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Abstract: SARS-CoV-2 can infect alveoli, inducing a lung injury and thereby impairing the lung 

function. Healthy alveolar type II (AT2) cells play a major role in lung injury repair as well as keep-

ing alveoli space free from fluids, which is not the case for infected AT2 cells. Unlike previous stud-

ies, this novel study aims to automatically differentiate between healthy and infected AT2 cells with 

SARS-CoV-2 through using efficient AI-based models, which can aid in disease control and treat-

ment.  Therefore, we introduce a highly accurate deep transfer learning (DTL) approach that works 

as follows. First, we downloaded and processed 286 images pertaining to healthy and infected hu-

man AT2 (hAT2) cells, obtained from the electron microscopy public image archive. Second, we pro-

vided processed images to two DTL computations to induce ten DTL models. The first DTL com-

putation employs five pre-trained models (including DenseNet201 and ResNet152V2) trained on 

more than million images from ImageNet database to extract features from hAT2 images. Then, 

flattening and providing the output feature vectors to a trained densely connected classifier with 

Adam optimizer. The second DTL computation works in a similar manner with a minor difference 

in which we freeze the first layers for feature extraction in pre-trained models while unfreezing and 

training the next layers. Compared to TFtDenseNet201, experimental results using five-fold cross-

validation demonstrate that TFeDenseNet201 is 12.37 × faster and superior, yielding the highest av-

erage ACC of 0.993 (F1 of 0.992 and MCC of 0.986) with statistical significance (𝑃 < 2.2 × 10−16 

from a t-test). 

 

Keywords: SARS-CoV-2; human alveolar type 2 cells; transmission electron microscopy; deep trans-

fer learning; AI applications in respiratory diseases 

  

1. Introduction 

SARS-CoV-2 is the virus behind causing a respiratory disease, named COVID-19, in 

which the main target organ is the human lung [1]. When SARS-CoV-2 binds to ACE2 

receptor in alveolar type II (AT2) cells of alveoli in lungs, ACE2 receptor becomes occu-

pied, leading to more lung injury and thereby impaired lung function attributed to dam-

aging the alveoli [2-4]. As the number of COVID-19 patients with lung infection signifi-

cantly outnumbered healthcare workers, researchers developed AI-based techniques to 

accurately detect lung infection in COVID-19 patients using different imaging modalities.  

Hussein et al. [5] proposed a custom convolutional neural network (custom-CNN) to ac-

curately classify COVID-19 patients using two previously studied chest X-ray image da-

tasets from Kaggle and GitHub. In the first dataset, the images were categorized into three 

class labels, including COVID-19, normal (non-COVID-19), and viral pneumonia. For the 

second dataset, the images were categorized into COVID-19 and normal (non-COVID-19). 

Their custom-CNN consisted of a series of convolution and max pooling layers, followed 

by flattening the extracted feature vectors and provided to a densely connected classifier 
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composed of a stack of five dense layers interleaved with three dropout layers and two 

BatchNormalization layers. Custom-CNN was trained on a random split of the dataset 

images while testing the performance on the remaining split. Reported results on a ran-

dom 20% testing split of the first dataset demonstrating that custom-CNN achieved an 

accuracy of 0.981, precision of 0.976, recall of 0.983, and F1 of 0.973. For the second dataset, 

the custom-CNN achieved an accuracy of 0.998, a precision of 0.999, a recall of 0.997, and 

an F1 of 0.998. 

To identify pulmonary diseases using X-ray and CT scan images, Abdullahi et al. [6] 

presented a CNN named PulmoNet, composed of 26 layers using wide residual blocks (of 

two convolutional layers with dropout layer), followed by a GlobalAveragePooling layer 

and one dense layer with SoftMax activation to yield predictions. Adam optimizer was 

used with categorical cross-entropy loss.  They formulated the classification problem into 

a multiclass classification of pulmonary diseases and also reported results for the binary 

class classification task pertaining to pulmonary diseases as described as follows. The da-

taset had 16,435 images in which 883 images for bacterial pneumonia, 1,478 images for 

viral pneumonia, 3,749 for COVID-19, and 10,325 images for healthy cases. They divided 

the dataset and utilized 85:15 training to testing split ratio. Then, doing a cross-validation 

based on randomly assigning examples according to the predefined split ratio and aver-

aging results on testing according to five runs of the cross-validation. Particularly, for the 

task of testing the performance using 4 classes, they achieved an average accuracy of 0.954. 

For testing 3-class classification pertaining to bacterial pneumonia, COVID-19, and 

healthy cases, the presented model achieved an average accuracy of 0.954. Also, achieving 

an average accuracy of 0.994 for the binary class classification pertaining to discrimination 

between COVID-19 and healthy image cases. For the binary class classification between 

pneumonia and healthy image cases, their model achieved an average accuracy of 0.983. 

Talukder et al. [7] presented a deep transfer learning (DTL) approach to detect 

COVID-19 using X-ray images working as follows. First, they used two datasets, where 

the first had 2,000 COVID-19 X-Ray images pertaining to COVID-19 and normal cases and 

the second had 4,352 Chest X-Ray images pertaining to these four classes: COVID-19, nor-

mal, lung opacity, and viral pneumonia. They divided the two datasets and utilized 80:10 

training to validation split ratio while the remaining was for testing.  Image augmentation 

was done through operation such as shears, rotation, flipping, and zooming. For DTL, six 

pre-trained models (Xception, InceptionResNetV2, ResNet50, ResNet50V2, Efficient-

NetB0, and EfficientNetB4) were used. Then, freezing first layers in the feature extraction 

part of pre-trained models and unfreezing next layers, including GlobalAveragePool 

layer, two BatchNormalization layers, and two dense layers for prediction. Results 

demonstrated that EfficientNetB4 when applied to 208 testing images from the first da-

taset achieved the highest accuracy of 1.00. Moreover, EfficientNetB4 when applied to 480 

testing images from the second dataset achieved an accuracy of 0.9917 and F1 of 0.9914.   

Abdullah et al. [8] presented a hybrid DTL approach to detect COVID-19 using chest 

X-ray images. First, they downloaded the images from COVID-19 Radiography database 

at Kaggle, selecting 2413 images pertaining to COVID-19 and 6807 images related to nor-

mal cases. They divided the dataset and utilized 70:30 training (including validation) to 

testing split ratio. To induce the hybrid model, they utilized VGG16 and VGG19 pre-

trained models in which they applied the feature extraction part of these two pre-trained 

models to extract features from the image training set. Then, concatenating the output for 

the two flattened feature vectors, provided as input to train densely connected classifier 

of two dense layers and one dropout layer. Also, the input feature vectors were provided 

to train machine learning algorithms including random forest, naive Bayes, KNN, neural 

network (NN), support vector machines (SVM) with several kernels including linear, sig-

moid, and radial. Experimental results applied to the 30% testing data (i.e.,2766 images 

out of 9,220) demonstrate the superiority of the hybrid DTL approach when coupled with 

NN achieving the highest MCC of 0.814, followed by SVM with linear kernel that yielded 

an MCC of 0.805 when compared to existing pre-trained models of densely connected 
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classifier in the binary classification task. Others have proposed deep learning approaches 

to detect COVID-19 using X-ray and CT images [9-14]. 

Although these recent studies aimed to detect lung infected with SARS-COV-2 in 

COVID-19 patients, the novelty in our study is attributed to the summarized contributions 

as follows: 

(1) To the best of our knowledge, this is the first time to study lungs infected with SARS-

COV-2 at the cellular level within alveoli in human lung using images generated via 

transmission electron microscopy. Specifically, we downloaded and processed 286 

images pertaining to infected and healthy (control) human alveolar type II (hAT2) 

cells in alveoli from the electron microscopy public image archive (EMPIAR) at 

https://www.ebi.ac.uk/empiar/EMPIAR-10533/. 

(2) We formulated the problem as a binary class classification problem and inducing ten 

DTL models using two DTL computations [15], where in the first DTL computation 

we apply five pre-trained models (DenseNet201 [16], NasNetMobile [17], Res-

Net152V2 [18], VGG19 [19], and Xception [20]) to extract features from hAT2 images, 

followed by flattening the extracted features into feature vectors provided as input 

to train a densely connected classifier of three layers including two dense layers and 

one dropout layer. We refer to induced models via the first DTL computation as 

TFeDenseNet201, TFeNasNetMobile, TFeResNet152V2, TFeVGG19, and TFeXcep-

tion. For the second DTL computation, we freeze the first layers in the pre-trained 

models while unfreezing and training the next layers including a densely connected 

classifier. Induced models via such DTL computation are referred to as TFtDense-

Net201, TFtNasNetMobile, TFtResNet152V2, TFtVGG19, and TFtXception. 

(3) For fairness of performance comparisons among the ten studied DTL models, we 

evaluated the performance on the whole dataset of 286 images using five-fold cross-

validation in which we provided the same training and testing images in each run to 

each model. Then, reporting the average performance results of the five runs on test-

ing folds and reported the standard deviation. 

(4) Our conducted experimental study demonstrated that TFeDenseNet201 achieved the 

highest average ACC of 0.993, the highest F1 of 0.992 and highest MCC of 0.986 when 

utilizing five-fold cross-validation. Moreover, these performance results were statis-

tically significant (𝑃 < 2.2 × 10−16, obtained from a t-test), demonstrating the gener-

alization ability of TFeDenseNet201. In terms of measuring the training running time, 

TFeDenseNet201 was 12.37 × faster than its peer TFtDenseNet201, induced via the 

second DTL method. These results demonstrated the feasibility of studied DTL mod-

els and promoting TFeDenseNet20 as an assisting AI tool. We provide details about 

experimental study including processed datasets in Supplementary Materials. 

2. Materials and Methods 

2.1. Data Preprocessing 

In Figure 1, we present an illustration for hAT2 images employed in this study, ob-

tained from the electron microscopy public image archive (EMPIAR) at 

https://www.ebi.ac.uk/empiar/EMPIAR-10533/ (accessed on 13 March 2023) and com-

posed of  577 hAT2 images related to uninfected (control) and infected hAT2 cells [21].  

The class label distribution consisted of 326 images belonging to control hAT2 cells while 

the other 251 images belong to infected hAT2 cells.  As transmission electron microscopy 

imaging was employed to generate images, the 577 images had a 4096 × 4224 pixel resolu-

tion (i.e., 17.3015Mpx) and were stored as TIFF image files.  In our study, we randomly 

selected and processed 286 TIFF images out of 577 with the use of Image module in python 

[22], obtaining 286 JPG images with a 256 × 256 pixel resolution for addressing the classi-

fication task at hand. It is worth noting that the class distribution was balanced in which 
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143 images belong to control hAT2 images while the remaining 143 images belong to in-

fected hAT2 images. We provide preprocessed 286 JPG images in Supplementary Dataset. 

2.3. Deep Transfer Learning 

In Figure 1, we demonstrate how our deep transfer learning (DTL) approach is car-

ried out. Initially, we employed five pre-trained models: DenseNet201, NasNetMobile, 

ResNet152V2, VGG19, and Xception. As each pre-trained model consists of a feature ex-

traction part (i.e., interleaved convolutional and pooling layers) and densely connected 

classifier for feature extraction and classification, respectively, we freeze the weights (i.e., 

keep the weights unaltered) of the features extraction part while modifying the densely 

connected classifier, dealing with the binary class problem at hand rather than the mul-

ticlass classification of 1000 classes. Then, we extract features from hAT2 images via ap-

plying the feature extraction part (using unadjusted weights of a pre-trained model), fol-

lowed by training the densely connected classifiers and performing prediction to unseen 

hAT2 images. We refer to such DTL models as TFeDenseNet201, TFeNasNetMobile, 

TFeResNet152V2, TFeVGG19, and TFeXception (see Figure 1). In Table 1, we include in-

formation regarding the development of TFe-based models. All models have the same 

number of unfrozen layers, because we only trained the densely connected classifier (com-

posed of three layers) on extracted features from hAT2 images using pre-trained models. 

Therefore, the number of non-trainable parameters is 0. As the last 3D tensor output (of 

shape (8, 8, 2048) for feature extraction was the same for TFeResNet152V2 and TFeXcep-

tion. Therefore, both had the same number of parameters, as they were flattened into a 

vector of 131072 elements before feeding into the same densely connected classifier of 

three layers.  We provide details about each TFe-based model in Supplementary TFeMod-

els. 

Table 1. Details about layers and parameters for TFe-based models. 

Model  No. Layers     Frozen   Unfrozen  No. Params Trainable Non-trainable 

TFeDenseNet201 710 707  3 31,457,793 31,457,793 0 

TFeNasNetMobile 772 769  3 13,246,977 13,246,977 0 

TFeResNet152V2 567 564  3 33,554,945 33,554,945 0 

TFeVGG19 25 22  3 8,389,121 8,389,121 0 

TFeXception 135 132  3 33,554,945 33,554,945 0 

 

For the other DTL models, we freeze the weights of the bottom layers in the feature 

extraction part while we train the top layers of the feature extraction layers as well as the 

densely connected classifier. In other words, we unalter weights of the first layers in the 

feature extraction part while adjusting weights of subsequent layers. Moreover, we mod-

ify the densely connected classifier to tackle the binary class classification problem rather 

than the multiclass classification pertaining to 1000 categories. We refer to models em-

ploying such computations as TFtNasNetMobile, TFtResNet152V2, TFtVGG19, and TFtX-

ception (see Figure 2). Table 2 demonstrates the layers and parameters used for TFt-based 

models. The number of layers including those from pre-trained models in terms of feature 

extraction plus densely connected classifier of two layers. We report details of each model 

architecture in Supplementary TFtModels. 

Table 2. Details about layers and parameters for TFt-based models. 

Model  No. Layers     Frozen   Unfrozen  No. Params Trainable Non-trainable 

TFtDenseNet201 709 649  60 49,779,777 33,605,633 16,174,144 

TFtNasNetMobile 771 734  37 17,516,693 13,587,361 3,929,332 

TFtResNet152V2 566 528  38 91,886,593 48,525,825 43,360,768 

TFtVGG19 24 17  7 28,413,505 17,828,35 10,585,152 

TFtXception 134 129  5 54,416,425 36,718,593 17,697,832 
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Figure 1. Flowchart showing our deep transfer learning approach for predicting hAT2 cells infected 

with SARS-CoV-2. Data Preprocessing: To obtain hAT2 images, healthy and infected hAT2 images 

using transmission electron microscopy (TEM) imaging were downloaded and processed from 

https://www.ebi.ac.uk/empiar/EMPIAR-10533/. Deep Transfer Learning:  hAT2 images are pro-

vided to a pre-trained CNN of frozen layers for feature extraction, followed by a trained new clas-

sifier to discriminate between healthy and infected hAT2 cells. 

 

Figure 2. Deep transfer learning composed of a pre-trained CNN with frozen and unfrozen layers 

for feature extraction, followed by a trained new classifier to discriminate between healthy and in-

fected hAT2 cells. 

In the training phase, we employed Adam optimizer with binary crossentropy loss 

when updating the model parameters. It can be seen that transfer learning is ascribed to 

the unadjusted weights from pre-trained models that were previously trained on more 
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than million images from ImageNet dataset.  In terms of testing the performance to unseen 

hAT2 images, predictions are mapped to infected if their values are greater than 0.5. Oth-

erwise, predictions are mapped to control.  

3. Results  

3.1. Classification Methodology 

In this study, we adapted five pre-trained models: DenseNet201, NasNetMobile, Res-

Net152V2, VGG19, and Xception. Each pre-trained model was trained on over a million 

images from ImageNet dataset for the multiclass image classification task of 1000 class 

labels. Then, we developed TFe-based models as follows. We utilized the feature extrac-

tion part of pre-trained models by freezing all layers to extract features from hAT2 images, 

which are then flattened and provided to densely connected classifier (of three layers), 

trained from scratch for the task of classifying hAT2 cells into control (i.e., uninfected) or 

infected with SARS-CoV-2. For the TFt-based models, we froze the first layers in the fea-

ture extraction part of pre-trained models while unfroze consecutive layers in which the 

last output was flattened and then provided to densely connected classifier of two layers, 

trained from scratch to address the binary classification task. For all models, we employed 

Adam optimizer with binary crossentropy loss function. We assigned the following opti-

mization parameters during the training phase:  0.00001 for the learning rate, 20 for the 

batch size, and 10 for the number of epochs. We evaluated the performance of each model 

using accuracy (ACC), F1, and Matthews correlation coefficient (MCC), calculated as fol-

lows [23, 24]:  

                 𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

                                 𝐹1 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2) 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (3) 

where TP is true positive, referred to the number of infected hAT2 images that were 

correctly predicted as infected. FN is false negative, referred to the number of infected 

hAT2 images that were incorrectly predicted as uninfected (control). TN is true negative, 

referred to the number of control hAT2 images that were correctly predicted as control. 

FP is false positive, referred to the number of control hAT2 images that were incorrectly 

predicted as infected. 

For reporting the performance results on the whole dataset of 286 hAT2 images, we 

utilized five-fold cross-validation in which we randomly assigned images into five folds. 

Then, in the first run, we assigned images of the first fold for testing while assigning the 

remaining examples in the other folds for training, followed by performing prediction to 

examples in the testing fold and recording results. Such a process was repeated in the 

remaining four runs in which we recorded the performance on testing folds. Then, taking 

the average performance calculated during the five runs to be results on five-fold cross-

validation. 

3.2. Implementation Details 

To run the experiments, we used Anaconda distribution, creating an environment 

with Python (Version 3.10.14) [15], followed by installing the following libraries: cuda-

toolkit (Version 11.2) [25],  cudnn (Version 8.1.0) [26], and tensorflow (Version 2.8) [27]. 

Then, installing Jupiter notebook [28, 29] to write and execute python code for deep learn-

ing models with Keras on our local NVIDIA GeForce RTX 2080Ti GPU with 4352 CUD 

cores, 11GB of GDDR6 memory, 1545 MHz of boost clock speed, and 14 Gbps of memory 

clock speed. Other libraries were used for running the experiments, including pandas and 
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NumPy for data processing while matplotlib and Sklearn were utilized for confusion ma-

trix visualization and performance evaluation, respectively [30, 31]. Also, we utilized 

ggplot2 in R to visualize graphs [32].  

3.3. Classification Results 

3.3.1. Training Results 

In Figure 3, we report average training accuracy and loss during running five-fold 

cross-validation of ten models, trained for 10 epochs.  Accuracy is calculated in terms of 

correctly classified training examples while loss is calculated in terms of the binary 

crossentropy. These two measures, accuracy, and loss, demonstrate the ability of models 

to learn from data and thereby will be capable of classifying hAT2 images during testing. 

At the first epoch, it can be seen that TFeXception generated the highest average accuracy 

of 0.78 (and lowest average loss of 0.46), followed by TFeDenseNet201, generating an av-

erage accuracy (and loss) of 0.68 (and 0.60). TFtDenseNet201 generated the lowest average 

accuracy (and loss) of 0.42 (and 1.67). At the second epoch, TFeXception adapting more to 

training data via generating the highest average accuracy of 0.96 (and lowest average loss 

of 0.13), followed by TFeDenseNet201, achieving and second highest average accuracy of 

0.95 (with average loss of 0.17). As the number of epochs increases, the accuracy and loss 

increase and decrease, respectively, in which all models, except TFeVGG19, achieve an 

average accuracy above 0.998 and an average loss close to 0. For each epoch, we include 

average accuracy and loss at Supplementary Epoch. 

 

  
Figure 3. Average ACC and loss of five training folds for each epoch. ACC is accuracy. 

 

Figure 4 illustrates the total running time for each model induction process during 

running five-fold cross-validation. TFeXception is the fastest. Particularly, TFeXception is 

89.03 × faster than its counterpart, TFtXception. The second fastest method is TFeDense-

Net201, which is 12.37 × faster than TFtDenseNet201. The third fastest method is 

TFeResNet152V2, which is 9.26 × faster than TFtResNet152V2. The slowest mode among 

TFe-based methods is TFeVGG19, which is 11.42 × faster than TFtVGG19. The running 

time difference between the fastest two methods, TFeXception and TFeDenseNet201, is 

marginal. Particularly, they differ by less than 1 s. These results demonstrate computa-

tional efficiency of TFe-based models, attributed to fewer layers during the training phase.  
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Figure 4. Running time for each method during the training phase in five-fold cross-vali-

dation. 

3.3.2. Testing Results 

In Figure 5, boxplots demonstrate generalization (testing) results of ten models when 

employing five-fold cross-validation. The median results are displayed by the horizontal 

bold lines crossing each box. It can be noticed that TFeDenseNet201 is the best performing 

model, achieving the highest median of 1.00 according to the three performance measures 

(i.e., ACC, F1, MCC), where the standard deviation σ is 0.009 (0.009, and 0.017) for ACC 

(F1, and MCC).  The second-best performing model is TFeXception, achieving median 

ACC of 0.982 (σ  =  0.009), median F1 of 0.982 (σ  =  0.009), and median MCC of 0.966 (σ = 

0.017). The third-best performing model is TFtVGG19, achieving median ACC of 0.982 (σ 

= 0.017), median F1 of 0.982 (σ = 0.018), and median MCC of 0.966 (σ = 0.030). The worst-

performing model is TFtResNet152V2, yielding median ACC of 0.785 (σ  =  0.064), median 

F1 of 0.782 (σ  =  0.071), median MCC of 0.590 (σ  =  0.119). Although TFtVGG19 and 

TFeXception achieve the same results, the standard deviation for TFtVGG19 demonstrates 

greater variability in performance results, attributed to degradation in performance in two 

testing folds when compared to TFeXception. We report median results in Supplementary 

BoxplotMed. 

   

Figure 5. Boxplots show testing (generalization) performance results of ten models during 

five-fold cross-validation. ACC is accuracy. MCC is Matthews correlation coefficient. 

Table 3 records five-fold cross-validation results, which are calculated on the basis of 

averaging performance results on five testing folds. Also, we record the standard devia-

tion.  It can be noticed that TFeDenseNet201 is the best-performing model, achieving the 
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highest average ACC of 0.993 (σ =  0.008), the highest average F1 of 0.992 (σ =  0.009), and 

the highest average MCC of 0.986 (σ = 0.018). TFeXception is the second-best performing 

model, yielding an average ACC of 0.989 (σ = 0.008), an average F1 of 0.989 (σ = 0.009), an 

average MCC of 0.979 (σ = 0.018).  TFtVGG19 is the third-best performing model, achiev-

ing an average ACC of 0.982 (σ = 0.015), an average F1 of 0.981 (σ = 0.018), an average MCC 

of 0.966 (σ = 0.033). The worst-performing model is TFtResNet152V2, generating an aver-

age ACC of 0.790 (σ = 0.058), an average F1 of 0.787 (σ = 0.071), an average MCC of 0.608 

(σ = 0.133).  These results demonstrate the superiority of TFe-based models over TFt-based 

models. 

Figure 6 illustrates the combined confusion matrices of test predictions when run-

ning five-fold cross-validation. The best-performing model, TFeDeNseNet201, accurately 

predicted a total of 284 out of 286 hAT2 images while incorrectly predicted 2 images in 

which the ground truth was infected (positive) and predicted as control (negative), 

counted as 2 FN. The second-best performing model, TFeXception, accurately predicting 

283 hAT2 images while 3 images incorrectly predicted as negative and their actual label is 

positive, counted as 3 FN. TFtVGG19, the third-best performing model, accurately pre-

dicted 281 hAT2 images and incorrectly predicted 5 as negative hAT2 images while their 

actual label is positive, counted as 5 FN. The worst-performing model, TFtResNet152V2, 

accurately predicted 226 hAT2 images. Thirty-one hAT2 images were predicted as positive 

while their label is negative, counted as 31 FP. Moreover, twenty-nine hAT2 images were 

predicted as negative and their actual label was positive, counted as 29 FN. 

Table 3. Average performance results during the five-fold cross-validation on test folds for ten mod-

els. ACC is accuracy. MCC is Matthews correlation coefficient. Bold refers to a model achieving the 

highest performance results. 

Model ACC F1 MCC 

TFeDenseNet201 0.993(0.008) 0.992(0.009) 0.986(0.018) 

TFeNasNetMobile 0.975(0.020) 0.975(0.023) 0.951(0.046) 

TFeResNet152V2 0.958(0.023) 0.958(0.025) 0.917(0.052) 

TFeVGG19 0.947(0.018) 0.944(0.023) 0.899(0.038) 

TFeXception 0.989(0.008) 0.989(0.009) 0.979(0.018) 

TFtDenseNet201 0.937(0.044) 0.938(0.049) 0.877(0.099) 

TFtNasNetMobile 0.937(0.016) 0.938(0.018) 0.875(0.037) 

TFtResNet152V2 0.790(0.058) 0.787(0.071) 0.608(0.133) 

TFtVGG19 0.982(0.015) 0.981(0.018) 0.966(0.033) 

TFtXception 0.934(0.065) 0.938(0.066) 0.872(0.140) 

Figure 6. The combined confusion matrices of five testing folds during the running of five-fold cross-

validation for ten models. 

     

     

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.22.590420doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.22.590420


 10 of 14 
 

 

         In Figure 7, we get computational insights for generalization ability of ten studied 

models, applied to testing. It can be seen from the boxplots and strip charts that pre-

diction differences for TFeDenseNet201 between control hAT2 against infected hAT2 

were statistically significant (P < 2.2 × 10−16, obtained from a t-test), suggesting that 

the TFeDenseNet201 model is a general predictor for control or infected hAT2 pre-

diction.  The prediction differences for the second- and third-best performing models 

(i.e., TFeXception and TFtVGG19) were not significant (P =  0.4838 and P =  0.1442, 

respectively, obtained from a t-test). These results suggest that these two models are 

specific, rather than general predictors for hAT2. Other two models, TFeVGG19 and 

TFtNasNetMobile, exhibited significant prediction differences between control and 

infected hAT2 (P =  3.84 × 10−3 and P =  4.0 × 10−2, respectively, obtained from a t-

test), although their prediction performance is not outperforming TFeDenseNet201. 

Prediction differences for all other models between control and infected hAT2 were 

not significant, suggesting that these models are specific predictors, and we included 

their P-values in Supplementary BoxStripPval. 

 

Figure 7. Boxplots and strip charts of predicted hAT2 for control and infected cells on the 

whole testing folds related to ten models. 

4. Discussion 

To discriminate between control and infected hAT2 cells, our approach consisted of 

two parts: data preprocessing followed by DTL. In the data preprocessing, we randomly 

pulled a sample of 286 images pertaining to infected and control hAT2 cells, followed by 

using Image library in python to convert 286 TIFF images of a 4096 × 4224 pixel resolution 

to 286 jpg images of a 256 × 256 pixel resolution, which are included in Supplementary 

Dataset. Then, we conducted two DTL computations using five pre-trained models, 

namely DenseNet201, NasNetMobile, ResNet152V2, VGG19, and Xception. The first DTL 

transfers the knowledge by applying the feature extraction part of pre-trained models to 

hAT2 images in the training set, extracting features that are flattened and provided as in-

put to a densely connected classifier of three layers, trained from scratch to deal with two 

class labels (i.e., control and infected). We refer to models using this type of transfer learn-

ing computations as TFeDenseNet201, TFeNasNetMobile, TFeResNet152V2, TFeVGG19, 

and TFeXception. The second DTL computation involves the use of the first layers in pre-
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trained models for feature extraction while training from scratch the next layers including 

the densely connected classifier, dealing with discriminating between control and infected 

hAT2 images. Such computation leading to another five DTL models, including TFtDense-

Net201, TFtNasNetMobile, TFtResNet152V2, TFtVGG19, and TFtXception. 

When we employed five-fold cross-validation, we divided the dataset into training 

and testing in which the former had examples from four folds while the latter had exam-

ples from the remaining one fold. Then, we performed training monitoring the accuracy 

and loss on the training fold. After finishing from ten epochs, we recorded the loss and 

accuracy results, and we induced a total of ten DTL models. Then, we applied each DTL 

to examples in the testing fold and recorded performance results. We repeated such a pro-

cess for four more runs recording the results, followed by taking the average loss and 

accuracy (see Figure 3) and reporting average testing results and standard deviation (see 

Table 3). Experimental results demonstrate the feasibility of DTL in tackling the studied 

classification task in which TFeDenseNet201 generated the highest average ACC of 0.993, 

highest average F1 of 0.992, the highest average MCC of 0.986. 

It is worth noting that frozen layers in DTL contributed to reducing the number of 

trainable layers and thereby the mitigation of overfitting. We introduced the dropout layer 

in the densely connected classifier of TFe-based models to reduce overfitting. In the TFe-

based models, we just trained the densely connected classifier composed of three layers 

while we trained top layers in the feature extraction part in addition to densely connected 

classifier for TFt-based models. Therefore, we had three unfrozen layers in TFe-based 

models (see Table 1) while having different number of unfrozen layers for TFt-based mod-

els (see Table 2). 

In terms of the computational training running time, the two DTL computations were 

efficient. The DTL computation inducing TFe-based models was more efficient, attributed 

to the training of just the densely connected classifier. Therefore, it is no surprise that the 

training time to induce DTL models was longer for computations involving the induction 

of TFt-based models than computations involved in inducing TFe-based models (see Fig-

ure 4).  The slowest TFe-based model was TFeVGG19, which was 11.42 × faster than 

TFtVGG19, the TFt-based model. These demonstrate that DTL computation inducing TFe-

based models can efficiently address the task of discriminating between infected and con-

trol hAT2 cells. 

 

5. Conclusions and Future Work 

To address the novel target task of classifying control and infected human alveolar 

type II (hAT2) cells with SARS-CoV-2, we assess and present ten deep transfer learning 

(DTL) models derived as follows. First, we downloaded and processed a total of 286 im-

ages from the electron microscopy public image archive, pertaining to control and infected 

hAT2 cells with SARS-CoV-2. Second, we utilized five pre-trained models (DenseNet201, 

NasNetMobile, ResNet152V2, VGG19, and Xception), previously trained on more than a 

million images from the ImageNet database.  Then, applying the feature extraction part 

in pre-trained models to extract features from hAT2 images in the training set, followed 

by performing a flattening step before providing the feature vectors to a modified densely 

connected classifier with Adam optimizer, trained from scratch to discriminate between 

control and infected samples. Another DTL computation involves freezing the first layers 

in the feature extraction part of pre-trained models while unfreezing and training the next 

layers including a modified densely connected classifier coupled with Adam optimizer. 

Experimental results on the entire dataset of 286 hAT2 images employing five-fold cross-

validation demonstrate (1) the efficiency of TFeDenseNet201 model, which  was 12.37 × 

faster than its counterpart, TFtDenseNet201, during the training time ; (2) the superiority 

of TFeDenseNet201 achieving the highest average ACC of 0.993 (σ  =  0.008), the highest 

average F1 0.992 (σ  =  0.009), and highest average MCC of 0.986 (σ  =  0.018), outperform-

ing its counterpart,TFtDenseNet201, that achieved an average ACC of 0.937 (σ  =  0.044), 
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an average F1 of 0.938 (σ  =  0.049), an average MCC of 0.877(σ  =  0.099); (3) significant 

results achieved via TFeDenseNet201 (P < 2.2 × 10−16 , obtained from a t-test) while 

TFtDenseNet201 did not establish significance  (P  =  0.093, obtained from a t-test); (4) the 

feasibility and reliability of presented TFeDenseNet201 (among other DTL models) as an 

assisting AI tool for classifying hAT2 cells based on medical imaging. 

Future work can include: (1) inducing medical-based imaging models derived from 

DTL and thereby addressing efficiently different target tasks; (2) developing ensemble 

models using DTL methods and evaluating their generalization performance; and (3) in-

tegrating genomic, clinical information, and features using DTL models to improve the 

prediction performance in problems from biology and medicine. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

DL Deep Learning 

DTL Deep Transfer Learning 

DenseNet Dense Convolutional Network 

NasNet Neural Architecture Search Network 

ResNet Residual Neural Network 

VGG Visual Geometry Group 

Xception Extreme Inception 

CNN Convolutional Neural Network 

hAT2 Human Alveolar Type II 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 

COVID-19 Coronavirus Disease 19 

Adam Adaptive Moment Estimation 

EMPIAR Electron Microscopy Public Image Archive 

CT Computerized Tomography 

TEM Transmission Electron Microscope 

ACC Accuracy 

MCC Matthews Correlation Coefficient 
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