is a simplified
cartoon of the true task, in which the intrinsic manifold is higher-dimensional (8-12D instead of 2D) and the BCI task
depends on two readouts (y1, y2) rather than one.

from the calibration task such that these activity patterns suffice to move the cursor towards the cor-157

responding target in each trial. By construction, the baseline decoder is well aligned with the intrinsic158

manifold, such that activity patterns within this subspace can produce large readouts through this de-159

coder (fig. 2b). Sadtler et al. found that, with this baseline decoder, non-human primate subjects can160

easily perform center-out cursor movements to the targets instantly, with no learning time required.161

Next, the decoding matrix of the baseline decoder is perturbed and the subject is prompted to perform162

the same center-out cursor movements with the perturbed decoder. Two types of perturbations are used,163

which either preserve or disrupt the baseline decoder’s alignment with the intrinsic manifold: within-164

manifold perturbations (WMPs) randomly re-orient the baseline decoder within the intrinsic manifold,165

whereas outside-manifold perturbations (OMPs) randomly re-orient the baseline decoder outside the166

intrinsic manifold (fig. 2b). WMPs alter how neural activity within the intrinsic manifold subspace gets167

mapped to readouts, such that activity patterns in this subspace suffice to perform the task. Under168

an OMP, on the other hand, activity patterns within the intrinsic manifold are limited in the extent169

of readouts they can produce, so new activity patterns outside of the intrinsic manifold are needed to170

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.589952doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.589952


proficiently perform the task.171

Sadtler et al. found that with 1-2 hours of practice (a few hundred trials), non-human primates172

can learn to successfully move the cursor to the targets with WMP decoders. In contrast, such short-173

term learning does not typically occur with OMP decoders, under which relatively little improvement is174

observed over this timespan. Here we argue that this limitation of short-term BCI learning is consistent175

with a re-aiming learning strategy. This low-dimensional learning strategy can account for the rapid176

learning achievable with WMPs, as well as the much slower learning exacted by OMPs.177

To demonstrate this, we follow the experimental protocol outlined above, but with simulations of our178

motor cortical model (equations 1-2) rather than with animals. Our starting point, as with the experi-179

ments, is to estimate the intrinsic manifold from motor cortical firing rates recorded during the calibration180

task, in which the subject passively views center-out cursor movements to each of the eight radial tar-181

gets, y∗
i . We simulated neural responses to these stimuli by driving the model network with command182

variables set to the cursor’s constant velocity on each trial: the first two command variables, θ1 and θ2,183

set to the coordinates of the given target, y∗
i , and the remaining command variables, θ3, θ4, . . . , θK , set184

to 0. We then used Principal Components Analysis (PCA) to find the minimal subspace containing 95%185

of the variance over the resulting firing rates, which we found to be 8-dimensional (fig. 3g). We then186

defined the intrinsic manifold to be this subspace and used it to construct the baseline decoder and the187

two types of perturbed decoders (WMPs and OMPs), following the procedures of Sadtler et al. (see188

Methods Section 4.8).189

Our hypothesis is that subjects learn to control the cursor by re-aiming with the same two command190

variables driving the calibration task responses, θ1 and θ2. We thus model BCI learning by optimizing θ1191

and θ2 with respect to the re-aiming objection function (equation 4, with K̃ = 2), leaving the remaining192

command variables fixed to 0 as in the calibration task (θ3 = θ4 = . . . = θK = 0). As only two variables193

need to be optimized, learning should proceed very efficiently. The motor commands available for BCI194

control, however, are now severely constrained: only two command variables are free to change, and they195

are bounded by the metabolic cost incurred by the upstream firing rates (the second term in equation196

4).197

To see how this affects performance in this BCI learning task, we simulate re-aiming for WMP and198

OMP decoders. For each decoder and target readout, we solve equation 4 with K̃ = 2 (setting tend = 1000199

ms, roughly matching the ∼700-1000 ms target acquisition times observed in experiments, and setting200

γ to its largest possible value guaranteeing good performance with the baseline decoder, cf. Methods201

Section 4.3) and drive the motor cortical network with the resulting optimal motor commands, θ̂(y∗
i ).202

The optimal motor commands for the baseline decoder and an example WMP and OMP are shown in203

fig. 3a, as vectors in θ1-θ2 space. The readouts produced by driving motor cortex with these motor204

commands, y(tend; θ̂(y
∗
i )), are shown in adjacent panels to the right (fig. 3b), with the corresponding205
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Figure 3: Re-aiming with two command variables suffices to learn good solutions for within- but not outside- manifold
perturbations.
a. Optimal motor commands, θ̂(y∗

i ), for the baseline decoder and one example WMP and OMP, plotted in θ1-θ2 space.
The shade of green indexes the target readout, y∗

i , that each motor command is optimized for, corresponding to the target
readouts plotted in the adjacent panel (green diamonds in fig. 3b).

b. Readouts generated at time tend by the optimal motor commands shown in the previous panel (fig. 3a), i.e. y(tend; θ̂(y∗
i )).

Green diamonds mark the eight target readouts for the center-out cursor control task, set to the directions of the eight
radial cursor targets used by Sadtler et al. (2014).
c. Readouts from each of the reachable manifold activity patterns plotted in fig. 3f, with matched marker colors and sizes.
The diamonds denote the eight target readouts as in fig. 3b. Note that the reachable readouts closest to the targets do not
necessarily match the readouts produced by the optimal motor commands (fig. 3b), as the optimal motor commands are
optimized to minimize the metabolic cost of the upstream input as well the readout error (cf. equation 4).
d. Distribution of mean squared error achieved by the optimal motor commands for 100 randomly sampled WMP’s and
OMP’s. The mean squared error achieved by the optimal motor commands for the baseline decoder from which these
perturbations are derived is marked by the vertical dashed black line. Target readouts are unit norm, so a mean squared
error of 1.0 is equivalent to producing readouts at the origin.
e. Motor commands covering a range of angles on the θ1 − θ2 plane and 5 norms, ∥θ∥ ∈ {0.1, 0.4, 0.7, 1.0, smax}, with
smax ≈ 1.25 (see Methods Section 4.4 for how this was chosen). The motor commands used to simulate the calibration
task are indicated by the pink/purple squares. All other command variables, θ3, θ4, . . . , θK , are fixed to 0.
f. Activity patterns in the reachable manifold at endpoint time tend = 1000ms. Each ring of activity patterns is generated
by the corresponding ring of color- and size- matched motor commands in the previous panel. This ensemble of N -
dimensional activity patterns is projected onto its top three principal components. The black line is drawn to facilitate
visualization of the 3D structure of this conical manifold. Note that the points in this plot should not be thought of as
spatiotemporal trajectories of activity; rather, they depict activity patterns at the same timepoint generated by different
motor commands.
g. Purple curve: cumulative variance in reachable manifold activity patterns along each intrinsic manifold dimension
(equation 25). Gray curve: cumulative variance in calibration task neural responses. By construction, the intrinsic
manifold contains 95% of the total variance of the calibration task neural responses (Methods Section 4.8).

target readouts underlaid. We find that, for the baseline decoder and WMP, most of these optimally206

driven readouts reach their targets; for the OMP, on the other hand, most of them fall far short. In207

fig. 3d, we repeat this simulation for 100 randomly sampled WMP and OMP decoders (see Methods208

Section 4.8 for the sampling procedure, closely matching that used by Sadtler et al.), and in each case209

quantify re-aiming success using the mean squared error between the optimally driven readouts and their210

corresponding targets. We find that the mean squared error is consistently lower for WMP decoders than211

for OMP decoders, as it was for the representative examples in fig. 3b.212
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Why does re-aiming fail to produce good readouts through OMPs? The answer lies in the constraints213

the re-aiming strategy imposes on the set activity patterns available in motor cortex for BCI control. To214

visualize and characterize these, we consider the reachable manifold : the set of all motor cortical activity215

patterns at a fixed endpoint time, r(tend;θ), that can be reached by a motor command, θ, accessible216

by re-aiming; that is, with θk = 0 for all k > 2 and with its norm, ∥θ∥, constrained by the quadratic217

metabolic cost (which we enforce here with a hard upper bound, ∥θ∥ ≤ smax, set to the maximum norm218

of the re-aiming solutions to all sampled decoder perturbations; cf. Methods Section 4.4). A large set219

of these accessible motor commands are shown in fig. 3e, and the corresponding activity patterns they220

generated are shown to the right in fig. 3f, projected down to three dimensions via PCA. Note that, despite221

the accessible motor commands being two-dimensional, the reachable manifold occupies more than two222

dimensions of state space, due to non-linearities in the dynamics of the motor cortical network. The223

three-dimensional projection in fig. 3f in fact contains about 80% of the variance over the N -dimensional224

activity patterns, revealing that the reachable manifold occupies in a moderately low-dimensional linear225

subspace – higher than that of the motor commands giving rise to it (two-dimensional) but significantly226

lower than that of its ambient state space (N -dimensional).227

In fact, the reachable manifold is almost completely contained within the intrinsic manifold subspace.228

This is quantified in fig. 3g, which reveals that the eight dimensions of the intrinsic manifold subspace229

capture almost 100% of the variance in reachable activity patterns. This is unsurprising given that both230

the activity patterns in the reachable manifold and the activity patterns evoked by the calibration task231

– which define the intrinsic manifold – are generated by similarly low-dimensional motor commands θ,232

in which only two command variables (θ1, θ2) are non-zero. Fig. 3e shows this directly by overlaying the233

calibration task inputs on the accessible motor commands. Ultimately, what this entails is that there are234

virtually no reachable activity patterns outside of the intrsinsic manifold; no activity patterns outside of235

the intrinsic manifold are accessible via re-aiming. This explains why this learning strategy would fail236

to produce large readouts through OMPs.237

To confirm this, in fig. 3c we visualize the set of readouts reachable by re-aiming, for the baseline238

decoder, WMP, and OMP from fig. 3a and 3b. Specifically, we plot the readouts from each of the239

reachable activity patterns shown in fig. 3f, providing a comprehensive visualization of the space of240

readouts that can be reached through each decoder by re-aiming. As expected from the fact that the241

reachable manifold resides solely within the intrinsic manifold, we see that the readouts reachable under242

the baseline and WMP decoders cover a wider area than those reachable under the OMP decoder. The243

targets are thus enclosed by the baseline and WMP decoder reachable readouts, but remain out of reach244

of the OMP decoder. The re-aiming learning strategy therefore fails to solve the task with this OMP245

decoder, as none of the motor commands accessible under this learning strategy can reach the target246

readouts.247
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We conclude that re-aiming with only two variables (θ1 and θ2) can lead to successful BCI control248

with WMP decoders but not with OMP decoders. This offers an explanation for why only WMPs are249

learnable on the short timescale of a single experimental session. Because such low-dimensional re-aiming250

can’t succeed for OMPs, subjects must resort to an alternative – and presumably higher-dimensional –251

learning strategy, explaining why it requires substantially more training to learn these.16252

2.3 Re-aiming predicts biases in short-term learning253

A close look at fig. 3c reveals an important difference between the baseline and the WMP decoders:254

the readouts reachable with the baseline decoder cover the readout space symmetrically while those255

reachable with the WMP decoder do not (compare figs. 3ci and 3cii). In other words, larger readouts256

are reachable in some directions than in others. Such biases in reachable readouts are not unique to this257

particular WMP decoder; fig. 4a reveals similar asymmetries in the readouts reachable through three258

other representative WMP decoders.259

The direction of this bias is moreover predictable: typically, the largest reachable readouts are in the260

direction of Dr̄ (arrow overlaid on each plot), where r̄ is the centroid of the reachable manifold. This bias261

arises because of the non-negativity of firing rates, which permits the population firing rate, r, to grow262

widely away from the origin, but shrink towards the origin only up to a point, where it is truncated by263

the non-negativity. It is this property that endows the reachable manifold its conical structure (fig. 3f),264

whose centroid, r̄, dictates the direction in which firing rates can grow the most under the re-aiming265

strategy. The projection of this direction through a given decoder, Dr̄, thus determines the direction266

in which the largest readouts can be reached by re-aiming (see Supplementary Materials Section S.1.2267

for a more detailed analysis). In Supplementary Figure S1d, we show that – as long as firing rates268

are constrained to be non-negative (Supplementary Materials Section S.1.3) – this bias arises across a269

large variety of motor cortical connectivity patterns and dynamics, suggesting that it is an unavoidable270

consequence of the re-aiming learning strategy. The absence of such a bias in experimental data would271

therefore provide strong evidence against this theory of BCI learning.272

To quantify this experimental prediction, we used the “cursor progress” metric, ρ, introduced by273

Golub et al. (2018) to measure the degree to which a given readout, y, pushes the BCI cursor in a given274

target direction, y∗,275

ρ (y;y∗) = y · y∗

∥y∗∥
. (5)

We then predict the maximum achievable cursor progress in each target direction,

ρmax (y∗) =max
θ1,θ2

ρ (y(tend;θ);y
∗) ,

subject to ∥θ∥ ≤ smax,

(6)
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Figure 4: Re-aiming predicts biases in readouts after short-term learning of within-manifold perturbation (WMP)
decoders.
a. Readouts reachable through four representative WMP decoders, using the same color conventions as in fig. 3c. In each
case, the four loops correspond to four distinct motor command norms, chosen to aid visualization. The leftmost panel
corresponds to the example WMP decoder shown in fig. 3cii. The projection of the reachable manifold centroid, Dr̄, is
overlaid as an open arrow, arbitrarily rescaled for visibility.
b. Maximal cursor progress in each target direction as a function of angle with Dr̄, for the four example WMP decoders
in panel a.
c. Maximal cursor progress in each target direction as a function of angle with Dr̄, for all 100 sampled WMPs. As was
done for the experimental data in the next panel, the reachable manifold centroid, r̄, is estimated using simulated mean
firing rates during baseline decoder control (see Methods Section 4.6). A total of 8 target directions × 100 sampled WMPs
= 800 points are plotted.
d. Maximal cursor progress in each target direction as a function of angle with Dr̄, for all 46 sessions of WMP learning
across three monkeys. Maximal cursor progress is estimated using the average cursor progress over the 50 contiguous
trials with lowest acquisition times. The reachable manifold centroid, r̄, is estimated using mean firing rates over trials of
baseline decoder control (see Methods Section 4.6). A total of 8 target directions × 46 experimental sessions = 368 points
are plotted.

where, as above, θ1 and θ2 are the two command variables optimized by re-aiming and smax is the bound276

on motor command norms imposed by the metabolic constraint in equation 4 (cf. Methods Section277

4.4). In fig. 4b, we plot this maximal cursor progress for each target readout, ρmax (y∗
i ), as a function278

of the target readout’s angle from Dr̄, for each of the four example WMPs. The negative correlation279

in each case confirms our above observation: higher cursor progress is reachable in target directions280

more aligned with Dr̄. In fig. 4c, we plot the maximal cursor progress in each target direction for all281

100 sampled WMP decoders, revealing a statistically significant negative correlation across all sampled282

decoders (Pearson r = −0.66, p < .001).283

Does this predicted negative correlation also hold in the empirical data? To test this, we estimated284

the maximal cursor progress and reachable manifold centroid in each experimental session of WMP285
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control. Maximal cursor progress in each target direction, ρmax (y∗
i ), was estimated using the average286

cursor progress in that target direction over the 50 contiguous WMP control trials with fastest target287

acquisition times (see Methods Section 4.6). The reachable manifold centroid, r̄, was estimated using288

mean motor cortical firing rates during the block of baseline decoder control (see Methods Section 4.6),289

which in our model is highly correlated with the true reachable manifold centroid. We then replicated290

fig. 4c by plotting the empirically measured maximal cursor progress for each target direction as a291

function of the angle between the target direction and Dr̄, using our empirical estimates of maximal292

cursor progress and r̄ from each experimental session. The data over all sessions are plotted in fig. 4d,293

revealing a significant negative correlation (Pearson r = −0.41, p < .001) akin to that observed in our294

model. This confirms the existence of a statistically significant bias in the same direction predicted by295

our model of re-aiming.296

2.4 Long-term BCI learning by generalized re-aiming297

Although non-human primates struggle to control OMP decoders within a single experimental session298

(a few hundred trials),14 they can in fact learn to do so when trained over multiple days (thousands of299

trials).16 In this long-term learning paradigm, new motor cortical activity patterns emerge that allow the300

subjects to achieve good performance with OMP decoders. Could re-aiming play a role in the emergence301

of novel activity patterns over these longer timescales?302

Since re-aiming with the two command variables evoked by the calibration task, θ1 and θ2, is not303

sufficient to produce the activity patterns required for OMP control, additional command variables will304

be required. We refer to a learning strategy that uses additional command variables as “generalized305

re-aiming”, and demonstrate below that this strategy can in fact achieve good performance with OMP306

decoders. Moreover, it can account for why learning is slower for these decoders: the search for optimal307

motor commands takes place in a higher-dimensional space beyond the narrow 2D space of command308

variables evoked by the calibration task.309

To simulate generalized re-aiming, we simply increase the number of command variables used for310

re-aiming, K̃, and solve the resulting K̃-dimensional optimization problem in equation 4. In fig. 5a we311

plot the mean squared error achieved by the re-aiming solutions for each OMP decoder for each value312

of K̃. We find that as K̃ increases, a lower mean squared error is achieved, demonstrating that this313

learning strategy can be effective for OMP learning. For this model motor cortical network, re-aiming314

with about 15-20 command variables suffice to achieve a mean squared error as low as that achievable315

with WMP decoders using K̃ = 2. For other motor cortical models with different connectivity, fewer than316

10 command variables suffice (Supplementary Figure S1e). These values of K̃ comfortably fall in the317

range of the total number of extrinsic motor variables known to influence motor cortical activity.53–59318

However, they may be too high for näıve gradient-free optimization to succeed in solving equation 4319
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a b c

Figure 5: Generalized re-aiming produces good solutions for outside-manifold perturbations (OMPs).
a. Mean squared error achieved by generalized re-aiming solutions for all sampled OMP decoders, plotted as a function of
the number of command variables used for re-aiming, K̃. Lighter blue points show the mean squared error for individual
OMP decoders, darker open circles show the median over all sampled OMPs. For reference, dotted horizontal lines show
the mean squared error achieved by re-aiming solutions with K̃ = 2 for the baseline decoder (black) and for WMP decoders
(red); for WMP decoders, the median over all sampled decoders is shown with shading marking the upper and lower
quartiles (corresponding to the values plotted in the red histogram in fig. 3d).
b. Participation ratio of the reachable manifold covariance (a measure of the effective dimensionality of the reachable

manifold; see Methods Section 4.4, equation 16) as a function of the number of command variables used for re-aiming, K̃.

c. Convex hull of OMP readouts reachable with different number of command variables, K̃, for the same OMP decoder
shown in fig. 3c. The innermost ring (K̃ = 2) corresponds to the convex hull of the reachable readouts plotted in fig. 3ciii.

under biological limitations (e.g. on memory, motivation, and noise), which might explain why primates320

seem to only be able to learn to control OMP decoders when provided with a structured incremental321

training paradigm.16322

Why generalized re-aiming works can be understood by looking at how increasing K̃ changes the323

reachable manifold. A larger number of learnable command variables permits a more diverse set of324

upstream inputs, which in turn implies that a more diverse set of activity patterns are reachable by re-325

aiming. This diversity is quantified in fig. 5b by the participation ratio of the covariance of the reachable326

manifold (see Methods Section 4.4, equation 17). The participation ratio measures the extent to which327

variability is spread out over many dimensions (high participation ratio) or concentrated to only a few328

(low participation ratio).60 We find that as K̃ rises, the participation ratio of the reachable manifold329

covariance increases, indicating it occupies more and more dimensions of state space. That said, the330

participation ratio does begin to saturate at around K̃ = 20, reflecting the fact that the reachable331

manifold is ultimately limited by the smooth dynamics of the motor cortical network.332

This expansion in the reachable manifold leads to the inclusion of new activity patterns that are333

useful for OMP control. We can see this in fig. 5c, which shows the readouts reachable through the same334

OMP visualized in fig. 3ciii. The readouts reachable under different values of K̃ are plotted with different335

colors, revealing how re-aiming with a larger number of command variables allows the target readouts to336

be reached. As the reachable manifold expands, more and more activity patterns occupying dimensions337

relevant to OMP control become reachable, such that a wider set of readouts become reachable.338
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2.5 Illusory credit assignment by generalized re-aiming339

We now turn to a different class of BCI decoder perturbation, termed the credit assignment rotation340

perturbation.61 We can think of the readout from a linear BCI decoder (equation 3) as summing together341

the N columns of the decoding matrix D (termed the “decoding vectors”), each one weighted by the342

activity of the corresponding neuron (fig. 6a, top). Under a credit assignment rotation perturbation,343

the decoding vectors of a random subset of neurons (the “rotated neurons”) are rotated by a given344

angle (fig. 6a, bottom). Errors induced by this decoder perturbation can be corrected by adjusting345

only the responses of the rotated neurons, while leaving the responses of the “non-rotated” neurons346

unchanged. But doing so requires solving the so-called credit assignment problem:62 identifying which347

neurons’ decoding vectors were rotated – a tall order given that the subject has no explicit knowledge348

about the BCI decoder or the few motor cortical neurons (among millions) it records from.349

Despite these challenges, multiple studies have shown that non-human primates can learn to control350

such decoder perturbations.11,12,61 These studies used the same 2D cursor control task described above351

(fig. 2a), in which subjects first control a BCI cursor using a baseline decoder fit to motor cortical activity352

recorded during a calibration task, and then learn to control the cursor using a perturbed decoder with353

rotated decoding vectors. Subjects’ motor cortical activity changes after learning to control the perturbed354

decoder, and this can be characterized by the change in neurons’ tuning to cursor direction during BCI355

control with the baseline and perturbed decoders. Each of these studies found that, after learning,356

tuning curves of both rotated (fig. 6b) and non-rotated neurons (fig. 6c) shift in the same direction357

as the decoding vectors. For example, if the decoding vectors are rotated counter-clockwise, tuning358

curves also shift counter-clockwise. Notably, however, tuning curves of rotated neurons shift more on359

average than those of non-rotated neurons (compare the simulated examples in fig. 6b and fig. 6c). This360

observation could be interpreted to support the hypothesis that the motor system is able to solve the361

credit assignment problem, and in fact Hebbian synpatic learning rules have been shown to recapitulate362

these results by tuning individual neurons’ synapses.17 Here we consider an alternate hypothesis: that363

these results could arise from generalized re-aiming, a global learning strategy entirely unconcerned with364

learning about individual neurons.365

To test this, we follow the same procedure as above: we simulate motor cortical activity during the366

calibration task, use it to construct a baseline decoder, and then sample 100 random credit assignment367

rotation perturbations (Methods Section 4.9). Following the experimental procedures of Zhou et al.368

(2019), the perturbed decoders are constructed by rotating a random selection of 50% of the columns of369

the decoding matrix, D, 75◦ counter-clockwise. For each decoder, we then compute the optimal motor370

commands for each target (equation 4) and drive the network with them to simulate center-out cursor371

movements learned by re-aiming. By comparing neurons’ directional tuning under the optimal motor372
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Figure 6: Generalized re-aiming solutions reproduce motor cortical tuning changes observed under credit assignment
rotation perturbations.
a. A linear BCI readout (equation 3) can be interpreted as summing together columns of the decoding matrix D, each
weighted by the firing rate of the corresponding neuron (the centering term c has been dropped here for simplicity). These
columns are called the neurons’ decoding vectors, and they are plotted on the axes below the equation. Under a credit
assignment rotation perturbation, the decoding vectors of a subset of neurons (marked in purple) are rotated by a fixed
angle (in this case 75o counter-clockwise). The neurons’ decoding vectors under this perturbed decoder are shown by
dashed green arrows. The neurons whose decoding vectors are rotated are termed “rotated” neurons (in purple), the rest
of the neurons that are recorded by the BCI are termed “non-rotated” neurons (in pink). Neurons that are not recorded
by the BCI (i.e. whose decoding vectors are just a vector of 0’s, not depicted here) are termed “indirect” neurons.
b. Tuning curve of a representative example rotated neuron of our model, during cursor control with the baseline decoder
(black) and with a credit assignment rotation perturbation (green). The dots show the time-averaged activity over tend =

1000ms while the motor cortical network is driven by the re-aiming solutions for each respective decoder, using K̃ = 2 for
the baseline decoder and K̃ = 6 for the perturbed decoder. Curves show tuning curves fit to these responses (Methods
Section 4.9). The vertical dotted gray lines mark the preferred direction under each decoder, with an arrow labeling the
change in preferred direction.
c. Tuning curve of a representative example non-rotated neuron of our model, under the same two decoders. All conventions
exactly as in the previous panel. Note that this neuron’s preferred direction changes less than that of the rotated neuron
in the previous panel.
d. Mean squared error achieved by generalized re-aiming solutions for 100 random credit assignment rotation perturbations,
plotted as a function of the number of command variables used for re-aiming, K̃. Light green dots denote individual
decoder perturbations, overlaid darker open circles denote medians over all 100 sampled decoder perturbations. Black
dotted horizontal line shows the mean squared error achieved by re-aiming solutions to the unperturbed baseline decoder
with K̃ = 2.
e. Average change in preferred direction of rotated, non-rotated, and indirect neurons between simulated cursor control
with the baseline decoder and each perturbed decoder, plotted as a function of the number of command variables used
for re-aiming, K̃. For each decoder perturbation, the changes in preferred direction are averaged over all neurons in each
sub-population, and the median over all sampled perturbations is plotted. Error bars mark the upper and lower quartiles.
Positive angles indicate a counter-clockwise rotatation, consistent with the direction of rotation of the decoding vectors of
the rotated neurons.

commands for the baseline decoder and for each perturbed decoder, we can determine how directional373

tuning would change after learning that decoder perturbation by re-aiming.374

Reflecting the fact that the baseline decoder is easy to learn, we used K̃ = 2 to compute re-aiming375

solutions for it. For the perturbed decoders, we simulated generalized re-aiming with 2 to 6 command376

variables. We find that re-aiming with about K̃ = 6 command variables is necessary to achieve the same377

performance as with the baseline decoder (fig. 6d). That said, re-aiming with only K̃ = 2 suffices to378

achieve a relatively low mean squared error (around 0.1; compare to fig. 3d), suggesting ordinary 2D379
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re-aiming could still be a viable learning strategy for this task.380

As in the experiments, we measured neurons’ preferred directions (i.e. the direction at the tuning381

curve peak, cf. fig. 6b and fig. 6c) under the optimal motor commands for the baseline decoder and for382

each perturbed decoder, and calculated each neuron’s change in preferred direction. We then averaged383

the change in preferred direction separately over rotated and non-rotated neurons. Figure 6e shows the384

median of this average change in preferred direction over all sampled perturbed decoders, as a function385

of the number of command variables used for re-aiming, K̃. Consistent with the experimental results, we386

find that re-aiming leads to a global counter-clockwise shift (a positive change in preferred direction) in387

motor cortical tuning curves congruent with the rotation of the decoding vectors. Importantly, we find388

that generalized re-aiming with K̃ > 2 command variables replicates the credit assignment effects seen389

in the experiments, whereby the preferred directions of rotated neurons shift on average more than their390

non-rotated counterparts. This is true despite the fact that the credit assignment problem was never391

truly solved: no neuron-specific parameters were modified under this learning strategy.392

Because we have complete access to the full population of neurons in our motor cortical model, we393

can also measure tuning changes in the sub-population of “indirect” neurons not recorded by the BCI394

(i.e. neurons whose decoding vectors in D comprise a vector of 0’s). These are plotted in fig. 6e with a395

gray line. Under generalized re-aiming, indirect neurons’ tuning curves shift less on average than rotated396

neurons’. Whether they shift more or less than non-rotated neurons’ tuning curves, on the other hand,397

depends on the specific value of K̃ and varies considerably across different random decoder perturbations.398

These two results are roughly consistent with the observations of Zhou et al. (2019), who found that,399

in two non-human primate subjects, the average change in indirect neuron tuning curves was smaller400

than that measured for the rotated neurons. However, this change was larger than that measured for401

the non-rotated neurons in one subject but smaller in the other, consistent with the variability observed402

in our simulations. To our knowledge, this is the only experimental study on indirect neurons’ responses403

before and after learning a credit assignment rotation perturbation; more studies are needed to fully test404

the predictions of our model.405

An important additional prediction of our model is that credit assignment effects do not arise under406

ordinary 2D re-aiming (fig. 6e, K̃ = 2). This is consistent with prior modeling work showing that407

two-dimensional re-aiming does not suffice to account for empirically observed changes in motor cortical408

tuning curves after learning a credit assignment perturbation.33 Interestingly, it is also consistent with409

recent experimental work showing that differences between rotated and non-rotated neurons seem to arise410

gradually over multiple days of training.61 Our model suggests that this timecourse of learning reflects411

a change in learning strategy, whereby subjects initially engage in low-dimensional re-aiming to rapidly412

reduce gross cursor movement errors before turning to generalized re-aiming to further refine BCI control413

over a longer timescale, thus giving rise to more marked credit assignment effects later in learning. We414

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.589952doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.589952


briefly remark, however, that Zhou et al. did not observe changes in the preferred directions of non-415

rotated neurons after the first day of training. In our simulation, on the other hand, the non-rotated416

neuron tuning curves shift back towards their starting values under the baseline decoder as the number of417

re-aimed command variables increases (see decreasing pink line in fig. 6e). This discrepancy between our418

model and the experimental data could be explained by subjects using suboptimal re-aiming solutions419

deviating from the optimal one (equation 4), possibly due to the difficulty of solving this optimization420

problem when K̃ > 2, or due to the lack of pressure to find it. This possibility is also consistent with the421

fact that the amount of change in preferred directions is significantly larger in our simulation (30− 60o)422

than in the experimental data (20− 40o).423

2.6 Operant conditioning of individual neurons by re-aiming424

The third and final BCI task we study is the operant conditioning of individual motor cortical neurons. In425

this task, subjects are rewarded for simply increasing the activity of one group of motor cortical neurons426

over another.28,63–66 The fact that primates and rodents are capable of solving such tasks is often cited427

as evidence that the motor system can learn to specifically modulate the responses of individual neurons.428

Classical models of single-neuron operant conditioning have argued that these changes happen via reward-429

modulated plasticity at their synapses.18,67 Here we explore the extent to which these observations could430

instead be explained by re-aiming.431

We begin by considering the classic operant conditioning task of Fetz and Baker (1973). In this432

task, the subject is rewarded for increasing the firing rate of one neuron – termed the “target” neuron –433

while simultaneously decreasing that of another neuron – termed the “distractor” neuron. Remarkably,434

Fetz and Baker found that non-human primates are often able to do this with only minutes of practice.435

Moreover, the identity of the target and distractor neurons could be flipped midway through a recording436

session, and the subject would subsequently adapt to this new target assignment within tens of minutes,437

increasing the activity of the neuron whose activity was previously suppressed. Could low-dimensional438

re-aiming explain this behavior?439

The answer depends on the reachable manifold. If the reachable manifold contains activity patterns440

in which neuron a is more active than neuron b, as well as activity patterns in which neuron b is more441

active than neuron a, then good re-aiming solutions will exist for both target assignments. This is442

illustrated in fig. 7a, which shows two neurons’ endpoint firing rates, ri(tend), at various points on the443

reachable manifold, following the same conventions as in fig. 3f. On this plane, activity patterns below444

the diagonal are rewarded when neuron a is the target neuron; activity patterns above the diagonal445

are rewarded when neuron b is the target neuron. Because there are reachable activity patterns on446

both sides of the diagonal, good re-aiming solutions exist for both target assignments. We calculated447

optimal re-aiming solutions for each target assignment by maximizing the firing rate difference between448
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Figure 7: Operant conditioning of individual neurons by re-aiming.
a. Activity of two model neurons at various points on the reachable manifold, at tend = 1000ms with K̃ = 2, following the
same conventions as fig. 3f. As in that figure, each ring of activity patterns is generated by the corresponding ring of color-
and size- matched motor commands in fig. 3e. Activity patterns below the diagonal are ones where neuron a is more active
than neuron b, satisfying the task demands when neuron a is the target neuron; the reverse holds for activity patterns
above the diagonal. The green and orange open circles denote the activity patterns produced by the optimal re-aiming
solutions for the two respective target assignments. Note that, due to the metabolic cost term in the re-aiming objective
function, these do not necessarily correspond to the points on reachable manifold that are furthest away from the diagonal.
b. Difference in activity produced by re-aiming solutions for each target assignment (at time tend = 1000 ms, the endpoint
time the re-aiming solutions were optimized for), for 500 random pairs of neurons from the same model motor cortical
network used in previous simulations. Each dot corresponds to one pair of neurons. The pair of neurons shown in previous
panel is marked by an open circle. Two additional examples are marked by open circles. Insets show the activity of those
neuron pairs at various points on the reachable manifold, following same conventions as the previous panel.
c. Difference in activity (at tend = 1000 ms) produced by the re-aiming solutions optimized for neuron a being the target,
for the same 500 random pairs of neurons, plotted as a function of the correlation between the two neurons during simulated
spontaneous behavior. The three example pairs of neurons highlighted in the previous panel are again highlighted here
with open circles. A quantitatively similar trend is observed for rb − ra with re-aiming solutions optimized for neuron b
being the target (data not shown).
d. Activity of indirect neurons (at tend = 1000 ms) for the same neuron pairs and re-aiming solutions in previous panel,
plotted as a function of correlation with neuron a during simulated spontaneous behavior. A quantitatively similar trend is
observed for correlations with neuron b with re-aiming solutions optimized for neuron b being the target (data not shown).

the target and distractor neurons, subject to a metabolic cost (equation 29). The activity produced by449

these optimal solutions are marked by the open red and green circles. These evidently satisfy each target450

assignment, with neuron a achieving a higher firing rate under one re-aiming solution (green circle) and451

neuron b achieving a higher firing rate under the other (red circle).452

More generally, we can think of this plot as a particular two-dimensional projection of the reachable453

manifold, specified by the pair of neurons a and b. A given neuron pair thus admits good re-aiming454

solutions for this task whenever the corresponding projection of the reachable manifold covers the ap-455

propriate side(s) of the diagonal. Framed in this way, it is easy to intuit that for most random pairs of456

neurons a good solution will generally exist for at least one target assignment – random two-dimensional457

projections of the reachable manifold are unlikely to lie exactly on the diagonal. We verify this intuition458

by sampling 500 random pairs of neurons from our model motor cortical network (see Methods Section459

4.10) and checking whether the re-aiming solutions for the two target assignments produce higher firing460

rates for the target neuron than for the distractor neuron. The difference in the two neurons’ firing rates461

produced by the optimal re-aiming solutions are plotted in fig. 7b. For most neuron pairs, we see that462

at least one of the two neurons can be activated more than the other. In many cases, both neurons can463
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be activated more than the other, meaning that both target assignments could be learned by re-aiming.464

For some neuron pairs, however, the optimal re-aiming solutions do not produce a large difference465

in firing rates under either target assignment. These infelicitous neuron pairs are ones where the two466

neurons are highly correlated across all activity patterns on the reachable manifold, such that the relevant467

projection doesn’t deviate strongly from the diagonal and no good re-aiming solutions exist. One such468

example is shown in the inset on the right, where the reachable manifold lies largely right on the diagonal,469

and thus both re-aiming solutions lead to near-0 difference in firing rates. A different kind of exampe is470

shown in the inset on the top, where the two neurons are correlated in such a way that the reachable471

manifold resides on only one side of the diagonal. In this case, a good re-aiming solution exists for one472

target assignment but not for the other. These observations reveals a tight relationship between neural473

correlations and operant conditioning performance: the more correlated a pair of neurons is across474

reachable activity patterns, the more difficult it should be to selectively activate one more than the other475

by re-aiming.476

Is this prediction of our model consistent with experimental observations? Without empirical access477

to the reachable manifold, we cannot directly measure correlations across reachable activity patterns.478

But if we assume that neural activity during a prior “calibration task” is driven by the same command479

variables used subsequently for re-aiming – as we did in our simulation of WMP/OMP learning –, then480

we should expect neural correlations during this calibration task to approximately match correlations481

across the reachable manifold used for re-aiming. This predicts that neural correlations during a prior482

calibrationt ask should be predictive of subsequent operant conditioning performance. This prediction483

is in fact consistent with observations from a study by Clancy et al. (2014), in which the conditioned484

neurons’ correlation was measured during a period of spontaneous behavior (the “calibration task”) just485

prior to performing operant conditioning. Consistent with our model’s prediction, they observed that486

the stronger the correlation during spontaneous behavior prior to operant conditioning, the worse the487

mouse tended to perform the subsequent operant conditioning task.488

To quantify this prediction, we simulated the experiment of Clancy et al. We first simulated motor489

cortical activity during spontaneous behavior by driving the model motor cortical network with randomly490

sampled motor commands in which only two command variables, θ1 and θ2, were allowed to vary (all491

other command variables were set to 0). We sampled 50 such motor commands to simulate 50 bouts492

of spontaneous activity (cf. Methods Section 4.10). For each conditioned pair of neurons, we measured493

their correlation coefficient over all activity across the 50 bouts, and then simulated re-aiming with the494

same two command variables, θ1 and θ2. We quantified the efficacy of re-aiming with the firing rate495

difference between the target and distractor neurons at the optimized endpoint time, tend. Mirroring496

the experimental results of Clancy et al., we find that the spontaneous activity correlations are weakly497

but significantly predictive of re-aiming efficacy (fig. 7c). We briefly remark here that the operant498
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conditioning task of Clancy et al. differs from our simulations in that pairs of ensembles of up to 11499

neurons were conditioned, rather than pairs of single neurons. In Supplementary Materials Section S.1.4,500

we show that the same results hold in this setting as well.501

Finally, we consider what happens to the “indirect” neurons – neurons that are neither a target nor502

a distractor. Clancy et al. observed that, after learning, indirect neurons strongly correlated with the503

target neuron during spontaneous behavior remained highly active during performance of the subsequent504

operant conditioning task (supplementary figure 9a in65). This is consistent with our model of re-aiming,505

in which re-aiming tends to drive indirect neurons proportionally to their correlation with the target506

neuron during spontaneous behavior (fig. 7d). Our model is not, however, consistent with another507

observation by Clancy et al.: indirect neurons that were moderately correlated with the target neuron508

were highly active only in the early stages of learning, but by the end of learning became silent. A509

possible explanation for this inconsistency is that subjects re-aim with K̃ > 2 command variables. If510

spontaneous behavior during the calibration period were driven by more than 2 command variables, we511

would expect subjects to re-aim with more as well. Given the complexity of spontaneous behavior, this512

is a reasonable explanation, but we leave for future work a more comprehensive study of generalized513

re-aiming with K̃ > 2 command variables in operant conditioning tasks.514

Discussion515

In this study, we proposed and investigated the hypothesis that motor cortical BCI learning proceeds via516

a learning strategy we refer to as generalized re-aiming. Under this strategy, internal motor commands517

are manipulated to control the BCI using the same motor cortical circuitry used during natural motor518

behaviors. Because only a few command variables need to be manipulated to achieve this goal, learning519

can proceed rapidly and flexibly, and, because the motor cortical circuitry is conserved, the operation of520

motor cortex during natural motor control is conserved as well.521

To study the neural and behavioral consequences of this learning strategy, we formulated a mechanistic522

model of re-aiming in which the internal command variables specify upstream inputs to motor cortex. By523

analyzing how these inputs get transformed into motor cortical activity patterns through the circuit’s524

nonlinear recurrent dynamics, we were able to demonstrate that re-aiming can in fact account for a525

wide range of experimental observations about BCI learning. This model can explain the different526

timescales of learning required for different BCI decoders,14,16 selective changes in motor cortical tuning527

curves over learning,11,12,61 and the seemingly astonishing ability of mammals to flexibly modulate the528

activity of single neurons via operant conditioning.28,63,65 The model also makes a novel experimental529

prediction about behavioral biases during short-term learning (fig. 4), which we were able to corroborate530

in previously published data.14 The success of this model at replicating these empirical phenomena531

provides an explanation in terms of the biological dynamics of neural circuits.532
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3.1 Intrinsic variable learning vs. individual neuron learning533

An important debate in the BCI learning literature has been whether human and non-human primates are534

able to precisely learn and control the contribution of individual neurons to a given BCI decoder readout –535

the so-called “individual neuron learning” hypothesis. Several studies have been directly aimed at testing536

this hypothesis, leading to evidence in favor11,12,33,61 and against it.34,35 The alternative hypothesis is537

often referred to as “intrinsic variable learning”,9 whereby subjects learn to control the BCI using the538

same constrained set of activity patterns usually used for natural motor control, unable to independently539

control the activity of single neurons. Our model of re-aiming is a particular formalization of this latter540

hypothesis, with the command variables θ1, θ2, . . . , θK̃ acting as the so-called intrinsic variables.541

Our simulations of generalized re-aiming show that many experimental results traditionally attributed542

to some form of individual neuron learning17,67 can be accounted for by intrinsic variable learning. In543

particular, even classical single neuron operant conditioning results can be reproduced by our model. Our544

simulations show that the dynamics of recurrently connected neural circuits are capable of generating545

the activity patterns required by these BCI tasks, without the need to optimize parameters specific546

to individual neurons or synapses.68 This suggests caution in underestimating the role of macroscopic547

cognitive strategies69,70 when observing what may look like highly specific, microscopic, changes to the548

activity of single neurons.549

3.2 The role of synaptic plasticity in BCI learning550

All the results we replicated here have been previously replicated by various models of synaptic plas-551

ticity within motor cortex. As argued in the introduction, however, learning by optimizing synaptic552

parameters entails solving an extremely high-dimensional optimization problem with no access to ex-553

plicit gradients, which would limit learning to be slow and brittle. Several of these previously proposed554

models worked around this problem by using small and simplified feed-forward models of motor cor-555

tex17,68 or biologically implausible learning rules.19,20,71 A few have demonstrated that, for simple tasks556

like operant conditioning, biologically plausible learning rules can in fact succeed in biologically relevant557

regimes despite these obstacles.18,67 However, to our knowledge, none have comprehensively accounted558

for all three sets of experimental results considered here, including the observed effects on non-recorded559

neurons and the dependence of operant conditioning performance on neural correlations.560

That said, the present study does not by any means rule out the possibility that synaptic plasticity561

within motor cortex may play an important role in BCI learning; rather, it reveals the surprising capa-562

bilities of a pure re-aiming strategy. The true mechanisms underlying BCI learning most likely comprise563

a mixture of both re-aiming as well as synaptic plasticity, and future work will be needed to tease apart564

the contributions of these two learning mechanisms and understand how they are coordinated.565
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One natural possibility is that synaptic plasticity operates on a much slower timescale than re-566

aiming.72 This could help explain selective changes to motor cortical responses that only arise late in567

learning and are not replicated by our model. For example, Clancy et al. (2014) observed in their operant568

conditioning experiments that indirect neurons not strongly correlated with the target neuron become569

silent late in learning.65 Ganguly et al. (2011) similarly observed that indirect neurons become less tuned570

to reach direction after days of practice with a given BCI decoder. Jarosiewicz et al. (2008) reported571

a similar effect in rotated neurons after a credit assignment rotation perturbation (although note that572

this effect seems to disappear when increasing the proportion of neurons rotated, see [12, 61]). These573

selective changes in tuning strength are not reproduced by our model of re-aiming (Supplementary Figure574

S5a), but previous theoretical work has demonstrated that they can be reproduced by reward-modulated575

Hebbian plasticity in a simplified model of motor cortex.17576

An additional set of observations that are not well accounted for by our model come from a few577

recent studies demonstrating long-term changes in motor cortical activity after short-term learning.73,74578

In particular, Losey et al. (2024) found that motor cortical activity during baseline decoder control579

changed before and after learning a WMP within a single experimetal session. Our model could account580

for this if the upstream population driving motor cortex encoded not only the motor commands relevant581

for control but also additional variables indexing the current behavioral context,73,75 or a memory trace582

of the current task.74583

3.3 The “intrinsic manifold” of population activity584

A simple but important takeaway from this study is that the low-dimensional structure of activity in585

a population depends not only on the intrinsic dynamics and connectivity within that population, but586

also on the structure of its upstream input. The observation that population activity is confined to587

a low-dimensional subspace – often termed the “intrinsic manifold”14,19,76 or the “neural modes”58 –588

does not mean that the circuit connectivity prevents it from generating activity patterns outside of this589

subspace. It is likely that many more activity patterns outside of this subspace are accessible, but that590

only a low-dimensional subset are accessed by the inputs evoked by the subjects’ behavior during the591

recording session.60,77592

This insight leads to a novel interpretation of the observation that outside-manifold perturbations593

require a longer time to learn than their within-manifold counterparts.14,16 Previous models of this phe-594

nomenon have assumed that the longer learning time reflects the challenge of modifying the motor cortical595

connectivity to permit the production of activity patterns outside of the intrinsic manifold.19,20,68,71 Our596

simulations demonstrate that this isn’t necessary, and that in many cases it may suffice to simply exploit597

additional input dimensions beyond those evoked by the calibration task (fig. 5a, Supplementary Figure598

S1e). Under this model of learning, the longer learning time required for OMPs reflects the fact that599
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these new input dimensions need to be discovered from scratch, as the calibration task provides little600

prior information about them.601

Another important aspect of the intrinsic manifold that this study highlights is its nonlinear structure.602

Because firing rates are bounded from below by 0, activity patterns are confined to the positive orthant603

of state space. This constraint imposes a conical structure on population activity within the intrinsic604

manifold (fig. 3f, Supplementary Figure S2), which we show in Supplementary Materials Section S.1.3 is605

in fact necessary to account for experimentally observed behavioral biases in WMP learning. Given the606

strong behavioral repercussions this structure can have on BCI control, understanding and identifying607

such nonlinear structure in motor cortical activity may prove crucial both for understanding BCI learning608

as well as for designing better BCI decoders.609

3.4 The role of the calibration task in BCI learning610

From a more practical perspective, our theory of re-aiming highlights the role of the calibration task in611

BCI learning. The calibration task is typically seen as a way to calibrate the decoding parameters; that612

is, as a source of information for constructing the BCI decoder. Here we suggest that it additionally serves613

as a source of information for the subject itself, that is, for the BCI learner.78,79 For example, in modeling614

WMP learning, we assumed that subjects re-aimed with the two command variables modulated by the615

calibration task; in modeling operant conditioning, we assumed that subjects re-aimed with the same616

command variables driving spontaneous behavior prior to the operant conditioning task. If any other617

two command variables had been optimized instead, the re-aiming strategy would not have succeeded618

in solving the task. It is the prior information provided by the calibration task that allows efficient619

learning by telling the subject which command variables to re-aim with. This hypothesis is consistent620

with various BCI learning studies demonstrating that subjects learn to control BCIs using the same621

patterns of activity evoked by the task they were engaged in just prior to BCI learning.18,29622

Importantly, it predicts that the calibration task can influence subjects’ ability to learn a given BCI623

decoder, and therefore that careful design of this task could help improve subjects’ learning speed. For624

example, the calibration task should evoke changes in as few command variables as necessary, so that625

subjects subsequently re-aim by optimizing only those K̃ < K command variables and avoid wasting626

time exploring modifications to other command variables. A prediction of our model is that learning627

should be slower when the calibration task evokes changes in more command variables.628

3.5 How are the re-aiming solutions learned?629

The theory presented here treats the question of what solutions subjects learn, and makes no claims630

about how they are learned and subsequently maintained. That said, a strong assumption we made in631

motivating the re-aiming learning strategy was that learning could operate within the low-dimensional632
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space of the command variables. It is this low dimensionality that we claimed would be critical for633

efficient learning; if the command variables were learned by simply optimizing the connectivity of an634

upstream circuit, then the limitations of learning by synaptic plasticity would also apply to learning by635

re-aiming.636

One intriguing resolution to this problem would be that the command variables are stored and637

updated in the activity – rather than the synapses – of an upstream circuit, as in the pre-frontal cortex638

model of Wang et al. (2018).80 In this model, a recurrent neural network implicitly stores a behavioral639

policy in its internal state, which, through the network’s dynamics, is updated over time as it interacts640

with the environment and observes which actions are rewarded in which states. A similar architecture641

might operate upstream of motor cortex, whereby an upstream circuit continually stores and updates a642

sensorimotor policy for selecting low-dimensional motor commands. This learning circuit would likely643

encompass additional populations beyond those directly driving motor cortex, such as the basal ganglia,644

which are well known to play an important role in BCI learning.64,81–83645

We finally remark that the short timescale of WMP learning closely mirrors that of motor adaptation,646

in which subjects adapt their natural movements to a systematic environmental perturbation. Learning647

these tasks typically requires 100’s of trials of practice,2,6,7,73 similar to the time it takes non-human648

primates to learn WMPs. Neural recordings during these tasks have suggested that changes in neural649

activity during motor adaptation are driven by changes in the preparatory input from dorsal pre-motor650

cortex to primary motor cortex.7,84 Moreover, changes in the preparatory state of motor cortex (pre-651

sumably set by upstream inputs43,44,46) have been shown to play a critical role in motor adaptation652

tasks under manual control73 as well as BCI control.32 These results are consistent with the idea that,653

much like in our model of re-aiming, motor adaptation involves modifications to the inputs driving motor654

cortex while motor cortex itself remains unchanged. Our model of re-aiming may thus be relevant to655

more general and naturalistic forms of sensorimotor learning beyond BCIs.656
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Methods657

4.1 Motor cortical dynamics658

Motor cortical activity was simulated by integrating equation 1 using a standard 4th order Runge-Kutta659

method with step size 0.1ms, implemented with the torchdiffeq Python package.85 Reachable activity660

patterns, r(tend;θ), were computed by integrating this equation from the initial condition at time t = 0661

to the endpoint time t = tend, with constant inputs determined by the given motor command, θ, using662

equation 2. We assumed silent initial conditions, xi(0) = 0, to enable a computationally efficient solution663

to the re-aiming objective function (see equation 12). Decoding from the reachable activity patterns using664

equation 3 yields the reachable readouts, y(tend;θ).665

In all simulations in the main text, sparse random recurrent weights, W rec
ij were used: only 10% of666

these weights were set to non-zero values, which were independently sampled from a zero-mean Gaussian,667

N (0, 1/N), where N is the total number of motor cortical neurons in the network. Input weights were668

all sampled from a zero-mean Gaussian, W in
ij ∼ N (0, 1/M), where M is the total number of inputs.669

Encoding weights were sampled randomly from the standard Gaussian distribution, Uij ∼ N (0, 1) (any670

normalization is taken care of by the metabolic cost term in equation 4 when computing re-aiming671

solutions). Other connectivity patterns are considered in Supplementary Figure S1. We used τ = 200ms,672

as in the motor cortical model of Hennequin et al. (2014). To enable efficient numerical simulation,673

network size was set to N = M = 256. Simulations with larger networks (up to N = M = 2048 neurons)674

produced similar results (data not shown).675

4.2 Computing re-aiming solutions676

Concatenating the command variables into a K̃-dimensional vector that contains only the command677

variables being optimized, θ̃ =

[
θ1 θ2 . . . θK̃

]
, we can treat equation 4 as an optimization over all678

K̃-dimensional vectors θ̃ in RK̃ . We can simplify this optimization problem by first analytically solving679

for the optimal magnitude of θ̃, ∥θ̃∥, given its direction. Once we have this optimal magnitude, all that680

remains is an optimization over its direction – an optimization over unit vectors on the K̃-dimensional681

unit hypersphere. This is a (K̃ − 1)-dimensional manifold that, importantly, is bounded, so we can682

hope to find the optimal direction efficiently by brute-force search, avoiding the difficulties of non-convex683

gradient-based optimization in high dimensions.684

Formally, we decompose the re-aiming optimization (equation 4) into an optimization of the norm,
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s, and direction, θ̃0, of θ̃,

ŝ,
ˆ̃
θ0 =argmin

s,θ̃0

∥∥y(tend; sθ̃0)− y∗∥∥2 + γ

M

M∑
i=1

ui(sθ̃0)
2, (7)

subject to s > 0, ∥θ̃0∥ = 1.

We can analytically solve for the optimal magnitude, ŝ, by exploiting two simplifications afforded to us685

by the rectified linear activation function ϕ(·) of the motor cortical dynamics (equation 1b). The first is686

the scale-invariance of the activation function (ϕ(sx) = sϕ(x) for any s ≥ 0), which accordingly endows687

the motor cortical dynamics with scale invariance,688

r(t; sθ) = sr(t;θ), s > 0, (8)

whenever xi(0) = 0 (see Supplementary Materials Section S.2.1 for a formal proof), which we assumed689

to be the case in our simulations. The second simplification is to approximate the quadratic cost term690

by its large M limit691

1

M

M∑
i=1

ui(θ)
2 ≈ lim

M→∞

1

M

M∑
i=1

ui(θ)
2 =

∥θ∥2

2
. (9)

The equality holds whenever the encoding weights (Uij in equation 2) are independent and identically

distributed with zero mean and unit variance, as they are here, so that the law of large numbers can

be invoked to replace the sum with an expectation over the encoding weight distribution (the factor

of 1/2 arises from the fact that only half of each axis counts towards the expectation due to the linear

rectification, see Supplementary Materials Section S.2.2 for a formal proof). Inserting these two equations

into equation 7 together with the BCI readout equation 3, we obtain

ŝ,
ˆ̃
θ0 =argmin

s,θ̃0

∥∥sDr
(
tend; θ̃0

)
−Dc− y∗∥∥2 + γ

2
s2 (10)

subject to s > 0, ∥θ̃0∥ = 1.

It is then straightforward to solve for ŝ in terms of θ̃0, yielding the following closed set of equations:

ŝ(θ̃0) =ϕ

(
(Dc+ y∗) ·Dr

(
tend; θ̃0

)∥∥Dr
(
tend; θ̃0

)∥∥2 + γ
2

)
(11)

ˆ̃
θ0 =argmin

θ̃0

∥∥ŝ(θ̃0)Dr
(
tend; θ̃0

)
−Dc− y∗∥∥2 + γ

2
ŝ(θ̃0)

2 (12)

subject to ∥θ̃0∥ = 1,

where the · notation denotes the Euclidean dot product. We have thus reduced what was an optimization692

over all vectors in RK̃ (equation 4) to an optimization over all vectors living on the K̃-dimensional unit693
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hypersphere (equation 12).694

We can therefore approximately solve this new optimization problem via brute-force search, by simply695

uniformly sampling a large number of θ̃0’s on the unit hypersphere and identifying the one that produces696

the smallest value of the loss function in equation 12. Evaluating r(tend, θ̃0) for a large number of θ̃0’s697

can be done efficiently by using a GPU to integrate in parallel the dynamics driven by each θ̃0. Note698

that, once these activity patterns have been calculated, they can be re-used to perform the brute-force699

search optimization for any given value of γ, without having to again integrate the dynamics.700

For simulations with K̃ = 2, this brute-force search algorithm sufficed to produce good re-aiming701

solutions. In this case, the relevant hypersphere is the unit circle, from which it is straightforward to702

sample densely and uniformly. For simulations of generalized re-aiming, however, we took an additional703

step to ensure the obtained solutions were as good as they could be even for the larger values of K̃,704

where it becomes more difficult to sample densely from the corresponding unit hypersphere. We first705

performed a brute-force search over 217 vectors sampled uniformly from the unit hypersphere, as just706

described, to obtain an initial estimate of the re-aiming solution. This initial estimate was then used707

as a starting point for the L-BFGS algorithm,86 which we then applied to minimize the re-aiming loss708

function (equation 4) with respect to the raw command variables θ1, θ2, . . . , θK̃ . We found that this709

additional step was essential when K̃ ≥ 10.710

In all simulations in the main text, we used an endpoint time of tend = 1000 ms, reflecting the typical711

time it takes for trained primates to complete center-out reaches under BCI control.11,14 The results of712

simulations with other endpoint times are shown in Supplementary Figure S1b. To simulate a center-out713

reaching task, the target readouts y∗ were set to eight equally spaced unit vectors on the unit circle (cf.714

fig. 3c). Mean squared error is calculated as715

mean squared error =
1

8

8∑
i=1

∥∥y(tend; θ̂(y∗
i )
)
− y∗

i

∥∥2, (13)

where y∗
1,y

∗
2, . . . ,y

∗
8 correspond to the eight radial target readouts. Because the targets are unit norm,716

a mean squared error of 1.0 corresponds to that achieved by readouts at the origin.717

In the case of operant conditioning, there is no “target readout” per se, as subjects are simply718

instructed to modulate firing rates as much as possible in a given direction. In this case, a different719

re-aiming objective was used, see the section “Simulation of operant conditioning” for details.720

4.3 Setting the metabolic cost weight721

The metabolic cost weight parameter γ was picked to ensure that low mean squared error would be722

achieved under the baseline decoder with K̃ = 2. We calculated re-aiming solutions with K̃ = 2 for the723

baseline decoder under a wide range of values of γ. We took advantage of the fact that the brute-force724
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search algorithm outlined above allows us to easily evaluate solutions for different values of γ with only725

a single forward pass of the model. Once we had re-aiming solutions for each value of γ, we calculated726

the error achieved by these re-aiming solutions for each target readout, and found the largest value of727

γ that permitted a squared error of less than .05 for each of the eight targets. γ was then fixed to this728

value for simulations with all the decoder perturbations.729

4.4 Characterizing the reachable manifold730

The reachable manifold is the set of activity patterns at time tend that can be generated by any motor731

command allowable under the re-aiming strategy. We assume that these allowable motor commands732

are bounded, reflecting the fact that (i) actual extrinsic motor variables are finite and bounded and (ii)733

upstream firing rates are bounded. Formally, we enforce this by assuming an upper bound on the motor734

command norm, ∥θ∥ ≤ smax. In our simulations of short-term learning of WMP’s and OMP’s, we set the735

value of this bound to the maximum norm over all 2D re-aiming solutions to all decoders. Specifically,736

we computed re-aiming solutions for each target readout and decoder perturbation (8 target readouts737

× (100 WMP’s + 100 OMP’s + baseline decoder) = 1,608 re-aiming solutions) with K̃ = 2, calculated738

their norms, and set smax to their maximum. For the randomly connected network presented in the main739

text, we found this value to be approximately 1.25.740

In figure 3f, we drove the motor cortical network with motor command vectors with five distinct741

norms, ∥θ∥ ∈ {0.1, 0.4, 0.7, 1.0, smax}, chosen to aid visualization of the reachable manifold. We picked742

256 equally spaced angles between 0 and 2π and constructed 2D vectors with each angle and each norm743

to obtain the command variable pairs, θ1, θ2, shown in fig. 3e (all other command variables were set to744

zero). We then simulated the motor cortical network with each of these motor commands to obtain a745

large ensemble of activity patterns on the reachable manifold, r(tend;θ), and projected these onto their746

top three principal components to obtain the visualization in figure 3f. Figure 3c plots the readouts of747

each of these activity patterns from three different decoders. Figure 4a plots the readouts from four748

different WMP decoders, in this case using activity patterns generated from motor commands with four749

different norms equally spaced between 0.1 and smax (thus producing four loops of readouts instead of750

five). In figure 7a, five motor command norms equally spaced between .1 and the maximum norm of the751

re-aiming solutions for that pair of neurons were used. These choices were all made to aid visualization752

of the reachable manifold’s structure.753

To obtain the centroid, r̄, and covariance, Σr, of the reachable manifold for K̃ = 2, we computed

expectations over a uniform distribution on the reachable manifold. Note that an expectation over

uniformly distributed activity patterns on the reachable manifold is not the same as an expectation

over activity patterns generated by uniformly distributed command variables. These two distributions

of activity patterns are related via the Jacobian of the mapping from command variables, θ1, θ2, to
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activity patterns, r(tend;θ), which was used to derive the following two expressions for r̄ and Σr (see

Supplementary Materials Section S.2.3 for full mathematical derivation):

r̄ =
2

3
smax

∫ 2π

0
r0(φ)∥r0(φ)∥∥r′0(φ)∥ sinω(φ) dφ∫ 2π

0
∥r0(φ)∥∥r′0(φ)∥ sinω(φ) dφ

(14)

Σr =
1

2
s2max

∫ 2π

0
r0(φ)r0(φ)

T ∥r0(φ)∥∥r′0(φ)∥ sinω(φ) dφ∫ 2π

0
∥r0(φ)∥∥r′0(φ)∥ sinω(φ) dφ

− r̄r̄T , (15)

where r0(φ) is the population activity at time tend generated by a pair of non-zero command variables754

θ1, θ2 with angle φ and unit norm, r′0(φ) is its derivative with respect to φ, and ω(φ) is the angle between755

r0(φ) and r′0(φ). We used a finite-differences approximation for the derivative r′0(φ) and computed these756

integrals numerically by summing over a dense range of values of φ ∈ [0, 2π]. This estimate of the757

reachable manifold centroid, r̄, is plotted in figures 4a, 4b, and S2a. This estimate of the reachable758

manifold covariance, Σr, is used for the variance explained curve plotted in figure 3g.759

Analagous calculations for K̃ > 2 quickly become numerically intractable, as the derivatives and

integrals become multivariate as the number of polar coordinates increases. We thus chose to characterize

the dimensionality of the reachable manifold under generalized re-aiming by the covariance over activity

patterns produced by uniformly distributed motor commands, which we denote by Σθ. As already noted,

this is not the same as the covariance over activity patterns uniformly distributed on the reachable

manifold manifold, but these two covariances are strongly related. This covariance is given by (see

Supplementary Materials Section S.2.4 for derivation)

Σθ =
s2max

3

〈
r(tend; θ̃0)r(tend; θ̃0)

T
〉
θ̃0

− s2max

4

〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

, (16)

where ⟨·⟩θ̃0
denotes an expectation over a uniform distribution on the unit-norm (K̃ − 1)-sphere. These760

expectations were estimated numerically by uniformly sampling 217 vectors θ̃0 ∈ RK̃ from the unit761

hypersphere, setting the K̃ non-zero command variables to these values, calculating the activity patterns762

generated by these motor commands at time tend = 1000ms, r(tend; θ̃0), and then averaging over the763

resulting ensemble of activity patterns.764

This estimate of the reachable manifold covariance, Σθ, is used to compute the participation ratio765

plotted in figure 5b as a function of K̃, using the formula766

participation ratio of Σθ =
Tr[Σθ]

2

Tr [Σ2
θ]

=

(∑N
i=1 λi

)2
∑N

i=1 λ
2
i

, (17)

where λ1, λ2, . . . , λN are the eigenvalues of Σθ.767
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4.5 Quantifying biases in BCI readouts768

To quantify behavioral biases, we used the maximal cursor progress metric defined in equation 6. This

equation was solved by again exploiting the same re-parameterization of the motor commands we used for

calculating re-aiming solutions (equation 7). Specifically, we decompose the vector of non-zero command

variables, θ̃ =

[
θ1 θ2 . . . θK̃

]
, into a magnitude and direction, θ̃ = sθ̃0, where s > 0 and ∥θ̃0∥ = 1.

Plugging in the readout equation (equation 3) into the definition of cursor progress (equation 5) and

exploiting the scale invariance of the motor cortical dynamics (equation 8), we have that the maximal

cursor progress is given by

ρmax (y∗) =max
θ̃0

{
D
(
ŝρ(θ̃0)r

(
tend; θ̃0

)
− c
)
· y∗

}
(18)

subject to ∥θ̃0∥ = 1,

where

ŝρ(θ̃0) := argmax
s

{
sDr

(
tend; θ̃0

)
· y∗

}
=


smax if Dr

(
tend; θ̃0

)
· y∗ > 0

0 else

. (19)

subject to 0 < s < smax

Since K̃ = 2 in these simulations (and thus θ̃0 is just a 2D unit vector), we were able to effectively solve769

the optimization problem in equation 18 by brute-force search over densely and uniformly sampled θ̃0’s770

from the unit circle.771

4.6 Re-analysis of data from Sadtler et al. (2014)772

To quantify behavioral biases in the experimental data, we estimated the maximal cursor progress in773

each experimental session by using the cursor progress values observed in the window of 50 contiguous774

trials of WMP control with shortest average reach completion times. At each timestep in each trial, we775

calculated the cursor progress in the direction of the target relative to the cursor’s position at that time.776

We then binned the per-timestep relative target directions into 45o bins centered at the eight radial reach777

target angles, and averaged the cursor progresses in each bin to obtain an average cursor progress for778

each target direction. We take these averages to be estimates of the subject’s maximal cursor progress779

with that session’s WMP decoder, as they are taken from the 50 trials with fastest reaches.780

To predict the maximal cursor progress in each session from the target direction angle with Dr̄, we781

sought an estimate of the reachable manifold centroid, r̄, that could be empirically measured from the782

recorded neural activity, without access to the underlying reachable manifold. To do this, we noticed783
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that, in our model, the time- and trial- averaged population activity generated by the re-aiming solutions784

for the baseline decoder – which we denote by ˆ̄r – was highly correlated with the true reachable manifold785

centroid, r̄. We therefore used ˆ̄r to estimate r̄, since ˆ̄r can be easily estimated in the experimental data786

by simply averaging motor cortical activity during the baseline decoder control block in each session.787

We calculated target-specific means by averaging motor cortical activity over all trials and time during788

reaches to each target, and then averaged these target-specific means over targets to obtain ˆ̄r. This789

was the estimate of the reachable manifold centroid – and its projection through the respective WMP790

decoder in each session, Dˆ̄r – used in the analysis presented in figure 4d.791

To keep the analysis of the data and the model consistent, we also used an analogous estimate of792

the reachable manifold centroid for the analysis of the model in figure 4c. In this case, ˆ̄r was measured793

by simulating reaches to each target by driving the motor cortical network dynamics with the re-aiming794

solutions for the baseline decoder, and then averaging the motor cortical firing rates over all time and795

over all eight reach directions. We found that the resulting negative correlation was similar regardless of796

whether the true reachable manifold centroid, r̄, (data not shown) or its estimate, ˆ̄r, was used.797

4.7 Simulation of the calibration task798

The calibration task was simulated by setting the first two command variables θ1, θ2 to the coordinates799

of the reach direction y∗
i being presented in each trial (a 2D unit vector pointing in one of eight equally800

spaced angles), and setting all other command variables to zero (θ3 = θ4 = . . . = θK = 0). To simulate801

noise in the neural responses, we added noise in the dynamics, in the motor commands, and in the802

initial conditions on each trial. At each timestep, zero mean Gaussian noise with standard deviation 0.05803

was sampled and added to the single neuron potentials xi(t) and to the two command variables θ1, θ2.804

Initial conditions in each trial were sampled randomly from a 0-mean isotropic Gaussian with standard805

deviation 0.1. The network was driven for 1000ms in each trial, matching the duration of each trial in806

the experiment.807

For simulations with WMPs and OMPs, we simulated 10 trials of each reach direction, replicating the808

structure of the calibration task used by Sadtler et al. (2014). For simulations with credit assignment809

rotation perturbations (fig. 6), the calibration task was identical except that only a single trial of each810

reach direction was simulated, to mimic the decoder initialization procedure of Zhou et al. (2019). Note811

that in all cases re-aiming with K̃ = 2 command variables implies re-aiming with the same two command812

variables driving the calibration task neural responses, θ1 and θ2.813

4.8 Within- and outside- manifold perturbations814

In the BCI system used by Sadtler et al. (2014) and Oby et al. (2019), 96-channel microelectrode arrays815

were used to record neural activity. Spikes were detected by threshold crossings in the recorded voltage816
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signals at each electrode, resulting in a series of spike trains at each electrode. Spike trains at each817

electrode could therefore contain spikes from multiple neurons near the electrode site, as no spike sorting818

was performed. In total, about 100 neurons were likely to have been recorded, constituting a small819

fraction of the total population of neurons in motor cortex. To simulate this, we ensured that the BCI820

decoder in our simulations only had access to a linear mixture of firing rates from Nr = 99 neurons (so821

as to be divisible by ℓ+1 = 9, to group neurons by modulation depth, see below). This was done by first822

multiplying the firing rates with a Nr ×N “recording matrix”, H, which had the following tri-diagonal823

structure824

Hij =


0 if j > Nr

ξij ∼ Unif(0, 1) if j ≤ Nr and i− 3 ≤ j ≤ i+ 3

0 else

(20)

Thus, each “neural unit” in the vector Hr is composed of a linear mixture of seven neurons, with “neural825

units” with adjacent indices mixing together overlapping sets of neurons.826

Following Sadtler et al., we next z-scored the activity recorded by each neural unit with respect to827

its statistics during the calibration task,828

y = D0S
−1
r H︸ ︷︷ ︸
D

(r− c) (21)

where c is an N -dimensional vector with the mean firing rate of each neuron and Sr is an Nr × Nr829

diagonal matrix with the standard deviation of each “neural unit”, measured from the simulated activity830

during the calibration task. Readouts, y, were obtained by decoding from the Nr-dimensional vectors831

of z-scored mixed firing rates. It is the 2 ×Nr effective decoding matrix, D0, that is perturbed by the832

WMP and OMP decoder perturbations (see below). Note that the full 2×N decoding matrix, D, is such833

that only its first Nr columns are non-zero, reflecting the fact that only a subset of the full population834

of motor cortical neurons is recorded by the BCI.835

For the baseline decoder, the effective decoding matrix D0 was constructed following the methods of836

Sadtler et al., with the exception that we used Principal Components Analysis instead of Factor Analysis837

to estimate the intrinsic manifold. This choice was made purely for the sake of numerical convenience, as838

Principal Components Analysis has a closed-form solution that can be computed more efficiently. The839

full procedure for estimating the intrinsic manifold and constructing the baseline decoder is outlined in840

detail in Supplementary Materials Section S.3. In short, the baseline decoder effective decoding matrix841

can be expressed as a product of a 2× ℓ matrix K and an ℓ×Nr matrix L, where ℓ is the dimensionality842

of the intrinsic manifold,843

Dbase

0 = KL. (22)
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The matrix L projects Nr-dimensional activity patterns down to the ℓ-dimensional intrinsic manifold;844

its rows span the subspace defined by the intrinsic manifold (Supplementary Materials Section S.3.2,845

equation 71). In our simulations we used ℓ = 8, as we found that the top 8 principal components contained846

95% of the variance in the simulated calibration task responses. The matrix K then translates the847

resulting ℓ-dimensional dimensionality-reduced activity patterns into 2-dimensional BCI readouts. This848

matrix is fit to the calibration task data, by fitting a Kalman filter that accurately decodes the calibration849

task stimuli from the dimensionality-reduced calibration task neural responses at each timestep and trial850

(Supplementary Materials Section S.3.2, equation 72).851

Within-manifold perturbations (WMPs) perturb the baseline decoder in such a way that the row852

space of L remains intact, so as to conserve the decoder’s relationship with the intrinsic manifold. This853

is done by simply shuffling the rows of L without modifying them, via pre-multiplication with a random854

ℓ× ℓ permutation matrix P,855

DWMP

0 = KPL. (23)

Outside-manifold decoders, on the other hand, directly disrupt the row space of L. This is done by856

randomly shuffling the components of each of its rows, via post-multiplication with a random Nr ×Nr857

permutation matrix P,858

DOMP

0 = KLP. (24)

It is important to keep in mind that both WMPs and OMPs can change the readouts in complex ways,859

beyond a simple rotation like that depicted by the cartoon in figure 2b (for examples, see fig. 4a here860

and supplementary figure 2 in29). Once the baseline decoder was constructed, we randomly sampled 100861

within-manifold and 100 outside-manifold perturbations by randomly selecting 100 ℓ × ℓ and Nr × Nr862

permutation matrices, respectively.863

To minimize any differences between these two types of decoder perturbations that would go beyond864

their opposing relationship to the intrinsic manifold, we imposed several restrictions on the selected865

permutation matrices, as was done by Sadtler et al. (see Supplementary Materials Section S.3.3 for866

details). First, we enforced that the mean principal angle between the row space of the baseline effective867

decoding matrix and the row space of each perturbed effective decoding matrix was between 60o and868

80o. Second, we enforced that population activity produced by the re-aiming solutions for the baseline869

decoder would produce readouts through each perturbed decoder that resulted in a mean squared error870

between 0.6 and 0.8. Finally, we fit tuning curves to the neural activity generated by the re-aiming871

solutions for the baseline decoder, and asked how much the preferred directions would need to change872

to produce the same readouts under the perturbed decoder, following the same procedure employed by873

Sadtler et al. We enforced that this change be between 30o and 45o. We typically found that about874

100-200 permutations out of all possible permutation matrices satisfied these criteria. We then randomly875
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sampled 100 of them.876

Following the procedure used by Sadtler et al. with monkey L, we did not consider all possible877

Nr ×Nr permutation matrices for OMPs (as there are 99! of them). Rather, we grouped all Nr neural878

units into ℓ groups, and then considered all ℓ-dimensional permutations of these groups (of which there879

are 8!). In other words, rather than permuting all Nr columns of L, ℓ groups of columns were permuted.880

This ensured that the total number of possible decoder perturbations was the same for WMPs and881

OMPs. The ℓ groups were assigned as follows: for each neural unit in Hr, we fit a cosine tuning curve882

to its calibration task responses to obtain its modulation depth (equation 26), assigned the Nr/(ℓ + 1)883

neurons with smallest modulation depths to a small-modulation group not to be permuted, and randomly884

assigned the remaining neurons to ℓ high-modulation groups to be permuted; following Sadtler et al., the885

small-modulation group was never permuted to avoid cases in which an inactive or noisy neuron could886

get assigned a large decoding weight.887

In figure 3g, we define the “dimensions” of the intrinsic manifold as a set of orthonormal basis vectors888

f1, f2, . . . , fℓ spanning the intrinsic manifold (Supplementary Materials Section S.3.1). We then calculated889

the variance explained by each dimension by890

variance explained by dimension i =
fTi Σfi
Tr[Σ]

. (25)

For the gray curve, Σ was set to the sample covariance of the simulated calibration task responses. For891

the purple curve, Σ was set to the reachable manifold covariance Σr (defined in equation 15). In each892

case, the cumulative variance explained was calculated by ordering the dimensions by variance explained893

and then summing them in that order.894

4.9 Credit assignment rotation perturbations895

In the BCI system used by Zhou et al. (2019), recorded activity was sorted by matching spike waveforms896

to identify spikes from single neurons, resulting in the identification of 10–12 individual neurons. Impor-897

tantly, each neuron had reliable tuning to reach direction during the calibration task. In our simulation,898

we modelled this by randomly choosing 80 neurons, fitting tuning curves to their activity during the899

calibration task, and selecting only those with modulation depth greater than 0.5 (see below for how900

modulation depth is measured). This typically resulted in 10–15 neurons being included in the BCI901

decoder (i.e. being assigned non-zero weights in the decoding matrix D); no “recording matrix” H was902

used in these simulations. For the particular network model used in the simulations reported in the main903

text, this selection procedure resulted in Nr = 11 neurons being included.904

Tuning curves were fit to time-averaged simulated firing rates in the calibration task, r̄1, . . . , r̄8, in905

response to presentation of each of the eight radial reach targets, y∗
1, . . . ,y

∗
8 (cf. section “Simulation of906
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the calibration task”). An N × 3 matrix of tuning weights, T, was fit to predict these average responses907

from the respective reach target coordinates,908

T̂ = argmin
T

8∑
j=1

∥r̄j −Tỹj∥2 =

 8∑
j=1

r̄jỹ
T
j

 8∑
j=1

ỹjỹ
T
j

−1

, (26)

where ỹj is a 3D vector with the coordinates of the direction of the jth reach target, y∗
j , as its first two909

components and a constant 1 in its third component, included to model baseline tonic firing rates of each910

neuron. Thus, only the first two columns of the tuning weight matrix T model how the ith neuron’s911

firing rate depends on the reach target’s direction, whereas its third column models activity independent912

of the reach target. To extract from these weights the directional tuning of neuron i, we take the 2D913

vector comprising the first two components of the ith row of T̂. We notate this 2D vector by mipi, where914

pi is a unit vector pointing in its direction and mi is its norm. The angle of pi is neuron i’s preferred915

direction, and mi is its modulation depth.916

Following the methods of Zhou et al. (2019), the baseline decoder was constructed as follows. First,917

raw firing rates were baseline-subtracted and normalized by their modulation depths,918

rnorm = M (r− c) , (27)

where c is given by the third column of T̂, containing the baseline firing rates estimated from the linear919

regression fit (equation 26), and M is an Nr × N diagonal rectangular matrix containing the inverse920

modulation depths m−1
i for each of the Nr neurons recorded by the BCI on the diagonal across the first921

Nr columns 0 everywhere else. These normalized firing rates were then transformed into 2D readouts by922

a 2×Nr effective decoding matrix Dbase
0 containing the preferred direction vectors pi of each of the Nr923

recorded neurons in their corresponding columns. More precisely, the ith column of Dbase
0 , di, is given924

by925

di =


k
Nr

pi if neuron i is recorded by BCI

0 else,

(28)

where the scaling constant k is chosen to minimize the mean squared error between the readouts from926

the calibration task activity and the target readouts. This is the classic population vector algorithm927

(PVA).87 The full 2 × N decoding matrix of the baseline decoder was thus D = Dbase
0 M, which has928

non-zero weights only in the Nr columns corresponding to the Nr recorded neurons.929

Credit assignment rotation perturbations were constructed by simply picking a random subset of the930

columns of Dbase
0 and rotating them. In our simulations, we picked a random 50% of these columns931

and rotated them 75o counter-clockwise, as was done in the decoder perturbations used by Zhou et al.932

(2019). We sampled 100 random perturbations in this way, in each case rotating a different subset of933
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columns. The normalization matrix M and baseline subtraction parameters c are kept the same for all934

decoders.935

To measure the tuning changes predicted by re-aiming, we simulated cursor reaches with each decoder936

by driving the motor cortical network with the re-aiming solutions for that decoder. In each case, noise937

was applied to the dynamics, exactly as in the calibration task. We then fit tuning curves to each neuron’s938

time-averaged activity, using linear regression exactly as described in equation 26, and extracted the939

preferred direction of each rotated, non-rotated, and indirect neuron. For each perturbed decoder, we940

then determined each neuron’s change in preferred direction by calculating the difference between its941

preferred direction under the re-aiming solutions for the perturbed decoder and its preferred direction942

under the re-aiming solutions for the baseline decoder (cf. figures 6b, 6c). These changes were then943

averaged over all neurons in each sub-population (rotated, non-rotated, or indirect). Figure 6e shows the944

percentiles (median and quartiles), over all 100 sampled decoder perturbations, of this average tuning945

change. An analagous analysis of the changes in modulation depth is shown in Supplementary Figure946

S5a.947

4.10 Simulation of operant conditioning948

In an operant conditioning task, there is no “target readout” per se. The objective is to simply increase949

the activity of one neuron over another, as much as possible. We can thus express the objective as950

maximizing the difference in firing rate between the two neurons, which can be thought of as a one-951

dimensional linear readout from the population. Formally, we calculate readouts in this task by a dot952

product between the firing rate vector r and a decoding vector d which has a +1 for the target neuron,953

a −1 for the distractor neuron, and 0’s everywhere else. This one-dimensional readout indicates how954

much more active the target neuron is than the distractor neuron. The goal in an operant conditioning955

task is to maximize this readout.956

Adding in a metabolic cost, the objective function we use for re-aiming is957

θ̂ = argmax
θ1,θ2,...,θK̃

{
d · r

(
tend;θ

)
− γ

M

M∑
i=1

ui(θ)
2

}
. (29)

Letting θ̃ =

[
θ1 θ2 . . . θK̃

]
denote the non-zero command variables, we again re-parameterize this

optimization problem into an optimization over the magnitude, s, and direction, θ̃0, of θ̃,

ŝ,
ˆ̃
θ0 = argmax

s,θ̃0

{
d · r

(
tend; sθ̃0

)
− γ

M

M∑
i=1

ui(sθ̃0)
2

}
subject to s > 0, ∥θ̃0∥ = 1 (30)

≈ argmax
s,θ̃0

{
sd · r

(
tend; θ̃0

)
− γ

2
s2

}
subject to s > 0, ∥θ̃0∥ = 1, (31)
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where the approximation follows from the application of the scale invariance of the network dynamics

(equation 8) and the mean-field approximation of the metabolic cost (equation 9). This approximation

allows us to analytically solve for the optimal magnitude ŝ,

ŝ(θ̃0) = argmax
s

{
sd · r

(
tend; θ̃0

)
− γ

2
s2

}
=

1

γ
ϕ
(
d · r

(
tend; θ̃0

))
, (32)

subject to s > 0

which in turn allows us to solve for the optimal direction,
ˆ̃
θ0, via optimization over the K̃-dimensional

unit hypersphere,

ˆ̃
θ0 = argmax

θ̃0

{
ŝ(θ̃0)d · r

(
tend; θ̃0

)
− γ

2
ŝ(θ̃0)

2

}
subject to ∥θ̃0∥ = 1 (33)

= argmax
θ̃0

{
ϕ
(
d · r

(
tend; θ̃0

))}
subject to ∥θ̃0∥ = 1, (34)

where the second equality follows from plugging in equation 32 and simplifying. In all our operant958

conditioning simulations, we used K̃ = 2, which enabled us to easily solve this optimization problem via959

brute force search over the unit circle. As in other simulations, we used tend = 1000ms.960

Note that the optimal readout achieved by the re-aiming solution is961

d · r
(
tend; θ̂

)
= d · r

(
tend; ŝ(

ˆ̃
θ0)

ˆ̃
θ0
)
= ŝ(

ˆ̃
θ0)

(
d · r

(
tend;

ˆ̃
θ0
))

=
1

γ
ϕ

(
d · r

(
tend;

ˆ̃
θ0
))2

. (35)

Thus, changing the exact value of γ only re-scales the re-aiming solutions and the readouts they produce.962

We thus simply set it to γ = 1 in all our simulations of this task.963

In classic operant conditioning experiments,28 neurons selected for operant conditioning had to be964

active prior to the conditioning task to be identified by the recording electrode. We imposed a similar965

constraint in our simulation by first driving the network with 50 random K = 100-dimensional motor966

commands for tend = 1000ms, and identifying the 50% of neurons with highest average firing rate over967

motor commands and time. The neuron pairs used for operant conditioning were sampled from this968

sub-population.969

To simulate neural activity during a baseline period of spontaneous behavior prior to operant con-970

ditioning, we used a similar procedure but now driving the network with 50 random K̃-dimensional971

motor commands, with K̃ = 2. This allowed us to ask whether operant conditioning performance under972

re-aiming could be predicted from correlations arising during spontaneous behavior driven by the same973

command variables used subsequently for re-aiming. In figure 7c, correlations were measured by cor-974

relation coefficient between the two conditioned neurons. In figure 7d, correlation coefficients between975

each indirect neuron and the target neuron are plotted against the firing rate of the indirect neuron at976
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tend = 1000ms when driving the network with the re-aiming solution.977

4.11 Table of simulation parameters978

Parameter name/description Notation Value

Recurrent neural network dynamics

number of neurons in motor cortical network N 256

number of neurons in upstream population M 256

recurrent weights W rec
ij

i.i.d.∼ N (0, 1/N)

input weights W in
ij

i.i.d.∼ N (0, 1/M)

encoding weights Uij
i.i.d.∼ N (0, 1)

network dynamics time constant τ 200ms

WMP and OMP decoders

calibration task network dynamics noise -
i.i.d.∼ N (0, 0.052)

calibration task command variable noise -
i.i.d.∼ N (0, 0.052)

calibration task initial condition noise -
i.i.d.∼ N (0, 0.12)

calibration task trial duration - 1000ms

number of recorded neurons used to fit the decoders Nr 99

dimensionality of intrinsic manifold ℓ 8

bounds on principal angle between perturbed decoders and baseline decoder - [60o, 80o]

bounds on mean squared error of perturbed decoder readouts - [0.6, 0.8]

bounds on preferred direction change imposed by perturbed decoders - [30o, 45o]

Re-aiming optimization

endpoint time tend 1000ms

maximum baseline decoder squared error, which sets γ (Methods Section 4.3) - .05

Credit assignment rotation perturbations

minimum modulation depth for neuron to be recorded - 0.5

number of recorded neurons Nr 11

fraction of decoding vectors rotated - 50%

decoding vector rotation angle - 75o CCW

Operant conditioning

command variables driving bouts spontaneous activity θ1, θ2
i.i.d.∼ N (0, 1/2)

duration of bouts of spontaneous activity - 1000ms

979
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S.1 Extended modeling results1265

S.1.1 Structured motor cortical connectivity1266

In addition to the randomly connected network architecture used in the results presented in the main text,1267

we simulated re-aiming in the task of Sadtler et al. (2014) with alternative motor cortical connectivity1268

profiles, described below. In each case, we simulated the calibration task, sampled decoder perturbations,1269

and computed re-aiming solutions as described in the main text, except for a few minor modifications1270

noted below. Results of these simulations are shown in figure S1.1271

Random excitatory/inhibitory (E/I) connectivity: a random sparse and balanced E/I recurrent1272

connectivity matrix was constructed following the sampling procedure described in.1 In short, all ex-1273

citatory weights had the same strength, all inhibitory had the same strength (re-scaled relative to the1274

excitatory weights to account for the different number of excitatory and inhibitory neurons), and each1275

row of the weight matrix was enforced to be 0 mean to enforce so-called E/I balance. We used a spar-1276

sity of 10% (i.e. only 10% of weights were non-zero), with 80% of the neurons in the population being1277
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a

b

c

d

e

random network
(from main text)

random network
(different seed)

random E/I
network

inhibition-stabilized
network

optimized
network

Figure S1: Each column shows simulation results for a different network: (1) the randomly connected network used in
the main text; (2) another randomly connected network, with weights sampled in exactly the same way; (3) a network
with random E/I connectivity; (4) a network with inhibition-optimized E/I connectivity; (5) network with connectivity
optimized for delayed center-out reaching.
a. Eigenspectra of recurrent weight matrices of each network, plotted on the complex plane. Note that the optimized
network has low-rank connectivity: almost all eigenvalues are clustered at 0. Dashed vertical line marks the linear stability
boundary of a real value of 1.0.
b. Mean squared error achieved by re-aiming solutions for different endpoint times, tend, for each decoder. Lighter markers
correspond to individual decoders, darker open markers (connected by lines) show medians over all decoders. Note that the
metabolic cost weight, γ, is fixed to the same value, which was picked to guarantee low error under the baseline decoder for
tend = 1000ms only (see Methods Section 4.3). Thus, the error rises as the endpoint time decreases below this, as higher
magnitude motor commands are necessary to achieve low error faster. However, note that the difference between baseline
decoder, WMPs, and OMPs remains the same even at these lower values of tend.
c. Calibration task response and reachable manifold variance cumulatively accounted for by each dimension of the intrinsic
manifold, as in fig. 3g. Intrinsic manifold was found to be about 12-dimensional with inhibition-optimized connectivity and
about 6-dimensional with connectivity optimized for delayed center-out reaching.
d. Maximal cursor progress for each target and WMP as a function of target direction angle with Dr̄, as in fig. 4c.
e. Mean squared error achieved for each OMP by re-aiming with different numbers of command variables, K̃, as in fig. 5a.

excitatory. Input and encoding weights were sampled randomly as for the randomly connected network1278

in the main text.1279
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Inhibition-optimized excitatory/inhibitory connectivity: a sparse and balanced E/I recurrent1280

connectivity matrix was constructed following the optimization procedure described in.2 In short, the1281

excitatory weights were initialized to be very strong, and then inhibitory weights were optimized to1282

ensure the dynamics were stable (by minimizing the spectral abscissa of the full connectivity matrix).1283

Half of the neurons were assigned to be excitatory, and the inhibitory weights were enforced to be on1284

average three times stronger than the excitatory weights. The only difference with2 was that the weight1285

matrices were initialized with a spectral radius of 5, rather than 10. This was necessary as we found1286

that an initial spectral radius of 10 lead to chaotic dynamics under constant input. Input and encoding1287

weights were sampled randomly as for the randomly connected network in the main text.1288

Because of their highly non-normal dynamics, these networks were highly sensitive to changes in1289

initial conditions, even with the reduced initial spectral radius. We therefore reduced the standard1290

deviation of the initial conditions by half when simulating the calibration task (see Methods Section1291

4.7). These networks produced much higher-dimensional calibration task responses than the randomly1292

connected network, so a 12-dimensional intrinsic manifold was used for constructing WMP’s and OMP’s1293

(i.e. ℓ = 12).1294

Connectivity optimized for delayed center-out reaching: network weights were optimized to1295

produce joint torques for performing delayed center-out reaches with a biomechanical arm model. The1296

architecture and optimization scheme followed that used by,3 in which the recurrent network is driven by1297

two distinct inputs. The first input is a one-dimensional signal reflecting a go cue that indicates when the1298

reach should be performed (go time). This was built into our model by setting θK to 1 at the start of the1299

trial and then setting it to 0 at go time, 1000ms after trial start. The other input is a two-dimensional1300

signal reflecting the visual presentation of the target to reach towards, presented prior to go time to1301

prepare the subject (or network) to perform the delayed center-out reach. This was built into our model1302

by setting θ1, θ2 to the coordinates of the reach target at a randomly sampled target presentation time1303

before the go cue, and then setting it back to 0 at the same time the go cue input is shut off. All other1304

command variables are set to 0 (θ3 = θ4 = . . . = θK−1 = 0). We chose to encode the go cude with1305

the very last command variable, θK , to reflect the hypothesis that subjects would not re-aim with this1306

non-directional command variable, neither in K̃ = 2-dimensional re-aiming nor in generalized re-aiming1307

with up to K̃ = 20 command variables.1308

Two joint torques were read out from the network through a set of readout weights, which were1309

optimized along with the input, recurrent, and encoding weights. The weights were optimized to produce1310

the joint torques required to move the endpoint of a planar two-link arm model4 to the cued reach target,1311

in 500ms with a bell-shaped speed profile. Following the methods of,5 these target joint torques were1312

computed by backpropagating through the arm model dynamics to minimize mean squared error between1313
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the arm endpoint velocity and the desired velocity profile for each reach target. We then trained the1314

network weights so that in each trial it would produce 0 torque until go time, followed by the optimal1315

reaching torque corresponding to the reach target on that trial.1316

The loss function used to optimize the network weights was a combination of the mean squared error1317

plus L2 regularization on all weights and on network firing rates, to encourage naturalistic solutions to1318

this task.3 This was minimized via stochastic gradient descent using the Adam optimization algorithm1319

with learning rate set to .001.6 Since only three command variables were non-zero during this task, only1320

the three corresponding columns of the encoding weights Uij were optimized by this procedure. The1321

remaining columns were thus fixed to their random initialization, as for the randomly connected network1322

in the main text.1323

As is often observed in networks trained to perform a single task,7 the resulting optimized recurrent1324

connectivity matrix had low rank (Supplementary Figure S1a). Its activity was consequently constrained1325

to a much lower-dimensional subspace than that of the other networks.8 This network thus produced1326

much lower-dimensional calibration task responses than the randomly connected networks did. We1327

therefore used a 6-dimensional intrinsic manifold for constructing WMP’s and OMP’s in simulations1328

with this network (i.e. ℓ = 6). This meant that only 6! − 1 = 719 possible decoder perturbations1329

existed (as opposed to 40,319), so far fewer decoder perturbations satisfied the stringent criteria outlined1330

in Methods Section 4.8 for sampling WMP’s and OMP’s. We thus loosened these criteria to include1331

WMP’s and OMP’s with mean squared error going up to 1.2. These networks were also found to be1332

highly sensitive to noise, so we reduced the standard deviation of the noise in the dynamics and in the1333

initial conditions during simulation of the calibration task to 0.02 and 0.005, respectively.1334

Because of the low-rank recurrent connectivity, we found that re-aiming with even K̃ = 20 command1335

variables could not yield good solutions for OMP control with this network (Supplementary Figure S1e).1336

In other words, the low-rank connectivity did not permit the generation of activity patterns outside of1337

the intrinsic manifold, even when re-aiming with a large nubmer of command variables. It is important1338

to keep in mind, however, that in reality motor cortical connectivity is likely optimized to perform1339

a wide variety of motor behaviors, rather than a single center-out reaching task. This assumption is1340

implicit in our choice of high-rank connectivity structure, as in several other recent models of motor1341

cortical function.2,5,9 Note also that such high-rank connectivity was necessary for our model to produce1342

calibration task responses with dimensionality near the dimensionality of 10 observed by Sadtler et al.1343

(2014) (Supplementary Figure S1c).1344

S.1.2 Analysis of WMP bias1345

This section provides a more detailed analysis of why WMP reachable readouts are biased in the direction1346

of Dr̄ (fig. 4c). Specifically, we show that the reachabout readouts are centered away from the origin,1347
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and the direction of this displacement is dictated by the relationship between the reachable manifold1348

and the calibration task activity that the decoders are fit to, leading to the observed bias.1349

We begin by calculating the centroid of the reachable readouts, ȳ, which is given by the readout of1350

the reachable manifold centroid, r̄,1351

ȳ = D (r̄− c) , (36)

where c is the decoder centering vector (equation 3), set to the mean population response during the1352

calibration task (Methods Section 4.8). As long as the reachable readouts are somewhat symmetrically1353

distributed around their centroid, then they will be biased in the direction of their centroid. This equation1354

shows that the direction and magnitude of this bias thus depends on the difference between between the1355

mean calibration task response, c, and the reachable manifold centroid, r̄.1356

Because the calibration task responses are driven by a subset of the motor commands used to define1357

the reachable manifold (fig. 3e), these two directions are highly aligned. This is shown empirically for our1358

simulations in Supplementary Figure S2a, where we overlay the network’s firing rates during individual1359

trials of the calibration task on top of the reachable manifold, along with the mean population response1360

and the reachable manifold centroid. Population activity during the calibration task evidently evolves1361

along the same directions in state space occupied by the reachable manifold, and thus its mean, c, is1362

highly aligned with the manifold’s centroid, r̄.1363

Next, note that the reachable manifold centroid has a larger norm than the calibration task mean.1364

That is because the reachable manifold contains activity patterns generated by motor commands with1365

larger norms than those driving the calibration task responses (fig. 3e), so its centroid comprises higher1366

firing rates. The underlying reason for this is that, in our simulations, we selected the metabolic cost1367

weight, γ, such that it guaranteed high re-aiming performance with the baseline decoder (see Methods1368

Section 4.3). Because the baseline decoder fit is not perfect (due both to the noise and to the non-linear1369

mapping from calibration task stimuli to neural activity), stronger firing rates than those evoked by the1370

calibration task are required to achieve such high performance, so the resulting metabolic cost weight1371

permits stronger motor commands than the ones driving the calibration task.1372

Putting these two observations together, we have that1373

c ≈ ar̄ ⇒ ȳ ≈ (1− a)Dr̄, 0 < a < 1. (37)

In other words, the reachable readout centroid points in the direction of Dr̄. This explains why WMP1374

readouts are biased in that direction.1375

An important remaining question, however, is why baseline decoder readouts are not biased in that1376

direction. The baseline decoder shares the same centering vector, c, so, by the above logic, should inherit1377

the same bias. The reason it does not is that the reachable manifold centroid is orthogonal to the baseline1378
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a b

Figure S2: Analysis of WMP readout bias in the direction of Dr̄.
a. Simulated motor cortical responses in the calibration task, color-matched to the motor commands in fig. 3e driving
these responses. These are plotted together with the same reachable manifold activity patterns from fig. 3f, projected onto
the same three principal components. The open circles in the interior of this conical structure show the calibration task
mean, c, in light purple and the reachable manifold centroid, r̄, in dark purple, each connected to the origin by a line
for visualization purposes. Note that, by definition, the calibration task neural responses at time tend = 1000ms (the last
point in each trajectory) lie almost exactly on the reachable manifold, slightly offset only because of noise in the response
dynamics (see Methods Section 4.7).
b. Norm of Dr̄ for each sampled WMP decoder, D, for each simulated model motor cortical network (see Supplementary
Materials Section S.1.1). Overlaid with an open black square is the norm ofDr̄ for the baseline decoder of each corresponding
simulation.

decoder, Dr̄ ≈ 0, so the reachable readouts are centered at the origin despite equation 37 holding true.1379

Because the baseline decoder is fit to predict the calibration task stimuli from the neural responses they1380

elicit (Methods Section 4.8), by construction it ignores any directions of calibration task activity that1381

do not provide information about the stimulus. One such direction is their mean, c ≈ ar̄. This can be1382

appreciated from Supplementary Figure S2a, where it is evident that the trajectories of activity during1383

different trials of the calibration task all evolve identically along this direction, despite being evoked1384

by different stimuli. Thus, decoding from this direction is useless for decoding the stimulus identity,1385

so the baseline decoder ignores it by spanning an orthogonal subspace. However, while this direction1386

may not contain information about the calibration task stimuli, it does contain a lot of the variance of1387

the calibration task neural responses. Consequently, it resides within the intrinsic manifold, and thus1388

WMP’s – which are essentially randomly oriented within the intrinsic manifold – are likely to be aligned1389

with it by chance.1390

This is confirmed empirically in fig. S2b, where we plot the norm of Dr̄ for the baseline decoder1391

and each of the sampled WMPs for each simulation we studied. The norm is evidently much higher for1392

WMP decoders than for the baseline decoder in each simulation, explaining why the reachable readout1393

bias manifests itself in WMP decoders but not in the baseline decoder.1394

S.1.3 Non-negative firing rates are necessary to replicate biases in WMP learning1395

Here we demonstrate that removing the non-negativity constraint on firing rates precludes our model1396

from reproducing the behavioral biases in WMP reachable readouts. We test this by replacing the1397

activation function with the identity function, ϕ(x) = x, and repeating the analysis of fig. 4c to check if1398
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Figure S3: Removing the non-negativity constraint fails to reproduce experimentally observed biases in WMP learning.
a. Maximal cursor progress in each target direction as a function of angle with Dr̄, for 20 sampled WMPs. Only 20 WMP’s
were used as we found that the intrinsic manifold of the linear network was only ℓ = 5-dimensional, so we correspondingly
adjusted the criteria for subsampling WMP’s and OMP’s (cf. Supplementary Materials Section S.3.3) and found that
only 20 WMP’s and 60 OMP’s satisfied them. As was done in fig. 4c, the reachable manifold centroid, r̄, is estimated
using simulated mean firing rates during baseline decoder control (see Methods Section 4.6). Maximal cursor progress
was calculated exactly as in equation 6, following the same procedure as in the main text for selecting smax (cf. Methods
Section 4.4). A total of 8 target directions × 20 sampled WMPs = 160 points are plotted.

b. Activity patterns in the reachable manifold at endpoint time tend = 1000ms, with K̃ = 2 non-zero command variables.
Calibration task responses to each of the eight radial reach stimuli are overlaid in shades of pink, following exactly the
same conventions as in Supplementary Figure S2a. These N -dimensional activity patterns are projected onto the top
two principal components of the reachable manifold (PC1 and PC2) and the orthogonal dimension capturing the most
calibration task response variance (PC3). Because the network dynamics are linear, the reachable manifold is exactly

K̃ = 2-dimensional, so PC1 and PC2 capture 100% of the variance in activity patterns within it. The small open black
circle at the center marks the origin of the state space. The light and dark purple open circles at the origin mark the
calibration task mean c the reachable manifold centroid r̄ in purple, respectively. The latter is barely visible because they
overlap almost completely.
c. Readouts reachable through an example WMP, following the same color conventions as in fig. 3c. The green diamonds
show the eight target readouts from the radial cursor reaching task.

the maximal cursor progress under each WMP is highest in the direction of Dr̄. We find that they in1399

fact are not (Supplementary Figure S3a)1400

The reason why can again be gleaned from looking at the relationship between the reachable repertoire1401

centroid, r̄, the mean calibration task response, c. In this case, because firing rates are allowed to be1402

negative, both the reachable manifold and the calibration task neural responses are centered near the1403

origin, and thus the reachable readouts are as well (equation 36),1404

r̄ ≈ 0 , c ≈ 0 ⇒ ȳ = D (r̄− c) ≈ 0. (38)

We can see this empirically in Supplementary Figure S3b, where we plot a projection of the reachable1405

manifold with the calibration task neural responses overlaid (analogous to Supplementary Figure S2a).1406

We see that both are centered around the origin, with their means exactly on top of each other. The1407

reachable readouts through a representative WMP are shown in Supplementary Figure S3c, illustrating1408

the fact that they are consequently also centered at the origin. The maximal cursor progress is higher1409

in some directions than in others (in this case in the NW and SE directions), but the bias is not1410

unidirectional as it is in the model with non-negative firing rates (fig. 4a, fig. 4c) or in the experimental1411

data (fig. 4d).1412
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Figure S4: Operant conditioning of ensembles of 10 neurons by re-aiming.
a. Difference in ensembles’ summed firing rates (at tend = 1000 ms) produced by the re-aiming solutions optimized for
ensemble a being the target, for 500 randomly sampled ensembles of 10 neurons, plotted as a function of the correlation
between the two ensembles’ summed firing rates during simulated spontaneous behavior. Here, r̄a and r̄b denote the
summed firing rates of neurons in ensemble a and b, respectively.
b. Activity of indirect neurons (at tend = 1000 ms) for the same ensembles and re-aiming solutions in previous panel,
plotted as a function of mean correlation coefficeint with neurons in ensemble a during simulated spontaneous behavior.

S.1.4 Operant conditioning of ensembles of neurons1413

Clancy et al. (2014) conditioned ensembles of up to 10 neurons, rather than only pairs of neurons.1414

Here we repeat our simulations of operant conditioning but with a pair of target/distractor ensembles1415

of 10 neurons, rather than a pair of single neurons. We simulate re-aiming in exactly the same way via1416

equation 29, but where now the decoding vector d is a vector with a +1 for each target ensemble neuron1417

and a -1 for each distractor ensemble neuron, and 0’s everywhere else. Selection of neurons used for1418

operant conditioning and simulation of spontaneous behavior was done exactly as described in Methods1419

Section 4.10.1420

We find that the main results from the main text are replicated in this setting as well: (1) the1421

correlation coefficient of ensembles’ mean firing rates during simulated spontaneous behavior is corre-1422

lated with the difference in mean firing rates achieved by the optimal re-aiming solutions (Supplementary1423

Figure S4a); and (2) indirect neuron firing rates produced by these optimal re-aiming solutions are corre-1424

lated with their mean correlation coefficient with target ensemble neurons during simulated spontaneous1425

behavior (Supplementary Figure S4b).1426

S.1.5 Changes in modulation depth of motor cortical tuning curves1427

In a study employing credit assignment rotation perturbations in a 3D cursor reaching task, it was ob-1428

served that both non-rotated and rotated neurons reduced their modulation depth after learning the1429

perturbed decoder, and that rotated neurons reduced their modulation depth more10 (see text surround-1430

ing Methods Section 4.9, equation 26 for how modulation depth is defined and measured). Figure S5a1431

reveals that our model of generalized re-aiming does not reproduce this result, at least for the values of1432

K̃ we tested. Generalized re-aiming with up to 6 command variables seems to lead to slight increases1433

in the modulation depths of both rotated and non-rotated neurons, with marginal differences between1434

rotated and non-rotated neurons.1435

While we did not simulate re-aiming with K̃ > 6 command variables in the context of credit as-1436
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Figure S5: Changes in modulation depth under generalized re-aiming.
a. Average change in modulation depth of rotated, non-rotated, and indirect neurons between simulated reaches with the
baseline decoder and each perturbed decoder, plotted as a function of the number of command variables used for re-aiming
(K̃). As in fig. 6e, the changes in modulation depth are averaged over all neurons in each sub-population, and the median
over all 100 sampled credit assignment rotation perturbations is plotted. Error bars mark the upper and lower quartiles.
b. Average modulation depth of direct neurons (neurons recorded by the BCI, with non-zero decoding weights in D) and
indirect neurons (neurons not recorded by the BCI) under generalized re-aiming solutions for OMP’s. Modulation depths
are averaged over all neurons in each sub-population, and the median over all 100 sampled OMPs is plotted. Error bars
marks the upper and lower quartiles.

signment rotation perturbations, we did simulate this in the context of OMP learning, where we found1437

that modulation depths of indirect neurons decreased as K̃ increased (figure S5b). The fact that only1438

generalized re-aiming with a large number of command variables – but not regular re-aiming with only1439

K̃ = 2 variables – can reproduce selective changes in modulation depth is consistent with the separate1440

observation that indirect neurons show selective decreases in modulation depth only after days of practice1441

with a given BCI decoder, but not within a single session.111442

S.1.6 Closed-loop feedback control1443

All of the models we have considered so far are models of open-loop control: once the optimal motor1444

command is specified, it is used to drive the motor cortical population for the duration of the movement,1445

unchanged until the pre-specified endpoint time tend. Any errors encountered along the way – either1446

due to noise or suboptimal motor commands – are thus ignored. A better strategy would be closed-loop1447

control, wherein errors observed via sensory feedback are used to adaptively modify the motor command1448

online. Under this strategy, errors that are encountered along the way can be corrected, thus improving1449

the accuracy of the desired BCI output. Such closed-loop feedback control strategies are well known to1450

be optimal in the presence of noise,12,13 and substantial evidence exists that non-human primates utilize1451

them during BCI control.14–161452

In this section, we consider a re-aiming-based model of closed-loop feedback control in which the1453

motor command is continuously updated in response to sensory feedback. We evaluate this model on1454

the Sadtler et al. (2014) BCI learning task, and confirm that closed-loop re-aiming suffers from the same1455

limitations as open-loop re-aiming: the set of reachable activity patterns is limited by the number of1456

command variables used for control, such that OMP’s cannot be learned with a small number of them.1457
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We assume an error feedback controller architecture of the following form,1458

θ(t;y∗) = G(y∗ − y(t)) + b, (39)

where the command variables, θ(t) =

[
θ1 θ2 . . . θK̃

]
, vary continuously in time according to an1459

affine transformation of the instantaneous error, y∗ − y(t). As in the open-loop control simulations,1460

all additioanl command variables beyond the first K̃ are fixed to 0. For simplicity, we assume a linear1461

encoding of the motor command in the upstream inputs,1462

u(θ) = Uθ, (40)

For a given decoder, D, we postulate that the subject learns a feedback controller, (Ĝ ∈ RK̃×2, b̂ ∈ RK̃),1463

that minimizes the following loss function:1464

Ĝ, b̂ = argmin
G,b

1

8

8∑
i=1

1

T

∫ T

0

∥∥y(t;G,b
)
− y∗

i

∥∥2dt+ γ
(
∥b∥2 + ∥G∥2F

)
, (41)

where y
(
t;G,b

)
denotes the readout produced at time t under the closed-loop dynamics, ∥G∥2F =1465 ∑K̃

i=1

∑2
j=1 G

2
ij is the squared Frobenius norm, and y∗

1, . . . ,y
∗
8 are the eight radial reach targets in the1466

BCI cursor control task. The time window of control was set to T = 1000ms.1467

To compute Ĝ and b̂, we used gradient descent on the above loss function, using the Adam optimiza-1468

tion algorithm6 with a initial learning rate of .01. To facilitate numerical optimization, deterministic1469

dynamics were used (no noise in the dynamics or in the initial conditions, which were fixed to 0). To1470

avoid poor local optima (which was often a problem with WMPs in particular), we ran gradient descent1471

from five different random initializations and used the best solution from these five runs.1472

We computed (Ĝ, b̂) for the randomly connected non-linear network analyzed in the main text1473

(equation 1), for each of the sampled baseline/WMP/OMP decoders used in the simulations presented1474

in the main text. For the baseline decoder we performed this optimization over multiple values of the1475

metabolic cost weight γ so as to identify the largest value of γ that permitted a time-averaged squared1476

error of less than .05 for all eight target readouts under this decoder (analogous to how γ was set in the1477

open-loop simulations in the main text, Methods Section 4.3). We then fixed γ to this value for all the1478

decoder perturbations.1479

Simulations of cursor control with K̃ = 2 command variables are shown in Supplementary Figure S6a,1480

where we plot the mean squared error over target readouts as a function of time. Each trace corresponds1481

to the mean squared error achieved by the optimal feedback controller for a given decoder, with one1482

trace for the baseline decoder and one for each of the 100 sampled WMPs and OMPs. We find that for1483

almost all decoders, the mean squared error decreases to a certain level and remains low for the rest of1484
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a b c

Figure S6: Closed-loop re-aiming reproduces the differences in WMP and OMP learning.
a. Mean squared error (mean over target readouts) achieved by closed loop control with K̃ = 2 command variables, as a
function of time. Each line corresponds to performance on a different decoder, with a correspondingly optimized feedback
controller, (Ĝ, b̂) (equation 41).

b. Mean squared error (mean over target readouts and over time) achieved by error feedback controllers with K̃ = 2
command variables. Each point corresponds to a different decoder, with medians over all decoders in each class marked by
the height of the bars.
c. Mean squared error (mean over target readouts and over time) achieved by error feedback controllers optimized for

each OMP, with K̃ = 2, 4, 6, 8, and 10 command variables. Light blue points denote this quantity for individual OMP’s,
larger open circles on top show the median. For reference, dotted horizontal lines show the mean squared error achieved
by optimized error feedback with K̃ = 2 command variables for the baseline decoder (black) and WMP’s (red); the red
dotted line shows the median over all sampled WMP’s with shading marking the upper and lower quartiles.

this time window of 1000ms. However, this asymptotic error value is typically higher for OMP’s than for1485

WMP’s (Supplementary Figure S6b), replicating the analogous result observed for the open-loop control1486

model presented in the main text (fig. 3d).1487

This again reflects the limitations of re-aiming with only K̃ = 2 command variables. In this case, this1488

manifests itself in restricting how the error can be fed back into the network: the error gets mapped to1489

a K̃-dimensional vector through equation 39 before being fed back into the network. As we saw occurs1490

for the open-loop controller, this results in a restriction of how population activity can be modulated,1491

making it difficult to generate the patterns of activity required to produce the target readouts under1492

OMP’s. Supplementary Figure S6c shows that these restrictions can be relaxed by increasing the number1493

of command variables used for re-aiming, K̃. In this case, re-aiming with only K̃ = 6 command variables1494

suffices to obtain a mean squared error less than 0.1 with OMP’s. Interestingly, this is substantially less1495

than the K̃ > 10 command variables that are necessary to achieve the same level of performance with1496

open-loop re-aiming (fig. 5a).1497

S.2 Mathematical derivations1498

S.2.1 Scale-invariance of RNN dynamics with rectified linear activation function1499

Here we prove that, whenever xi(0) = 0,1500

∀s > 0 r(t; sθ) = sr(t;θ), (42)
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where r(t; sθ) = ϕ(x(t; sθ)) and x(t; sθ) is the solution to equation 1 with inputs defined by equation 2.1501

The function ϕ(·) is the rectified linear activation function defined in equation 1.1502

We begin by demonstrating that, when xi(0) = 0,1503

∀s > 0 x(t; sθ) = sx(t;θ). (43)

We prove this by showing that the dynamics of sx(t;θ) are the same as those of x(t; sθ):

d

dt

[
sx(t;θ)

]
= s

d

dt
x(t;θ)

= −sx(t;θ) + sWrecϕ(x(t;θ)) + sWinϕ(Uθ)

= −sx(t;θ) +Wrecϕ(sx(t;θ)) +Winϕ(sUθ) ∀s > 0, (44)

where in the second line we plugged in equation 1 and equation 2 for the dynamics and upstream inputs,1504

respectively, and in the third line we used the scale-invariance of the rectified linear activation function,1505

∀s ≥ 0 ϕ(sx) = sϕ(x), (45)

It is easy to see that equation 44 exactly matches equation 1 but with sx substituted in for x; that is,1506

the dynamics of these two quantities are the same. Therefore, whenever the initial conditions match,1507

sx(0;θ) = x(0; sθ), then their trajectories will too. It is easy to see that this condition holds for any s1508

if xi(0) = 0, thus proving equation 43.1509

Along with the scale invariance of the activation function (equation 45), equation 43 implies equation1510

42:1511

r(t; sθ) = ϕ(x(t; sθ)) = ϕ(sx(t;θ)) = sϕ(x(t;θ)) = sr(t;θ), (46)

thus completing our proof.1512

S.2.2 Large M limit of quadratic metabolic cost1513

Here we derive the large M limit of the quadratic metabolic cost term in the reaiming objective function1514

(equation 4),1515

lim
M→∞

1

M

M∑
i=1

ui(θ)
2 (47)

We first note that each term in the sum depends on a sum over the randomly sampled encoding1516

weights (equation 2),1517

ui(θ)
2 = ϕ

(
K∑
j=1

Uijθj

)2

. (48)

If the encoding weights, Uij , are independent and identically distributed, then each of the terms in this1518
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sum is also independent and identically distributed. By the law of large numbers, then, as M → ∞ their1519

sum will approach an expectation over this distribution,1520

lim
M→∞

1

M

M∑
i=1

ui(θ)
2 =

〈
ui(θ)

2
〉
Uij

, (49)

where ⟨·⟩Uij
denotes an expectation over the probability distribution of the encoding weights, Uij .1521

This expectation can be evaluated by first defining the random variable z =
∑K

j=1 Uijθj to express the1522

expectation as an integral over z, and then exploiting the rectified linear activation function (equation1523

1) to simplify this integral,1524

〈
ui(θ)

2
〉
Uij

=
〈
ϕ(z)2

〉
z
=

∫ ∞

−∞
ϕ(z)2p(z)dz =

∫ 0

−∞
ϕ(z)2p(z)dz +

∫ ∞

0

ϕ(z)2p(z)dz =

∫ ∞

0

z2p(z)dz,

(50)

where we simply exploited the fact that ϕ(z) = 0 when z < 0 and ϕ(z) = z when z ≥ 0. If the distribution1525

of the encoding weights Uij is symmetric around 0, then the distribution of z is as well and we have that1526

∫ ∞

0

z2p(z)dz =
1

2

〈
z2
〉
. (51)

Finally, if the encoding weights are zero-mean and independent, we have that1527

〈
z2
〉
=

K∑
j=1

K∑
k=1

⟨UijUik⟩ θjθk =
K∑
j=1

〈
U2
ij

〉
θ2j . (52)

If Uij additionally have unit variance,
〈
U2
ij

〉
= 1 ⇒

〈
z2
〉
= ∥θ∥2. Putting this all together, we arrive at1528

the equality in equation 9:1529

lim
M→∞

1

M

M∑
i=1

ui(θ)
2 =

〈
ui(θ)

2
〉
Uij

=

∫ ∞

0

z2p(z)dz =
1

2

〈
z2
〉
=

∥θ∥2

2
. (53)

S.2.3 Reachable manifold moments for K̃ = 21530

In our analysis of the reachable manifold, we characterized its location and shape via its centroid and1531

covariance, which were evaluated as expectations over a uniform distribution on the manifold. Here we1532

derive the probability density function of this distribution and use it to calculate these expections.1533

We begin with the case of K̃ = 2 non-zero command variables, which we parameterize by their polar1534

coordinates,1535 θ1
θ2

 = s

cosφ
sinφ

 . (54)
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We then formally define the reachable manifold as follows:1536

R = {r(tend; s, φ) : s ∈ [0, smax], φ ∈ [0, 2π]} . (55)

where r(tend; s, φ) is the motor cortical activity pattern at time tend produced by a pair of command1537

variables θ1, θ2 with angle φ and norm s, with all other command variables set to 0 (θ3 = θ4 = . . . =1538

θK = 0). The function r(tend; s, φ) can be thought of as a function mapping 2D command variables,1539

(s, φ) ∈ [0, smax] × [0, 2π], to activity patterns, r ∈ RN , on the 2D surface constituting the reachable1540

manifold (the conical surface shown in fig. 3f).1541

The probability density function of the uniform distribution on this 2D surface in RN is given by its1542

area element, dV (s, φ), divided by its total area,1543

p (r(tend; s, φ)) =
dV (s, φ)

V
. (56)

The area element and total area are given by

dV (s, φ) =
√
det[J(s, φ)TJ(s, φ)] (57)

V =

∫ smax

0

∫ 2π

0

dV (s, φ) dφds, (58)

where det[·] denotes the matrix determinant and J denotes the N × 2 Jacobian of the mapping from1544

command variables to the reachable manifold,1545

J(s, φ) =

[
∂
∂sr(tend; s, φ)

∂
∂φr(tend; s, φ)

]
. (59)

To evaluate the probability density function, we must first calculate these derivatives.1546

To do so, we again resort to the scale invariance property of the rectified linear activation function1547

(equation 45),1548

r(tend; s, φ) = s r(tend; 1, φ)︸ ︷︷ ︸
r0(φ)

:= sr0(φ), (60)

where we have defined r0(φ) to be the activity generated by a pair of command variables with angle φ1549

and unit norm. The Jacobian is thus given by1550

J(s, φ) =

[
r0(φ) sr′0(φ)

]
=

[
r0(φ) r′0(φ)

]1 0

0 s

 , (61)
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where r′0(φ) :=
∂
∂φr0(φ). Plugging this into equation 57, we have that the area element is given by

dV (s, φ) =

√√√√√√det

1 0

0 s


r0(φ)T
r′0(φ)

T

[r0(φ) r′0(φ)

]1 0

0 s



=

√√√√√√det

1 0

0 s

det

 ∥r0(φ)∥2 r0(φ) · r′0(φ)

r0(φ) · r′0(φ) ∥r′0(φ)∥2

det

1 0

0 s


= s

√
∥r0(φ)∥2∥r′0(φ)∥2 − (r0(φ) · r′0(φ))

2

= s∥r0(φ)∥∥r′0(φ)∥
√
1− cos2 ω(φ)

= s∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|, (62)

where ω(φ) is the angle between r0(φ) and its derivative at ϕ, r′0(φ). The total area of the manifold is

thus

V =

∫ smax

0

∫ 2π

0

s∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ ds

=
1

2
s2max

∫ 2π

0

∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ. (63)

With these two expressions in hand, we can analytically express expectations over the probability

density function in equation 56. The mean, corresponding to the manifold centroid, r̄, is given by

r̄ :=

∫ smax

0

∫ 2π

0

r(tend; s, φ)p (r(tend; s, φ)) ds dφ

=

∫ smax

0

∫ 2π

0

sr0(φ)p (r(tend; s, φ)) ds dφ

=
1

V

∫ smax

0

s2 ds

∫ 2π

0

r0(φ)∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

=
2

3
smax

∫ 2π

0
r0(φ)∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ∫ 2π

0
∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

(64)

Its covariance, Σr, is given by1551

Σr = rrT − r̄r̄T , (65)
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where rrT is the matrix of second moments,

rrT :=

∫ smax

0

∫ 2π

0

r(tend; s, φ)r(tend; s, φ)
T p (r(tend; s, φ)) ds dφ

=

∫ smax

0

∫ 2π

0

s2r0(φ)r0(φ)
T p (r(tend; s, φ)) ds dφ

=
1

V

∫ smax

0

s3 ds

∫ 2π

0

r0(φ)r0(φ)
T ∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

=
1

2
s2max

∫ 2π

0
r0(φ)r0(φ)

T ∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ∫ 2π

0
∥r0(φ)∥∥r′0(φ)∥| sinω(φ)|dφ

(66)

Because the integrals and derivatives in these expressions are all univariate, we can estimate them1552

accurately with discrete approximations.1553

S.2.4 Reachable manifold moments for K̃ > 21554

Analagous expressions can be derived for the case of K̃ > 2, but in these cases good estimates of the1555

integrals and derivatives quickly become numerically intractable as the number of variables increases.1556

For these cases, we therefore resorted to moments with respect to the probability distribution of activity1557

patterns generated by uniformly distributed motor commands, instead of the probability distribution of1558

activity patterns uniformly distributed on the reachable manifold.1559

We can express the covariance of this simpler distribution, which we denote by Σθ, by parameterizing

the non-zero command variables, θ̃ =

[
θ1 θ2 . . . θK̃

]
, in terms of a magnitude and direction, θ̃ =

sθ̃0, where 0 ≤ s ≤ smax and ∥θ̃0∥ = 1. This allows us to factorize the uniform distribution over

motor commands into a scalar uniform distribution for the magnitude, s ∼ Unif[0, smax], and a uniform

distribution over the unit radius (K̃−1)-sphere for the direction, θ̃0. The expectations in the covariance

thus factorize as follows:

Σθ =
〈〈

r(tend; sθ̃0)r(tend; sθ̃0)
T
〉
s

〉
θ̃0

−
〈〈

r(tend; sθ̃0)
〉
s

〉
θ̃0

〈〈
r(tend; sθ̃0)

〉
s

〉T
θ̃0

=
〈
s2
〉
s

〈
r(tend; θ̃0)r(tend; θ̃0)

T
〉
θ̃0

− ⟨s⟩2s
〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

=
s2max

3

〈
r(tend; θ̃0)r(tend; θ̃0)

T
〉
θ̃0

− s2max

4

〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

, (67)

where we used the scale invariance of the motor cortical dynamics (equation 8) to write r(tend; sθ̃0) =1560

sr(tend; θ̃0) in the second line, and in the third line we simply inserted expressions for the first and second1561

moments of s. The expectations over θ̃0 can be approximated using Monte Carlo methods by uniformly1562

sampling vectors from the corresponding unit radius (K̃ − 1)-sphere.1563
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S.3 Extended methods1564

S.3.1 Estimating the intrinsic manifold1565

To estimate the intrinsic manifold, we fit a Probabilistic PCA (PPCA) model17 to the mixed and z-scored1566

calibration task responses (see Methods Section 4.8),1567

rmixed

i = S−1
r H(ri − c). (68)

Here, i indexes a particular timestep and trial during the calibration task. The PPCA generative model

assumes that each of these data points are generated from a corresponding set of ℓ uncorrelated latent

variables zi =

[
zi1 zi2 . . . ziℓ

]
as follows,

zi ∼ N (0, I) , (69a)

rmixed

i |zi ∼ N
(
Fzi, σ

2I
)
. (69b)

The model thus assumes that the activity patterns rmixed
i are concentrated within the column space of

the factor loading matrix F – it is the columns of this matrix that define the intrinsic manifold. These

parameters are fit to the mixed and z-scored calibration task data, {rmixed
i }, by maximum likelihood:

F, σ2 = argmax
F,σ2

logP ({rmixed

i }) = argmax
F,σ2

logN
(
0,FFT + σ2I

)
⇒ F =

[
√
λ1 − σ2v1

√
λ2 − σ2v2 . . .

√
λℓ − σ2vℓ

]
⇒ σ2 =

1

Nr − ℓ

Nr∑
i=ℓ+1

λi,

where λ1, λ2, . . . , λNr are the eigenvalues of the sample covariance of the calibration task activity, {rmixed
i },1568

ordered from largest to smallest (i.e. λ1 is the largest eigenvalue), and v1,v2, . . . ,vNr
are their associated1569

eigenvectors (i.e. the principal components, ordered from most to least variance explained).1570

Note, however, that the columns of F define the dimensions of the intrinsic manifold in mixed and

z-scored neural activity space (i.e. the space defined by the coordinates of the rmixed
i vectors). To convert

these to dimensions of the full N -dimensional state space, where each coordinate corresponds to the

activity of an individual neuron (i.e. the space defined by the coordinates of the ri vectors), we invert

equation 68 to obtain

ri = H−1Srr
mixed

i + c,

where we define H−1 as the N × Nr matrix containing the inverse of the tri-diagonal component of H

in its first Nr rows and 0’s filling all subsequent rows. We then apply this linear transformation to the
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columns of F to obtain an analagous N × ℓ factor loading matrix Fr defined in the full N -dimensional

state space,

Fr = H−1SrF.

Note that, since the bottom N −Nr rows of H−1 are filled with 0’s, those same rows of Fr are also filled1571

with 0’s. This reflects the fact that the intrinsic manifold is orthogonal to the dimensions of activity1572

corresponding to neurons not recorded in the experiment. Finally, we defined an orthonormal basis1573

f1, f2, . . . , fℓ ∈ RN for the intrinsic manifold by taking the left singular vectors of Fr. These are the1574

vectors used in equation 25 for figure 3g.1575

This method for estimating the intrinsic manifold is almost the same as that used by Sadtler et al.,1576

which differs only in that a Factor Analysis model was used instead of a PPCA model. In that case, the1577

maximum likelihood estimates of the model parameters cannot be evaluated in closed form and must be1578

computed via an iterative optimization algorithm (the Expectation Maximization algorithm). We found1579

that using a Factor Analysis model instead of PPCA had no noticeable effects on our results (data not1580

shown), so we reported only results with the more easily fit PPCA model.1581

S.3.2 Construction of the baseline decoder1582

As described in the Methods section, the baseline decoder has the following form

Dbase

0 = KL

K ∈ R2×ℓ, L ∈ Rℓ×Nr .

We term L the dimensionality reduction matrix and K the velocity readout matrix. Here we describe in1583

greater detail how these two matrices are fit to the calibration task data. Unless otherwise noted, these1584

procedures are exactly as those described in18 and.191585

The dimensionality reduction matrix L is derived from the mode of the posterior distribution of the

PPCA model (equation 69),

P (zi|rmixed

i ) = N
(
zi|µz|rmixed ,Σz|rmixed

)
(70a)

µz|rmixed =
(
FTF+ σ2I

)−1
FT︸ ︷︷ ︸

L̂

rmixed

i . (70b)

The Nr × ℓ matrix L̂ thus yields a linear transformation from Nr dimensions to ℓ dimensions. The z-1586

scored and mixed activity patterns {rmixed
i } from the calibration task can thus be reduced to ℓ dimensions1587

via multiplication with L̂, resulting in a corresponding set of dimensionality-reduced activity patterns1588

{ẑi} (as above, here and in the rest of this section the index i jointly indexes a timestep and trial of the1589
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calibration task).1590

To complete the construction of the dimensionality reduction matrix L, these dimensionality-reduced1591

activity patterns are then z-scored. The standard deviations of each component of the ẑi vectors are1592

calculated over all timesteps and trials of the calibration task, and collected in a diagonal matrix Sz.1593

Note that mean subtraction is not necessary since the activity vectors rmixed
i have already been z-scored1594

so are mean 0. The final dimensionality reduction matrix is then given by1595

L = S−1
z L̂ (71)

This second z-scoring step is necessary to ensure that controlling the BCI does not require neurons to1596

produce firing rates beyond the range exhibited during the calibration task.1597

The dimensionality reduction matrix used by Sadtler et al. differed from ours in that L̂ was con-1598

structed from the posterior distribution under a Factor Analysis generative model, rather than a PPCA1599

generative model. Like in PPCA, the mode of the posterior distribution of a Factor Analysis model can1600

also be expressed as a linear transformation of rmixed
i , yielding a very similar expression for L̂.1601

The velocity readout matrix K is also chosen by maximum likelihood fit of a generative model. In

this case, we assume that the z-scored dimensionality-reduced activity patterns from the calibration task,

ẑz-scored
i = Lrmixed

i , depend on the observed cursor velocities, yi, via the following latent Gaussian state

space model,

yi|yi−1 ∼ N (yi−1,Q)

ẑz-scored

i |yi ∼ N (Byi,R)

where i−1 indexes the previous timestep in the same trial. Note that the cursor velocities yi are constant

within each trial of the calibration task, so within a given trial yi = yi−1. As was done in the original

experiment of Sadtler et al., we set

Q = 2k2I,

where k = 1/.15 denotes the ratio of the cursor speeds used in our simulation (∥yi∥ = 1) and the cursor

speeds used in the original experiment (∥yi∥ = .15 m/s). Maximum likelihood estimates of the remaining

parameters are given by

B =

(∑
i

ẑz-scored

i yT
i

)(∑
i

yiy
T
i

)−1

R =
1

T

∑
i

ẑz-scored

i ẑz-scored

i
T − ẑz-scored

i (Byi)
T

where T denotes the total number of data points in the calibration task data: the number of timesteps1602
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a b c

Figure S7: Differences between sampled decoder perturbations and the baseline decoder.
a. Distribution of mean principal angle between row space of baseline decoder and row space of each perturbed decoder.
b. Distribution of mean squared error achieved by mean calibration task responses under each perturbed decoder.
c. Distribution of minimal absolute change in preferred direction needed to produce the same readouts with each perturbed
decoder as with the baseline decoder.

in each trial times the total number of trials.1603

The velocity readout matrix is then derived from the mode of the of the posterior distribution

P (yi|ẑz-scored
i , ẑz-scored

i−1 , ẑz-scored
i−2 , . . .), where the ellipses go back to the first timestep of the given trial. We

use the posterior distribution at steady state, whose mode is given by

ŷi = (I−KB) ŷi−1 +Kẑz-scored

i ,

where K is the so-called steady-state Kalman gain matrix. This matrix is given by1604

K = ΣssB
T (BΣssB

T +R)−1 (72)

where Σss is the steady-state posterior covariance, given by the solution to the discrete-time algebraic

Riccatti equation

0 = ΣssB
T (BΣssB

T +R)−1BΣss −Q

The 2 × ℓ velocity readout matrix used for the baseline decoder is thus set to the steady-state Kalman1605

gain matrix, K.1606

S.3.3 Subsampling WMPs and OMPs1607

As mentioned in the methods, we attempted to minimize any differences between within- and outside-1608

manifold perturbations that would go beyond their opposing relationship to the intrinsic manifold. To do1609

this, we first calculated every possible WMP and OMP, corresponding to each ℓ-dimensional permutation.1610

Since we set ℓ = 8, this resulted in ℓ!−1 = 40, 319 decoder perturbations of each type (minus 1 to exclude1611

the identity permutation). We then quantified how different each of these perturbations were from the1612

baseline decoder with three different metrics, and eliminated all decoder perturbations for which one or1613

more of these metrics fell outside a specific range.1614
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The first metric is the angle between the perturbed decoder’s row space and the baseline decoder’s.1615

For each decoder perturbation, DWMP
0 or DOMP

0 , we calculated the two principal angles20 between its row1616

space and that of the baseline decoder effective decoding matrix, Dbase
0 , and averaged these two angles.1617

Any decoder perturbations for which this mean principal angle was greater than 80o or less than 60o was1618

eliminated (fig. S7a).1619

The second metric is the mean squared error that would be achieved if the subject were to simply

reproduce the neural activity from the calibration task. Analagous to the procedure followed by Sadtler

et al., we averaged the calibration task responses over time and over trials for each reach target,

r̄calib

j = ⟨ri⟩i∈time points in calibration task trials with reach target j

and then computed the readouts from these time- and trial- averaged firing rate vectors under each1620

decoder perturbation, DWMP
0 or DOMP

0 . We then discarded all decoder perturbations where the mean1621

squared error between these readouts and the target readouts was greater than 0.8 or less than 0.6 (fig.1622

S7b).1623

The third metric is to ask how much the mean calibration task responses would have to change

to produce the same readouts under the perturbed decoder as under the baseline decoder. We first

calculated the time- and trial- averaged z-scored and mixed firing rates from the calibration task

r̄mixed

j = S−1
r H(r̄calib

j − c).

For each perturbed decoder, D̃0 = DWMP
0 or DOMP

0 , we then computed the activity patterns closest to

r̄mixed
j that would produce the same readouts through that decoder as the original activity patterns would

through the baseline decoder, Dbase
0 ,

r̂mixed

j

(
D̃0

)
= argmin

r
∥r− r̄mixed

j ∥2 subject to D̃0r = Dbase

0 r̄mixed

j

= r̄mixed

j + D̃T
0

(
D̃0D̃

T
0

)−1 (
Dbase

0 − D̃0

)
r̄mixed

j .

We then quantified the difference between r̄mixed
j and r̂mixed

j (D̃0) by fitting tuning curves and asking how1624

much the preferred direction changed. Tuning curves were fit by least-squares regression, exactly as1625

described in Methods Section 4.9 equation 26 (but with r̄mixed
j or r̂mixed

j (D̃0) plugged in for r̄j), and1626

preferred directions were extracted from the fitted tuning weights as described in that section. For each1627

decoder perturbation, we then computed the mean absolute difference of the preferred directions of the1628

computed activity patterns {r̂mixed
j (D̃0)}8j=1 from those of the observed calibration task mean responses1629

{r̄mixed
j }8j=1. Any perturbed decoders that resulted in a mean absolute difference of more than 45o or less1630

than 30o were discarded (fig. S7c).1631
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We typically found that about 100-200 permutations out all possible decoder perturbations satisfied1632

these criteria. We then randomly sampled 100 of them. The distributions of these three merics for the1633

100 sampled WMPs and OMPs used in the main text are shown in figures S7a, S7b, and S7c.1634
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