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Abstract

Mice emit ultrasonic vocalizations (USVs) that are important for social commu-
nication. Despite great advancements in tools to detect USVs from audio files in
the recent years, highly accurate segmentation of USVs from spectrograms (i.e.,
removing noise) remains a significant challenge. Here, we present a new dataset of
12,954 annotated spectrograms explicitly labeled for mouse USV segmentation.
Leveraging this dataset, we developed SqueakOut, a lightweight (4.6M parame-
ters) fully convolutional autoencoder that achieves high accuracy in supervised
segmentation of USVs from spectrograms, with a Dice score of 90.22. SqueakOut
combines a MobileNetV2 backbone with skip connections and transposed convolu-
tions to precisely segment USVs. Using stochastic data augmentation techniques
and a hybrid loss function, SqueakOut learns robust segmentation across varying
recording conditions. We evaluate SqueakOut’s performance, demonstrating sub-
stantial improvements over existing methods like VocalMat (63.82 Dice score).
The accurate USV segmentations enabled by SqueakOut will facilitate novel meth-
ods for vocalization classification and more accurate analysis of mouse communi-
cation. To promote further research, we release the annotated 12,954 spectrogram
USV segmentation dataset and the SqueakOut implementation publicly.

1 Introduction

Vocalizations are an important form of social communication among many animals, including
mice [1]. Mice produce ultrasonic vocalizations (USVs) in various behavioral contexts such as
maternal interactions [2, 3], social exploration [4], courtship [5], and distress situations like maternal
separation [6, 7, 8, 9, 10, 11]. Although these high-frequency calls are inaudible to humans, they
convey rich information about the animal’s internal state and behavioral experience [12, 13, 14]. For
example, the emission of USVs by mouse pups when separated from their mother evokes maternal
behavior and activates selective pathways in the brain of mothers [15, 16, 17, 18, 19]. Moreover, a
detailed analysis of USVs is a powerful way to phenotype mouse models of neurodevelopmental
disorders [20], genomic imprinting [16], pharmacological manipulations [21], as well as to perform
comparative studies among different rodent species [22]. Thus, vocalizations provide a unique
window into animals’ internal states and a rich framework for a better understanding of animal
behavior and brain function.

The detailed analysis of USVs poses significant challenges due to the complexity of extracting
precise spectrotemporal features. This general problem can be broadly divided into three components:
detection, classification, and segmentation of USVs. Each component serves a specific purpose and
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presents unique challenges [23]. Detection involves identifying and distinguishing actual vocalization
signals from periods of silence or noise in audio recordings (Figure 1A). Accurate detection is
crucial for the subsequent stages of analysis to be correct and meaningful (Figure 1B). The detected
USVs can be categorized into different classes, typically based on various acoustic features or
specific characteristics identified on spectrograms of each vocalization [24]. Classification allows
grouping similar sounds, aiding in studying the diversity and distribution of USVs across different
contexts [1]. The third component is segmentation (Figure 1B), which involves further breaking
down each detected USV into discrete spectrotemporal units [25, 26]. Effective segmentation of
USVs, akin to parsing words into distinct syllables, enables detailed analysis of the structure of each
vocalization [27].

Traditional methods for detecting and analyzing rodent USVs have relied heavily on manual annota-
tion or semi-automated techniques based on predefined parameters and thresholds [28, 29]. These
approaches are labor-intensive, time-consuming, and prone to human bias and error, especially when
dealing with large datasets or complex vocal repertoires. Furthermore, they often fail to capture the
nuanced spectrotemporal variations present in USVs, which may hold crucial information about the
animal’s motivational state [13, 20]. Recent work has explored the application of computer vision
techniques and machine learning models to USV audio recordings and spectrograms as a data-driven
alternative [30, 26, 31, 26]. In particular, convolutional neural network (CNN) architectures have
shown promising performance in detecting and classifying USVs [24, 30, 32]. Despite the signif-
icant progress made in the detection and classification of USVs, accurately segmenting USVs in
spectrograms remains a challenge [30, 23, 31].

Here, we present a machine learning dataset explicitly designed for the segmentation of mouse
USVs. Using this dataset, we also developed SqueakOut, a fully convolutional autoencoder for
accurate USV segmentation. We evaluate SqueakOut’s performance, compare it to VocalMat, and
demonstrate the utility of the segmented USVs for downstream analysis tasks. Lastly, we discuss
insights gained from the model and potential applications to high-throughput USV phenotyping
workflows.
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Figure 1: Overview of vocalization analysis pipeline. (A) The process begins with an audio recording,
which is then converted into a spectrogram representation. (B) Individual vocalizations are detected,
and isolated spectrograms are segmented and classified for downstream analysis.

2 Results

2.1 Creating a USV segmentation dataset

Creating a mouse USV segmentation dataset is a laborious task. One major problem is the inten-
sive work required to produce accurate annotations by experts. Here, we generated an accurate
segmentation dataset using both automated and manual approaches.

First, we took advantage of the publicly available dataset from VocalMat ([24]) and used it as a starting
point (Figure 2A). The dataset consists of 12,954 spectrograms, including 2,083 spectrogram
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examples of noise and 10,871 spectrograms of mouse USVs. The dataset includes vocalizations from
male and female mice of five different strains (C57Bl6/J, NZO/HlLtJ, 129S1/SvImJ, NOD/ShiLtJ,
and PWK/PhJ), ranging from postnatal day 5 to postnatal day 15.

2.1.1 Automated approaches for creating a USV segmentation dataset

VocalMat uses computer vision and machine learning to detect, segment, and classify vocals. While
VocalMat’s USV detection rate achieves state-of-the-art results, its segmentation performance is
suboptimal when noise is present in spectrograms (see Figure 3C), making the segmentation masks
unsuitable for directly training a segmentation neural network. To enhance the VocalMat dataset, we
used its segmentation masks as a starting point and trained an autoencoder to learn the segmentation
task. We trained the autoencoder separately on spectrograms of USVs and noise to enable it to
learn representations of vocalizations and noise. This approach allowed us to use the autoencoder
to denoise the original segmentation masks. The following automated processing steps result in a
dataset with segmentation masks of vocalizations with fewer noise segments.

(1) Unsupervised spectrogram reconstruction task: We begin by using U-Net, an autoencoder
broadly used for biomedical image segmentation [33] (Figure 2B), and train the network on the
VocalMat dataset for the unsupervised task of spectrogram reconstruction (Figure 2C-1). In this step,
the autoencoder receives the spectrograms as input and is trained to reconstruct the input spectrogram
as its output. The autoencoder has a bottleneck architecture to ensure that it learns a meaningful
representation of the data instead of simply copying its input as the output. The autoencoder can
reconstruct spectrograms with high accuracy (91.67% ± 2.08%; mean ± SEM).

(2) USV segmentation task: Next, using the pre-trained autoencoder from the previous step, we
trained the autoencoder for the task of spectrogram segmentation (Figure 2C-2). The autoencoder
receives spectrograms of USVs as inputs and outputs binary segmentation masks, i.e., images
containing 0 and 1, where 1 indicate USV segments. Initially, we use the segmentation produced by
VocalMat as the ground truth annotations for this training step.

(3) Noise segmentation task: Similarly to the previous step, we trained the autoencoder for the task
of spectrogram segmentation but only using the spectrograms of noise (Figure 2C-3). This allows
the autoencoder to learn and distinguish between representations of noise and actual vocalizations in
the spectrograms.

(4) Enhancing the dataset: Following the pre-training steps, we now use the autoencoder to
perform inference over the original VocalMat dataset for the task of spectrogram segmentation
(Figure 2C-4). Since the autoencoder has learned the task of spectrogram segmentation and represen-
tations of noise, it can produce segmentation masks similar to those generated by VocalMat but with
fewer false positives (spectrograms containing only noise: VocalMat 2.85% ± 1.27%; Autoencoder
78.91% ± 4.86%; values are the Dice score mean ± SEM) (Figure 3A).

2.1.2 Manual fine-tuning of the USV segmentation dataset

The generated dataset following the automated steps is significantly better than the original dataset
(Figure 3A) but still requires fine-tuning. VocalMat’s algorithms produce segmentation masks that
exceed the size of the actual vocalizations, capturing both vocal-related and surrounding pixels.
(Figure 3B). We address this border effect by using the morphological image processing technique
known as erosion. This thinning process effectively reduces the size of the segmentation masks,
mitigating the border effect (Figure 3B). We apply erosion to all vocalization segments at least
four times as large as the erosion kernel (4×2 pixels) to prevent the thinning out of already small
vocalizations.

Following the border thinning process, we repeat automated steps (2) through (4). This sequence
of automated and manual refinements is repeated until erosion can no longer be applied to any
vocalization segments.

The final step in creating the dataset involves manual refinement. Despite having over two thousand
noise examples from the VocalMat dataset, certain types of noise are exclusively present in spec-
trograms containing vocalizations. Consequently, these noise segments are incorrectly detected as
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Figure 2: Automated methods for creating the USV segmentation dataset. We use the VocalMat
dataset [24] which contains 10,871 USV spectrograms and 2,083 noise spectrograms (A), and the
U-Net autoencoder architecture [33] (B). The autoencoder is trained on a spectrogram reconstruction
task (C1). The pre-trained autoencoder is then trained on a segmentation task using USV spectrograms
(C2) and on noise spectrograms (C3). The trained U-Net model is used to enhance the original
VocalMat dataset by generating segmentation masks that are mostly devoid of noise components
(C4).

A Spectrogram Original mask After noise training B Spectrogram Original mask

After erosion

Overlay
Zoom

C

Figure 3: Dataset fine-tuning processing. (A) Comparison of an original VocalMat noisy mask and the
trained autoencoder mask. (B) Illustration of the border thinning process through erosion operation
applied to a segmentation mask. (C) Three examples illustrating noise overlapping with USVs in
spectrograms and the segmentation produced by VocalMat, highlighting the challenges in accurate
vocalization segmentation.

vocalizations (Figure 3C). An expert annotator manually inspected all segmentation masks using
the image annotation and segmentation tool RectLabel1, and corrected the masks for a small subset
(approximately 15%) of the data.

1https://rectlabel.com
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2.2 SqueakOut: Autoencoder for mouse USV segmentation

2.2.1 Network architecture
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Figure 4: SqueakOut network architecture combines a MobileNetV2 backbone with an encoder-
decoder structure. (A) SqueakOut takes input spectrograms and outputs segmentations masks (both
512×512 pixels). Spectrograms are processed through the backbone encoder, and then through a
series of decoder blocks (shown in B and C) with skip connections and transposed convolutions and
an output block (shown in D) to produce segmentation masks.

SqueakOut is a fully convolutional autoencoder that generates segmentation masks of vocaliza-
tions from spectrograms. The architecture is depicted in Figure 4. SqueakOut uses a modified
MobileNetV2 [34] as its backbone for its small memory footprint and efficient processing using
inverted residuals, depth-wise convolutions, and lack of explicit non-linearities in the narrow layers.
Specifically, we removed the average pooling layer and added a dropout layer before the final
bottleneck layer with a 20% rate.

The decoder path for SqueakOut uses skip connections from backbone layers and transposed con-
volutions to reconstruct segmentation masks. Skip connections have been demonstrated to enhance
segmentation accuracy and capture fine-grained details [35, 36, 37]. Moreover, skip connections im-
prove gradient propagation and convergence during training [37, 38]. In SqueakOut, we concatenate
the input from backbone layers with the input from the previous layer in the decoder path, ensuring
the propagation of intact information from early layers in the network. Lastly, we employ a series of
convolutional layers in the output block and use interpolation to upsample the output, restoring it to
the same spatial dimensions as the original input spectrogram.

2.2.2 Training

SqueakOut is implemented in PyTorch [39] using the PyTorchLightning framework [40] and was
trained on the enhanced VocalMat dataset. A subset of the dataset containing 849 USVs was used
as the test set. The remaining dataset was randomly split into training (90%) and validation (10%)
sets. SqueakOut was trained using Adam [41] with a learning rate of 1e−4. The learning rate was
reduced by a factor of 0.1 if performance on the validation set did not improve for five consecutive
iterations. Training was halted if the performance did not improve for fifteen consecutive iterations to
avoid overfitting. A batch size of eight samples was used. The loss function was a weighted sum
of the Focal loss (FL) [42]—which emphasizes hard data points and prevents easy negatives from
dominating the loss during training—, and the Dice loss (DL) [43]—a measure of the similarity
between the network output and the ground-truth segmentation. We chose this hybrid loss function
because of the extreme imbalance in class labels for the segmentation task. The majority of pixels in
a spectrogram represent background, with USVs accounting for, on average, less than 5% of pixels.
Briefly,
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FL = −(1− pn)
γ log(pn) (1)

DL = 1− 2 ∗
∑N

n=1 pnsn + ϵ∑N
n=1 pn +

∑N
n=1 sn + ϵ

(2)

L = αFL+ (1− α)DL (3)

where pn is the predicted segmentation probability map, and sn is the ground-truth segmentation map
for a spectrogram. We include a small term ϵ in the Dice loss to prevent division by 0. In SqueakOut,
we use γ = 2 and α = 0.3.

2.2.3 Data augmentations

To further enrich our dataset, we utilized data augmentation techniques. The segmentation task is
unique in that any augmentations made on the spectrogram can be identically applied to its matching
segmentation mask. Importantly, this would not hold for a classification task. For example, if a
spectrogram is randomly warped such that the morphological characteristics of a USV changes, then
the corresponding classification of that USV would also likely change in unpredictable ways.

To make SqueakOut robust to changes in spectrogram quality and better generalize, we use the
data augmentations depicted in Figure 5. Briefly, augmentations were applied during training on a
batch-by-batch basis with the following conditions:

(a) 75% chance of applying a random affine transformation
(b) 25% chance of applying contrast normalization
(c) 25% chance of applying a Gaussian blur
(d) 33% chance of applying one of the following:

– Additive noise
– Gaussian noise
– Frequency noise
– Elastic transformations

Augmentations for each of the four conditions (a-d) have an independent probability of being applied
to a given batch of spectrograms. This means that for each training batch, any combination of the four
augmentations can occur, ranging from no augmentations to all four being applied simultaneously.
The stochastic nature of this augmentation strategy helps to increase the diversity of the training data
and improve SqueakOut’s robustness to variations in the input spectrograms. For example, noise
and contrast augmentations especially improve segmentation in spectrograms with low signal-to-
noise ratios. Affine and elastic transformations are intended to make SqueakOut robust to USV
morphologies not present in our dataset and improve USV contour segmentation quality.

2.3 USV segmentation performance

SqueakOut is a lightweight autoencoder model at only 18MB (4.6M parameters) that is fast and
achieves high accuracy. Inference on a batch of 64 512×512 pixels spectrograms on a gaming
GPU takes less than 0.035 seconds, and about 8 seconds on a CPU.

Vocalizations on spectrograms are generally small, leading to an imbalance in class labels (0 or 1)
for the segmentation task. We therefore created a null model, which treats every spectrogram as
if it contains no USVs, i.e., it always generates blank segmentation masks (all values are 0). The
null model achieves 99.09% accuracy, showing that most pixels in a spectrogram are indeed
background. Similarly, all models achieve relatively high pixel-wise accuracy (Table 1). In contrast,
the null model achieves a 4.95 Dice score. The Dice score measures the overlap between two
segmentation masks by weighing their intersection against their union (Equation 2), where a score
of 100 means perfect overlap. It effectively balances false positive and false negative rates, and,
therefore, we use the Dice coefficient as our primary performance score metric.

We first compared SqueakOut’s performance with VocalMat and applied the same metrics to the
output of both tools (Table 1). VocalMat is accurate in segmenting any high-intensity segments in
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Figure 5: Dataset augmentation techniques applied to spectrograms for training robust segmentation
models. (A) An example USV spectrogram. (B) Illustration of individual data augmentation
techniques applied to the example spectrogram. (C) Illustration of augmentation techniques when
jointly applied to the example spectrogram.
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Figure 6: Comparison of USV spectrogram segmentation performance between the ground truth
annotations, the VocalMat dataset, and the proposed SqueakOut method. The spectrograms illustrate
SqueakOut’s ability to accurately segment USVs compared to the ground truth and the baseline
VocalMat dataset. Inset values in red represent the pixel-wise accuracy, while those in blue indicate
the Dice score.

spectrograms, including noise (Figure 6), resulting in a significantly lower Dice score. In noise-free
recordings, we expect that VocalMat’s performance would be qualitatively similar to SqueakOut.
We also compared SqueakOut with another autoencoder architecture for image segmentation, U-Net.
We trained the U-Net model and SqueakOut using the same dataset, without any data augmentations.
Nevertheless, the U-Net model performs worse than SqueakOut (no augmentations) (Table 1),
showing that SqueakOut’s high Dice score is not solely due to our refined dataset, but also to its
architecture. Importantly, the data augmentation techniques we employed improved SqueakOut’s
Dice score by 8.72% (last two rows in Table 1).
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Table 1: USV segmentation performance across models. Values are mean ± SEM.

Performance
Model Accuracy (%) Dice score

Null Model 99.10 ± 0.02 4.95 ± 0.74

VocalMat [24] 98.83 ± 0.06 63.82 ± 0.71
U-Net [33] 98.91 ± 0.04 72.31 ± 0.83

SqueakOut (no augmentations) 99.03 ± 0.02 82.98 ± 0.65
SqueakOut 99.84 ± 0.01 90.22 ± 0.41

3 Discussion

Here, we first present a new mouse USV segmentation dataset that is made publicly available and can
be used by any group for machine learning applications. We leveraged this unique dataset to develop
SqueakOut, a fully convolutional autoencoder for supervised segmentation of USV spectrograms.
Our results demonstrate SqueakOut’s ability to segment USVs with very high accuracy. Our
segmentation dataset joins the VocalMat dataset to provide a single high-quality annotated dataset for
mouse USV detection and segmentation.

Autoencoders have been used across a broad spectrum of research in various species to analyze
acoustic communication [44, 45, 30, 46, 47]. The popularity of autoencoders is partly due to their
inherent ability to learn latent data structures in an unsupervised fashion, i.e., without requiring
annotated datasets. This can be advantageous when the features of the data relevant for analysis
are unknown or for unbiased data analysis. However, the extracted latent features are often hard to
interpret. On the other hand, supervised methods that use pre-defined features are interpretable but
can lead to biased analysis depending on the features chosen by the experimenter.

Unsupervised methods that attempt to learn latent features of vocals using their spectrograms often
suffer from variability in the quality of recordings. Any variability in recording conditions will result
in drastically different background noise levels and signal-to-noise ratios in spectrograms. This
variability will affect what the network learns and can make latent features even harder to interpret.
Unsupervised methods have to be carefully tuned to the specifics of a dataset, and an extensive list of
methods have been developed to deal with varying quality in spectrograms [47, 23]. SqueakOut can
produce accurate USV segmentations, effectively removing any variability due to recording conditions.
The resulting segmentation masks can be used for downstream analysis using unsupervised methods
such as Variational Autoencoders [45, 30] and dimensionality reduction techniques such as UMAP
[48] or diffusion maps [49] to exploit the combined advantages of unsupervised and supervised
methods.

Vocalizations in mice are powerful indicators of their emotional and behavioral states, and classifi-
cation of these vocalizations is important for linking behavior with brain function across different
contexts [1]. Historically popular methods have used hand-crafted features such as the duration, fre-
quency modulation, amplitude, and other characteristics of each USV. These methods heavily relied
on the quality of the segmentation and were therefore not incredibly precise nor high-throughput.
Recently, CNNs have become the standard models for supervised image classification and are widely
used for USV call type classification but lack spatiotemporal measurements (e.g., USV duration or
average frequency). However, with accurate segmentations such as those produced by SqueakOut,
the use of hand-crafted features and traditional machine learning methods such as random forests can
reemerge as efficient and powerful alternatives for studying USV diversity across behaviors using
interpretable features.

In conclusion, this work presents a new publicly available dataset for mouse USV segmentation,
which we believe will be a valuable resource for the research community. We demonstrate the
utility of this dataset by developing SqueakOut, a fully convolutional autoencoder that achieves
high accuracy in supervised USV segmentation. The combination of our segmentation dataset with
the existing VocalMat dataset provides a comprehensive, high-quality annotated resource for USV
detection and segmentation. By providing accurate segmentation tools, we aim to enable more precise
and powerful methods for USV classification and analysis, facilitating novel approaches for studying
mouse communication and neurobiology.
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4 Materials and methods

Mouse USV dataset The annotated dataset for mouse USV segmentation is openly available on
Open Science Framework [50] at https://osf.io/f9sbt/. We welcome contributions from the community.
Anyone may submit corrections or newly annotated audio recordings to be included in the dataset. A
similar approach to this work can be used to generate segmentation labels.

SqueakOut architecture SqueakOut was implemented in PyTorch v1.7.0 [39]. The net-
work implementation is available at https://github.com/gumadeiras/squeakout. Here we provide
a brief overview of the PyTorch functions utilized to implement each layer: convolution (Conv2d),
batch normalization (BatchNorm2d), ReLU6 (ReLU6), dropout (Dropout), transposed convolution
(ConvTranspose2d), and upsampling (Interpolate).

Pre-trained SqueakOut network The SqueakOut network implementation and pre-trained weights
are available at https://github.com/gumadeiras/squeakout. We provide scripts to train SqueakOut on
a new dataset or perform inference on your data. We developed and have tested SqueakOut using
Python 3.7.10, NumPy v1.21.5 [51], Scikit-Learn v1.0.2 [52], PyTorch v1.7.0 [39], Torchvi-
sion 0.8.0, PyTorchLightning v1.4.0 [40], and the image augmentation library imgaug v0.4.0.

Segmentation metrics We used two metrics to quantify segmentation performance: pixel-wise
accuracy, and the Dice score. Pixel-wise accuracy was computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP are the true positives (correctly predicting a pixel belongs to a vocalization), TN the true
negatives (correctly predicting a pixel belongs to the background), FP the false positives (incorrectly
predicting a pixel belongs to a vocalization), and FN the false negatives (incorrectly predicting a
pixel belongs to the background). The Dice score was computed as described in Equation 2.
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