Abstract
Keyboard typing with finger movements is a versatile digital interface for users with diverse skills, needs, and preferences. Currently, such an interface does not exist for people with paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted flexion/extension movements of three finger groups on the right hand, or both hands, and demonstrated its flexibility in two dominant typing paradigms. The first paradigm is “point-and-click” typing, where a BCI user selects one key at a time using continuous real-time control, allowing selection of arbitrary sequences of symbols. During cued character selection with this paradigm, a human research participant with paralysis achieved 30-40 selections per minute with nearly 90% accuracy. The second paradigm is “keystroke” typing, where the BCI user selects each character by a discrete movement without real-time feedback, often giving a faster speed for natural language sentences. With 90 cued characters per minute, decoding attempted finger movements and correcting errors using a language model resulted in more than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance and enabled further flexibility by the simultaneous selection of multiple characters as well as efficient decoder estimation across paradigms. Overall, the high-performance interface is a step towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.
Competing Interest Statement
The MGH Translational Research Center has clinical research support agreements with Neuralink, Synchron, Reach Neuro, Axoft, and Precision Neuro, for which LRH provides consultative input. MGH is a subcontractor on an NIH SBIR with Paradromics. Mass General Brigham (MGB) is convening the Implantable Brain-Computer Interface Collaborative Community (iBCI-CC); charitable gift agreements to MGB, including those received to date from Paradromics, Synchron, Precision Neuro, Neuralink, and Blackrock Neurotech, support the iBCI-CC, for which LRH provides effort. JMH is a consultant for Neuralink and Paradromics, serves on the Medical Advisory Board of Enspire DBS, and is a shareholder in Maplight Therapeutics. He is also an inventor of intellectual property licensed by Stanford University to Blackrock Neurotech and Neuralink.