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Abstract 1

2

The Caucasian dwarf goby Knipowitschia cf. caucasica is a new invasive alien Gobiidae spreading in the
Lower Rhine since 2019. Little is known about the invasion biology of the species and further investiga-
tions to reconstruct the invasion history are lacking genomic resources. We assembled a high-quality
chromosome-scale reference genome of Knipowitschia cf. caucasica by combining PacBio, Omni-C and
Illumina technologies. The size of the assembled genome is 956.58 Mb with a N50 scaffold length of 43 Mb,
which includes 92.3 % complete vertebrate/Actinopterygii Benchmarking Universal Single-Copy Orthologs.
98.96 % of the assembly sequence was assigned to 23 chromosome-level scaffolds, with a GC-content of
42.83 %. Repetitive elements account for 53.08 % of the genome. The chromosome-level genome contained
49,622 transcripts with 42,926multi-exons, of which 45,512 genes were functionally annotated. In summary,
the high-quality genome assembly provides a fundamental basis to understand the adaptive advantage of
the species.
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Introduction 16

Starting in 1999, few years after the opening of the Rhine-Main-Danube-Channel, a continuous succes- 17

sion of four gobiid fish invasions has been documented in the River Rhine, particularly the Lower Reaches 18

(Borcherding, Staas, et al., 2011). The fifth andmost recent invasion of the Caucasian dwarf goby Knipowitschia 19

cf. caucasica is exceeding the preceeding goby invasions both in the rate of population growth and in compe- 20

tition with the resident fish community including native and invasive species (Borcherding, Aschemeier, et al., 21

2021, and unpublished data from catches in 2022). Knipowitschia cf. caucasica ranks to the highest trophic 22

level in the ecological food chain of the aquatic habitat, feeding on zooplankton and small chironomid larvae 23

frommakrozoobenthos (Borcherding, Aschemeier, et al., 2021; Didenko et al., 2020). It is accordingly expected 24

that the dwarf goby invasion will have a strong impact on the species community and all associated ecological 25

processes of the River Rhine and associated water bodies. Since coordinated monitoring and management 26

of fish communities is highly benefiting from the integration of genetic and genomic analyses (Deiner et al., 27

2017; Pont et al., 2023; Tsuji et al., 2022), there is an urgent need for genomic resources of the dwarf goby, 28

with a high-quality reference genome as the fundamental basis for high-resolution analyses. Population ge- 29

nomic analyses will furthermore allow for the reconstruction of the invasion history of the species and help 30

to identify routes of invasion (Jaspers et al., 2021) and processes of rapid adaptation to local conditions in the 31

novel environment (Szűcs et al., 2017; Yin et al., 2021). 32

33

Material and methods 34

Samples, DNA and Sequencing 35

Two adult individuals of the Caucasian dwarf goby Knipowitschia cf. caucasica (Figure 1) have been sampled in 36

the River Rhine back water channel Bislich-Vahnum (North-RhineWestphalia, Germany) in summer 2021 (sam- 37

pling permission 602/00038/21 from theULB KreisWesel 25.03.2021). Due to theirmorphological distinctness, 38

morphological identification was straightforward. Fish were narcotised with Tricaine Methanesulfonate (MS- 39

222) and then transferred to liquid nitrogen and preserved at -80°C. 40

41

Figure 1. Photo of the sequenced goby species Knipowitschia cf. caucasica and sampling location (red dot) in
Germany. Photo taken by Fabian Gräfe.

The genome of Knipowitschia cf. caucasica was sequenced by using a combination of PacBio Sequel II se- 42

quencing in CLR mode (Genome Technology Center (RGTC) at Radboudumc, Nijmegen, The Netherlands), Illu- 43

minaNovaSeq 6000 sequencingwith paired-end 150 bp (PE150) andHi-C data obtained byOmni-C sequencing 44

(Dovetails Genomics). High-molecular-weight (HMW) DNA used for PacBio and Illumina NovaSeq sequencing 45
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was extracted from muscle tissue of one single individual following the phenol/chloroform extraction proto- 46

col (Sambrook and Russel, 2001). Hi-C library was constructed using the Dovetail® Omni-C® Kit (Dovetails 47

Genomics) with a second individual (124.4 mg of muscle tissue as input material) and processed according 48

to the Omni-C Proximity Ligation Assay protocol version 1.0. The concentration and purity of the DNA was 49

assessed using a Nanodrop spectrophotometer and Qubit Fluorometer with the Qubit dsDNA High Sensitiv- 50

ity Assay kit. Fragment size distribution was evaluated by running the DNA sample on the Tapestation 2200 51

system to ensure that most DNA molecules were larger than 30 kb. 52

RNA was extracted from different tissues (gills, gonads, skin, liver, eyes, muscle) from one male individual 53

by using the Quick-RNA MiniPrep plus Kit (Zymo Research, USA). Tissues were placed in tubes filled with 800 54

µl DNA/RNA shield and lysed via bead beating (speed 4 M/S, 1x30s and 1x10s). RNA extraction was done ac- 55

cordingly to the manufacturers protocol, with elution in 70 µl. The concentration and purity of the RNA was 56

primarily assessed using a Nanodrop spectrophotometer and samples were pooled in the same concentra- 57

tion for a final sample. Quality of the sample was checked with Agilent 5400 bioanalyzer. A mRNA library with 58

poly A enrichment was prepared and sequenced on a Illumina Novaseq machine to yield 50 millions pairs of 59

150-bp reads. 60

61

Genome assembly and annotation 62

Illumina read quality was visualized with FastQC v0.11.9 (Andrews, 2010). Raw Illumina reads were trimmed 63

for quality and adpaters were removed using Trimmomatic v0.39 (Bolger et al., 2014) with options LEADING:3 64

TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:50. PacBio long reads were converted into fastq files with sam- 65

tools 1.13 (Danecek et al., 2021) and assembled with three genome assembly tools including Flye 2.9 with 66

default parameter settings (Kolmogorov et al., 2019), wtdbg2 with -L set to 5000 recommended for PacBio 67

reads (Ruan and Li, 2020) and Raven v1.7.0 with default parameters (Vaser and Šikić, 2021). All three assem- 68

blies were compared with SeqKit stats (Shen et al., 2016) and assembly-stats (Challis, 2017). Assembly size, 69

contiguity, BUSCO completeness and k-mer completeness were further checked for the two best genome as- 70

semblies (flye and raven). Ortholog completeness was analysed by using BUSCO v5.5.2 (Manni et al., 2021) 71

with actinopterygii_odb10 (Creation date: 2021-02-19, number of genomes: 26, number of BUSCOs: 3640). 72

K-mer completeness was analysed by using the tool KAT (Mapleson et al., 2016) and the KAT comp module. 73

The best assembly with regards to assembly size, BUSCO completeness and k-mer completeness was used 74

for further downstream anaylses. 75

To obtain chromosome resolution of the assembly, we usedOmni-C reads for Hi-C scaffolding of the contigs 76

using instaGRAAL with parameters -l 5 -n 100 -c 1 -N 5 (Baudry et al., 2020). Automatic curation was done with 77

instagraal-polish andusing the -j parameter to indicate the number ofN’s to put in the gaps (-j NNNNNNNNNN). 78

For further downstream analyses the instaGRAAL assembly file was filtered for contigs larger than 10 Mb with 79

BBmap (BBtools 2013) to only use chromosome-level scaffolds. Gaps created during the scaffolding process 80

were closed with PacBio data using TGS-GapCloser (Xu et al., 2020) with –tgstype pb without error correction 81

(–ne). Gap-filled scaffolds were polished with HyPo (Kundu et al., 2019) by using mapped short (Illumina) 82

and long reads (PacBio). The genome was analyzed using BlobToolKit 4.0.7 including BUSCO scores (Challis 83

et al., 2020). A Hi-C map for the final assembly was produced using hicstuff (Matthey-Doret et al., 2020) for 84

contact map. To assess the assembly metrics, the estimated assembly completeness was calculated with KAT 85

(Mapleson et al., 2016). BUSCO completeness of the final genomewas analysed by using BUSCO v5.4.7 (Manni 86

et al., 2021). 87

Repetitive elements were identified de novo with RepeatModeler version 2.0.1. Repetitive DNA and soft- 88

masking was performed with RepeatMasker version 4.1.1 (Smit et al., 2013) using the repeat library previ- 89

ously identified via RepeatModeler and skipping the bacterial insertion element check (-no_is) and run with 90

rmblastn version 2.10.0+ (Flynn et al., 2020). The masked genome assembly was used for structural annota- 91

tion together with the Illumina short reads and the database vertebrata_odb10 (Creation date: 2021-02-19, 92

number of genomes: 67, number of BUSCOs: 3354) using the BRAKER3 pipeline (Gabriel et al., 2023). 93
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For the functional annotation of the final genome assembly with InterProScan-5.59-91.0 (Jones et al., 2014) 94

the needed sequencing data were uploaded to the Galaxy web platform provided by the Galaxy Commu- 95

nity (2022), and we used the public server at usegalaxy.eu. The following parameters were set for the In- 96

terProScan run: -dp –seqtype p –applications TIGRFAM, FunFam, SFLD, SUPERFAMILY, PANTHER, Gene3D, 97

Hamap, PrositeProfiles, Coils, SMART, CDD, PRINTS, PIRSR, PrositePatterns, AntiFam, Pfam, MobiDBLite, PIRSF 98

–pathways –goterms. 99

Moreover, we extracted the mitochondrial genome from the assembly by using MitoHiFi 3.2 (Uliano-Silva 100

et al., 2023) with MitoFinder (Allio et al., 2020). 101

102

Results 103

The long-read assembler Flye (Kolmogorov et al., 2019) generated the best out of three obtained assemblies. 104

This assembly consisted of 16,269 contigs (966 Mb total contig length). Contigs displayed high contiguity with 105

an N50 length of 149.4 kb. The integrity was demonstrated by 90.52% BUSCO gene completeness (single 106

98.42%, duplicated 1.58%) using the actinopterygii_odb10 reference set. 107

Figure 2. A. Snailplot produced by Blobtoolkit2 showing assembly metrics, including scaffold statistics (top
left), BUSCO completeness based on the actinopterygii_odb10 reference set (top right), and base

composition (bottom right) shown by dark/light blue rings. The inner radial axis (gray) shows the length of
each contig in descending order. Dark orange and light orange portions represent the N50 and N90 scaffold
lengths, respectively. The genome has a total length of 957 Mb with a maximum contig length of 59.2 Mb
(shown in red). Distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the

longest scaffold present in the assembly (59,227,272 bp, shown in red). Orange and pale-orange arcs show
the N50 and N90 scaffold lengths (43,016,011 bp and 33,193,346 bp), respectively. B. BlobToolKit

GC-coverage plot. Scaffolds are color-coded based on their phylum, while circles are scaled proportionally to
scaffold length. Histograms depict the distribution of the total scaffold length along each axis.

Contigs were scaffolded into 23 chromosome-scale scaffolds (956.6 Mb in length, 98.87% assembly length, 108

43 Mb scaffold N50 length) using the Hi-C data (Figure 2B). BUSCO scores (Manni et al., 2021) of the final 109

genome assembly after gap-closing and polishing resulted in 92.3% gene completeness (single 98.72%, dupli- 110

cated 1.28%) using the actinopterygii_odb10 reference set, 1.2% of the BUSCO genes appeared duplicated for 111
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the assembly (Figure 2A). 112

Gene annotation predicted a total of 49,807 genes of which 185 genes were duplicated. The final genome 113

revealed a total of 49,622 transcripts distributed across 42,541 loci, with 42,926 transcripts characterized as 114

multi-exon, of which 45,512 transcripts were functionally annotated. BUSCO analysis recovered 85.1% BUSCO 115

gene completeness (single 69.9%, duplicated 15.2%) using the vertebrata_odb10 reference set. KAT analysis 116

based on Illumina reads and the collapsed assembly showed two peaks of k-mer multiplicity; a heterozygous 117

peak at 24X and a homozygous peak at 48X, with almost all k-mers represented exactly once in the homozy- 118

gous peak of the assembly as expected. (Figure 3A). The estimated assembly completeness of the final as- 119

sembly calculated with KAT was 96.64%. Chromosome-scale scaffolds were labeled by decreasing size. The 120

remaining 1.03% unplaced sequences were smaller than 10,000 kb. The chromosome-level scaffolds showed 121

relatively consistent contact patterns, representing well individualized entities in the contact map (Figure 3B). 122

The mitochondrial genome has also been assembled and is 16,377 bp in length. 123

Figure 3. A. KAT comparison of the k-mers in the Illumina dataset versus the final genome assembly. B. Hi-C
contact map, with a binning of 3000 and normalization, for the final genome assembly. All 23 chromosomes

are shown in order of size from left to right and top to bottom.

The repeat content was identified via RepeatModeler and resulted in a non-redundant library of 2,812 con- 124

sensus sequences of repeat families (Supplement https://doi.org/10.5281/zenodo.10784873). These repeats 125

accounted in total for 53.08% (507.8 Mb) of the assembled genome. 126

127

Discussion 128

With the benefit of PacBio sequencing, genome assembly was performed with three different approaches, 129

and we selected the most performant software (Flye) for contig construction. Here we present the complete 130

genome sequence of the invasive Gobiidae species Knipowitschia cf. caucasica, generated using Illumina and 131

PacBio platforms, to achieve an assembly of approximately 956.58 Mb (scaffold N50 of 43 Mb) and high con- 132

tiguity with 49,622 transcripts (vertebrata) of which 45,512 transcripts were functionally annotated. In com- 133

parison, the benthic round goby Neogobius melanostomus genome is 1 Gb in size with a gene annotation 134

prediction of 38,773 genes and 39,166 proteins reaching a BUSCO completeness of 86.9 % (Actinopterygii) 135

(Adrian-Kalchhauser et al., 2020). 136

137

Studying population genomics and establishing reference genomes for invasive species plays a crucial role 138

in advancing our comprehension of biological invasions and aids in the proactive detection and management 139

of these invasive species. Despite a global increase in invasion rates, the field of "invasion genomics" is still 140
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in its infancy. In a comprehensive review, it was noted that only 32% of species listed on the International 141

Union for Conservation of Nature’s "100 Worst Invasive Alien Species" have undergone studies utilizing pop- 142

ulation genomic data. Furthermore, for over 50% of the species on this list, a reference genome is yet to be 143

established (Matheson and McGaughran, 2022). Therefore, the assembly of reference genomes for invasive 144

species is imperative and essential to unravel the role of genome-driven processes in facilitating invasion, and 145

making them publicly available serves as a crucial step. 146

147
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