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Decline in spatial context memory emerges in midlife, the time when most females transition from pre- to post-menopause. 
Recent evidence suggests that, among post-menopausal females, advanced age is associated with functional brain 
alterations and lower spatial context memory. However, it is unknown whether similar effects are evident for white matter 
(WM) and, moreover, whether such effects contribute to sex differences at midlife. To address this, we conducted a study 
on 96 cognitively unimpaired middle-aged adults (30 males, 32 pre-menopausal females, 34 post-menopausal females). 
Spatial context memory was assessed using a face-location memory paradigm, while WM microstructure was assessed 
using diffusion tensor imaging. Behaviorally, advanced age was associated with lower spatial context memory in post-
menopausal females but not pre-menopausal females or males. Additionally, advanced age was associated with 
microstructural variability in predominantly frontal WM (e.g., anterior corona radiata, genu of corpus callosum), which was 
related to lower spatial context memory among post-menopausal females. Our findings suggest that post-menopausal 
status enhances vulnerability to age effects on the brain’s WM and episodic memory. 
 
Keywords: Episodic memory, aging, midlife, white matter, menopause, sex differences. 
 

Introduction 
Aging is associated with decline in episodic memory – our 
ability to encode and retrieve past events in rich contextual 
detail (Grady, 2012; Tulving, 1972). Accumulating evidence 
indicates that age-related episodic memory decline, as-
sessed using item-location spatial context memory tasks, be-
gins in midlife and is associated with functional alterations 
in prefrontal and occipito-temporal cortical regions 
(Ankudowich et al., 2016; Cansino, 2009; Cansino et al., 
2012; Kwon et al., 2016). Decline in spatial context memory 
is also linked to smaller posterior hippocampal volumes 
(Snytte et al., 2022) and greater functional connectivity be-
tween posterior hippocampus and fronto-parietal/occipital 
regions (Ankudowich et al., 2019), the latter of which seems 
to emerge at midlife. Collectively, these findings highlight 
midlife as a critical period in which episodic memory de-
cline and associated structural/functional brain changes 
first arise and underscore the sensitivity of spatial context 
memory tasks in detecting this decline. 

Notably, midlife is the time at which most females 
experience spontaneous menopause and transition from 
pre- to post-menopause (Harlow et al., 2012). Many females 
report cognitive difficulties, including memory problems, 
during the menopausal transition (Greendale et al., 2020). 
This raises the possibility that prior reports of age-related 
spatial context memory decline at midlife may be driven (in 

part) by post-menopausal females, and that menopause sta-
tus may contribute to the presence of sex differences in the 
effect of age on episodic memory at this critical period. In-
deed, recent studies have observed sex differences in the ef-
fect of chronological age on spatial context memory-related 
functional activity and connectivity (Subramaniapillai et al., 
2019, 2022; Wang et al., 2022).  

To our knowledge, only two neuroimaging studies 
have explored the effect of menopause status on the neural 
correlates of episodic memory, both using fMRI (Crestol et 
al., 2023; Jacobs et al., 2016). In the first such study, Jacobs 
et al. (2016) found that post-menopausal females exhibited 
lower left hippocampal activity and greater bilateral hippo-
campal connectivity during verbal encoding than pre-men-
opausal females, although no behavioral effects were ob-
served on subsequent retrieval. Interestingly, among post-
menopausal females specifically, Jacobs et al. further re-
ported that “high” performers on an out-of-scanner associa-
tive memory task demonstrated the lowest levels of bilateral 
hippocampal connectivity, suggesting that menopause-re-
lated increases in functional connectivity are linked to epi-
sodic memory disruption. In this study, however, menopau-
sal groups were age-matched, an approach which assumes 
chronological and reproductive aging to be independent 
processes. By contrast, Crestol et al. recently examined the 
effect of age on spatial context memory and its functional 
correlates within pre- and post-menopausal females, 
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respectively. The authors observed that, in post-menopausal 
females only, advanced age was associated with lower acti-
vation in occipito-temporal and parahippocampal cortices 
during encoding and retrieval, which in turn was associated 
with lower spatial context memory. This finding indicates 
that menopause may act as an inflection point in some fe-
males, after which vulnerability to age effects on the brain 
and cognition increase. In this view, chronological and re-
productive aging constitute synergistic, rather than inde-
pendent, processes. However, as Crestol et al.’s pre- and 
post-menopausal groups differed in age, it is also possible 
that their results reflected more general early- vs. late-mid-
life age effects, which may likewise be evident in males. 

Neuroimaging evidence suggests that both sex and 
menopause affect the microstructural properties of the 
brain’s white matter (WM), as well as its association with 
chronological age. The brain’s WM is primarily comprised 
of myelinated axons bundles, or tracts, supporting the effi-
cient transmission of information between regions. Using 
diffusion tensor imaging (DTI), it is possible to probe the mi-
crostructural properties of WM tracts in vivo (Soares et al., 
2013). The two most common DTI measures are fractional 
anisotropy (FA), which represents the degree to which dif-
fusion is constrained in a given direction, and mean diffu-
sivity (MD), which represents the overall diffusion rate. 
While several factors (e.g., myelination, axon density, axon 
diameter) can affect these measures (Jones et al., 2013), low 
FA and high MD are often used as indices of poorer micro-
structural health or “integrity”. Several large-scale studies 
have reported age and sex effects on WM throughout the 
brain, with interactions occasionally evident (e.g., Ritchie et 
al., 2018; Lawrence et al., 2021). For example, Isaac Tseng et 
al. (2020) found that age negatively impacted the micro-
structural properties of more tracts among females than 
males, which the authors hypothesized may be linked to 
menopause. Relatedly, one recent study observed lower FA 
in the external capsule among post- compared to peri-men-
opausal females, with further differences evident between 
pre-, peri-, post-menopausal females and age-matched 
males (Mosconi et al., 2021). However, since this study did 
not examine age effects within groups or include cognitive 
measures, it is unclear whether the relationship between 
age and WM microstructure differs based on menopause 
status and whether this has any implications for episodic 
memory at midlife. 

In this study, we investigate the association be-
tween age and spatial context memory in pre- and post-
menopausal females. We utilize data from a face-location 
spatial context memory paradigm that is sensitive to chron-
ological age effects at midlife, particularly among post-men-
opausal females (Crestol et al., 2023). We thus hypothesize 
that age will be negatively associated with spatial context 
memory among post- but not pre-menopausal females. 
Moreover, as we theorize that this association is influenced 
by pre-/post-menopause effects and not more general early-
/late-midlife effects, we hypothesize that age will be nega-
tively associated with spatial context memory in females but 

not males. Given prior neuroimaging evidence, we further 
hypothesize that there will be menopause status- and sex-
related differences in the relationship between age and DTI-
derived measures of WM microstructure and, in addition, 
that these differences will contribute to individual differ-
ences in spatial context memory. 

Methods 
Participants 
One-hundred and seventeen cognitively unimpaired mid-
dle-aged adults (39.55-65.46 years, M = 52.02, SD = 6.84) 
participated in this study. Of these, 34 were males (Mage = 
53.70, SDage = 5.65, age range: 43.84-65.46; MEDU = 16.54; 
Ethnicity: 2 Arab, 1 Black, 1 Chinese, 1 Latin American, 29 
White), 37 were pre-menopausal females (Mage = 44.38, 
SDage = 3.03, age range: 39.55-53.30; MEDU = 16.34; Ethnicity: 
1 Black, 1 Chinese, 1 Latin American, 1 South Asian, 32 
White, 1 White & Latin American), and 46 were post-men-
opausal females (Mage = 56.92, SDage = 3.89, age range: 47.26-
65.14; MEDU = 15.16; Ethnicity: 1 Arab, 1 Black, 1 Chinese, 1 
Indigenous, 1 North African, 1 South Asian, 40 White). Pre-
/post-menopause status was based on the Stages of Repro-
ductive Aging Workshop + 10 (STRAW+10) criteria (Har-
low et al., 2012), described below. All participants signed in-
formed consent forms and were compensated for their time. 
The research ethics board of the Montreal West Island Inte-
grated University Health and Social Services Centre (sub-
committee for mental health and neuroscience) approved 
the study procedures. 
 
Procedure 
Participants were recruited via online advertisements and 
flyers posted around the Montreal area. At enrollment, all 
participants signed an online consent form and completed a 
series of questionnaires. The information provided was used 
to screen participants for the larger, ongoing Brain Health 
at Midlife and Menopause (BHAMM) study, of which the 
current study is a sub-study (Crestol et al., 2023). To be 
included, participants had to possess a high school diploma, 
agree to provide blood samples for endocrine assessment to 
validate self-reported menopause status, and be in good 
general health. Exclusion criteria were: current use of 
hormone replacement therapy; bilateral oophorectomy; 
untreated cataracts/glaucoma/age-related maculopathy; 
uncontrolled hypertension; untreated high cholesterol; 
diabetes; history of estrogen-related cancers; chemotherapy; 
neurological disease or history of serious head injury; 
history of major psychiatric disorders; claustrophobia; 
history of substance abuse disorder; currently smoking 
more than 40 cigarettes per day; did not meet MRI safety 
requirements. For this sub-study, we excluded females who 
were pregnant, peri-menopausal, or whose menopause 
status was indeterminate (based on self-report and 
hormones). Post-menopausal females were also excluded if 
they were using hormonal birth control, while pre-
menopausal females were excluded only if they were using 
hormonal birth control for reasons other than 
contraception. We additionally excluded participants if 
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their BMI was greater than 40 or if their chronological age 
was more than 2.5 standard deviations above/below their 
respective group mean. 

All participants initially deemed eligible were 
invited to the Douglas Research Centre for a behavioral 
testing session, where they completed a battery of 
standardized psychiatric and neuropsychological 
assessments. This included: the Mini-International 
Neuropsychiatric Interview (Sheehan et al., 1998), exclusion 
criteria = indications of undiagnosed psychiatric illness; the 
Beck Depression Inventory II (Beck et al., 1997), exclusion 
cut-off ≥ 19; and the Mini-Mental State Exam (Folstein et 
al., 1975), inclusion cut-off ≥ 26. After testing, participants 
donated blood samples for endocrine assessment and 
performed a practice version of the spatial context memory 
task in a mock MRI scanner. The mock session provided 
participants with an opportunity to familiarize themselves 
with the experimental setup (e.g., button responses). Only 
participants who met the inclusion/exclusion criteria and 
were able to perform the spatial context memory task in the 
mock MRI scanner were invited to participate in the second 
(MRI) session.  

Upon arrival at the second session, female participants 
took a pregnancy test and were deemed eligible if the result 
was negative. Blood samples were again taken for endocrine 
assessment. In total, scanning lasted approximately 1.5-2 
hours and included T1-weighted and T2-weighted 
structural MRI, diffusion MRI, resting-state fMRI, and task 
fMRI (during which the spatial context memory task was 
administered). The current study focuses only on the 
diffusion MRI and behavioral outputs of the task fMRI 
spatial context memory paradigm.  
 
Endocrine assessments and menopause staging  
We used STRAW+10 guidelines (Harlow et al., 2012) to 
categorize female participants as pre-, peri-, or post-
menopausal based on their responses to a reproductive 
history/hormone use questionnaire, which was completed 
during the behavioral testing session and updated during 
the imaging session. Questions covered date of last period, 
number of periods in the past 12 months, and regularity of 
menstrual cycle, all of which form part of STRAW+10 
criteria. Staging was then corroborated using estradiol-17β 
(E2) and follicle stimulating hormone (FSH) levels. These 
endocrine measures were assessed on plasma, derived from 
heparin blood collection tubes. Blood was drawn on non-
fasting individuals by a certified research nurse during 
session two. Specimens were analyzed at the McGill 
University Health Centre (Glen site) Clinical Laboratories 
in Montreal. Endocrine Chemiluminescent immunoassays 
were performed on an Access Immunoassay System 
(Beckman Coulter) using the company's reagents. Notably, 
for this sub-study, participants were not included if they 
were categorized as peri-menopausal or if their menopause 
status was indeterminate. 
 
 
 

Spatial context memory paradigm 
Participants completed a spatial context memory task 
during an fMRI scan (Fig. 1). The task was presented 
through E-Prime software (Psychology Software Tools, PA). 
Details of this task have been described elsewhere (Crestol 
et al., 2023). In brief, participants were asked to encode 
either six (easy spatial context memory task) or twelve 
(difficult spatial context memory task) face stimuli and their 
spatial location and to rate each face as either pleasant or 
neutral by pressing the corresponding button on the 
provided response box. The pleasantness rating was added 
to ensure participants deeply encoded the stimuli (Bernstein 
et al., 2002). Details regarding the timing and number of 
stimuli presented to participants are described in Fig. 1. 
After the encoding phase, participants received a break in 
which they rated how well they remembered the faces on a 
scale of 1 (very poorly) to 4 (very well). The break was 60 
seconds long.   

Following the break, participants performed the 
retrieval phase of the easy or hard task. During the easy task, 
participants were presented with the six previously encoded 
(“old”) face stimuli and six novel face stimuli, one at a time, 
in random order. During the hard task, participants were 
presented twelve old and twelve novel face stimuli in 
random order. For each face, participants were instructed to 
respond by pressing one of six buttons corresponding to the 
following retrieval responses: (1) N – The face is NEW; (2) F 
– The face is FAMILIAR but I don’t remember its location; 
(3) TL – I remember the face and it was previously on the 
TOP LEFT; (4) BL – I remember the face and it was 
previously on the BOTTOM LEFT; (5) TR – I remember the 
face and it was previously on the TOP RIGHT; (6) BR – I 
remember the face and it was previously on the BOTTOM 
RIGHT. The mapping of buttons to response options was 
shown throughout. Participants were instructed not to 
guess and only respond (3) to (6) if they clearly recollected 
the face and its location. At the end of each retrieval phase, 
participants received a second break in which they were 
again asked to rate their performance. The break was 60 
seconds long. 

Participants could complete a maximum of four 
easy and four hard task runs, which were counterbalanced. 
Given that the easy task had half the number of face stimuli, 
this version was completed twice per run. In total, therefore, 
participants were exposed to a maximum of 96 faces at 
encoding (48 easy, 48 hard) and 192 faces at retrieval (96 
easy [48 old, 48 novel], 96 hard [48 old, 48 novel]). However, 
due to participant withdrawal and software errors, not all 
participants experienced all runs. The minimum number of 
easy task runs completed was two, whereas the minimum 
number of hard task runs completed was three. As such, 
participants were exposed to a minimum of 70 faces at 
encoding (24 easy, 36 hard) and 120 faces at retrieval (48 
easy [24 old, 24 novel], 72 hard [36 old, 36 novel]).  

Participants were excluded from the current 
analyses if they provided zero correct spatial context 
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retrieval responses or if they performed below chance in 
terms of correct rejections (1/6 = 0.16). Mirroring the 
approach taken by Crestol et al. (2023), we additionally ran 
regression analyses with age as a predictor of spatial context 
retrieval accuracy, item recognition, and misses on both the 
easy and hard task versions. Participants with a Cook’s D 
value more than three standard deviations from the group 
mean in three or more models were removed. 
 
Diffusion MRI 
Acquisition and quality control 
Scanning was conducted on a Siemens MAGNETOM 3T 
PrismaFit MRI scanner with a standard 32-channel head 
coil at the Douglas Research Centre. DTI analysis was 
conducted using diffusion MRI data acquired using the 
following sequence parameters: repetition time = 3100 ms; 
echo time = 105 ms; flip angle = 90°; phase-encoding 
direction = posterior-to-anterior; 63 slices; slice thickness = 
2 mm; field of view = 130 x 130 mm; voxel dimensions = 2 
x 2 x 2 mm; 65 volumes (64 b = 1000 s/mm2, 1 b = 0 s/mm2). 
Five non-diffusion-weighted volumes (b = 0 s/mm2) with 
reversed phase-encoding direction were also acquired for 
susceptibility distortion correction.  
 
Pre-processing 
Diffusion MRI data were pre-processed in MRtrix3 (version 
3.0.2; Tournier et al., 2019), incorporating tools from FSL 
(version 6.0.2; Jenkinson et al., 2012) and ANTs (version 
2.3.1; http://stnava.github.io/ANTs/). Pre-processing fol-
lowed the optimized diffusion pipeline described by Maxi-
mov et al. (2019). This included the following steps: noise 
correction; Gibbs ringing correction; EPI-induced geometric 
distortion correction; head motion, eddy current, and sus-
ceptibility distortion correction including the replacement 
of dropout slices; bias field correction; spatial smoothing 
with a 1 mm3 Gaussian kernel.  
 
Tract-based spatial statistics 
Following pre-processing, diffusion tensor models were fit 

at each voxel using FSL’s DTIFIT. This produced parameter 
maps of FA and MD for each participant. Using these maps 
as input, the standard processing steps of tract-based spatial 
statistics (TBSS; Smith et al., 2006) were carried out. Briefly, 
participants’ FA maps were first aligned in common space 
(FMRIB58_FA template) using nonlinear registration. Next, 
a mean FA image was created and thinned (FA threshold = 
0.2) to generate an FA skeleton. Each participant’s aligned 
FA data were then projected onto the FA skeleton. Finally, 
the TBSS non-FA pipeline was used to repeat these steps for 
MD, projecting MD data onto the FA skeleton. 
 
Region-of-interest segmentation 
Binarized masks were generated for the 48 regions-of-inter-
est (ROI) contained within the JHU ICBM-DTI-81 WM la-
bels atlas. These binarized masks were then used to extract 
mean FA and MD values along the TBSS FA skeleton within 
each ROI, for each participant. Given limited head coverage 
in some participants, brainstem tracts were removed from 
consideration. Moreover, in the absence of a strong a priori 
hypothesis for hemispheric effects, we also opted to average 
values for left and right ROIs, where relevant. This left 21 
WM ROIs for consideration (for more information, see Sup-
plementary Material).  
 
Statistical analyses 
Behavioral analyses were conducted in R (version 4.1.3) us-
ing RStudio (version 2022.7.1.554). Brain-behavior analyses 
were conducted in MATLAB (version R2020) using open-
source software (version 6.15.1; https://www.rotman-
baycrest.on.ca/index.php?section=84). 
 
Behavioral analyses 
Mean accuracy (rate correct, 0-1) and mean reaction time 
(RTs, ms) were calculated per participant for correct spatial 
context retrieval responses. Mean accuracy was calculated 
by summing the total number of correct face-location re-
sponses (i.e., options 3, 4, 5, and 6, see Fig. 1) and dividing 
by the total number of previously seen faces shown at 

Fig 1. Spatial context memory paradigm. At encoding, participants were asked to encode face-location associations and make a pleasant/neutral 
decision for face stimuli presented in one of four quadrants. There was a one-minute break between encoding and retrieval. At retrieval, participants 
were presented with an equal number of previously encoded (“old”) and novel face stimuli in the center of the screen and asked to make a six-
alternative forced-choice decision. Further details are presented in the Methods section (see also Crestol et al., 2023). Note that the face stimulus 
shown here is an illustrative example and was not part of the stimulus set. Moreover, it has been obstructed to comply with bioRxiv's image policy. 
Abbreviations: ITIs = inter-trial intervals. 
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retrieval. Mean RTs were calculated by summing the RTs 
for each correct face-location response and dividing by the 
total number of such responses. These measures were cal-
culated separately for the easy and hard task and then stand-
ardized.   

For our menopause analysis, we conducted multi-
response partial least squares (PLS) regression analyses, im-
plemented using the plsreg2 function from the plsdepot 
package (version 0.2.0; Sanchez, 2023). This method han-
dles multicollinearity among predictor variables, as is the 
case for menopause status and age, by creating a set of un-
correlated components to use in the model (Abdi, 2010). 
The aim of PLS regression is to predict Y (i.e., outcome var-
iables) from X (i.e., predictor variables) and describe their 
common structure. To achieve this, X and Y are first decom-
posed to form a set of latent variables (LVs) that maximally 
explain the shared variance (i.e., cross-block covariance) be-
tween the original variables. The ability of a given LV to pre-
dict Y is then typically assessed via cross-validation, a pro-
cess which produces Q2 values. LVs were considered signif-
icant and retained if Q2 ≥ 0.0975 (Abdi, 2010).  

Although useful for dealing with multicollinearity 
among predictors, PLS regression does not provide insight 
as to whether age is differentially related to spatial context 
memory at specific stages of menopause. To address this, we 
conducted analyses using linear mixed-effects models 
(LMMs) for pre- and post-menopausal females, respectively. 
LMMs were fitted using the lme4 package (version 1.1-29; 
Bates et al., 2015). Task difficulty (easy, hard) and age were 
entered as fixed effects, as was their interaction term. Task 
difficulty was coded using deviation coding. Age was cen-
tered and scaled. All LMMs included a random by-partici-
pant intercept. Statistical significance of fixed effects was de-
termined via Satterthwaite approximations, implemented 
by the lmerTest package (version 3.1-3; Kuznetsova et al., 
2017).  

For our sex analysis, we sought to determine whether 
males and females differed in task performance, and to es-
tablish whether this was related to chronological age. Task 
difficulty (easy, hard), sex (male, female), and age were en-
tered as fixed effects, as were the various interaction terms. 
For consistency, all other aspects of the LMMs were as de-
scribed for menopause. 
 
Brain-behavior PLS analyses 
For our brain-behavior analyses, we used a multivariate sta-
tistical technique: behavior PLS (bPLS; Krishnan et al., 
2011; McIntosh & Lobaugh, 2004). Specifically, we used 
bPLS to examine whether chronological age was associated 
with WM microstructure within groups (i.e., pre-/post-men-
opause, male/female), before then examining if the result-
ing patterns were related to spatial context memory perfor-
mance.  

In each of these analyses, we first created two matrices: 
one containing the DTI data, the other containing the be-
havioral data. The DTI data matrix contained columns rep-
resenting the 21 WM ROIs and rows representing 

standardized values for each participant nested within con-
dition (i.e., FA, MD) and conditions nested within group. 
The behavioral data matrix contained standardized values 
of chronological age, with rows duplicated to mirror the 
nested structure of the DTI data matrix. These matrices 
were then cross-correlated and the output submitted to sin-
gular value decomposition, generating a set of LVs. For each 
LV, bPLS outputs a singular value, a correlation profile, and 
a singular image. The singular value represents the propor-
tion of the cross-block covariance accounted for by each LV. 
The correlation profile (shown as a bar plot) highlights the 
association between “brain scores”, which signify the degree 
to which a given participant expressed the LV for each of the 
conditions, and the corresponding behavioral measure of 
interest. The singular image consists of positive and/or neg-
ative “saliences”, which identify whether ROIs are posi-
tively or negatively related to the correlation profile. The as-
signment of saliences as positive or negative is arbitrary.  

Statistical significance of LVs was determined using per-
mutation tests (2000 permutations). Specifically, for each 
LV, the probability that the permuted singular values ex-
ceeded the observed singular value was used to determine 
statistical significance (p < .05; McIntosh & Lobaugh, 2004). 
No correction for multiple comparisons was required as 
bPLS analyses are performed in one analytical step. The sta-
bility of saliences contributing to a given LV was assessed by 
dividing the observed value by its standard error (generated 
via 1000 bootstrap samples). The resulting ratio, referred to 
as the bootstrap ratio, is equivalent to a z-score and thus a 
higher value represents a more stable salience. In this study, 
a bootstrap ratio greater than ± 2.58 (corresponding to p < 
.01) was used to determine which ROIs reliably contributed 
to significant LVs.  

For significant LVs, post-hoc regression analyses were 
performed on brain scores for conditions deemed to contrib-
ute to the identified pattern. These analyses were conducted 
to determine whether the expression of a given LV was re-
lated to the observed behavioral findings for both meno-
pause status and sex. We first examined whether these brain 
scores were related to spatial context memory performance 
across all participants entered in a particular analysis. 
Thereafter, where relevant, we examined the association be-
tween brain scores and performance within groups.  
 
Data and code availability 
Code used for pre-processing and analysis is made publicly 
available via our Lab GitHub page (https://github.com/Ra-
jahLab/BHAMM_DWI_scripts/). Code reproducibility was 
assessed internally by multiple authors. Readers seeking ac-
cess to data should email the Principal Investigator of the 
BHAMM Study, Professor Maria Natasha Rajah (natashara-
jah@torontomu.ca), for information.  

Results 
A total of 21 participants were excluded from our analyses. 
Reasons were use of hormonal birth control in post-
menopause (n = 3), BMI > 40 (n = 1), previous 
hysterectomy and unilateral oophorectomy (n = 1), failed 
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diffusion MRI quality control (n = 9), within-group age 
outlier (n = 2), and no correct spatial context retrieval 
responses (n = 5). After applying these exclusions, the final 
sample consisted of 96 middle-aged adults (30 males, 32 pre-
menopausal females, 34 post-menopausal females).    
 Demographic data separated by menopause status 
and sex are shown in Table 1. We used Welch’s t-tests and 
chi-square tests to examine group differences in continuous 
and categorical demographic variables, respectively. For 
menopause status, we observed significant differences in 
age (t(61.126) = -17.415, p < .001), E2 (t(28.540) = 6.867, p 
< .001), and FSH (t(33.717) = -16.392, p < .001). Hormonal 
differences were in the expected direction, such that pre-
menopausal females had higher levels of E2 and lower levels 
of FSH. Age differences reflected the younger age of pre-
menopausal females compared to post-menopausal 
females. This was expected given the interconnected nature 
of chronological and reproductive aging. For sex, we 
observed significant differences between males and females 
in two variables: E2 (t(33.835) = -5.852, p < .001) and FSH 
(t(64.219) = -7.581, p < .001). These hormonal differences 
were again in the expected direction, such that females 
showed higher levels of both measures. Differences in age 
did not quite reach the threshold for statistical significance 
(t(69.908) = 1.947, p = .056).  

 
Behavioral analyses 
Menopause 
The PLS regression analysis identified one LV with a Q2 
value above threshold (Q2 = 0.194). This LV accounted for 
95.36% of the variance in X (i.e., menopause status, age) and 
21.68% of the variance in Y (i.e., mean accuracy, mean RTs). 
Fig. 2A depicts the correlations between the original 
variables and the LV. Menopause status and age were both 
negatively associated with the LV, as were mean RTs on the 
easy and hard versions of the task. By contrast, mean 
accuracy for the easy and hard versions of the task both 
correlated positively with the LV. Together, these results 
suggest that the LV captured a pattern in which age and 

post-menopause status were both positively correlated with 
mean RTs but negatively correlated with mean accuracy.  

We subsequently conducted separate LMMs testing 
the effects of task difficulty and age on mean accuracy 
within groups (Fig. 2B). For pre-menopausal females, there 
was no statistically significant effect of task difficulty (F(1, 
30) = 1.377, p = .250) or age (F(1, 30) = 0.133, p = .718), nor 
was there an interaction effect (F(1, 30) = 1.904, p = .178). 
For post-menopausal females, there was a statistically 
significant effect of age (F(1, 32) = 8.373, p = .007) but not 
task difficulty (F(1, 32) = 1.563, p = .220) or their interaction 
(F(1, 32) = 1.450, p = .237).The effect of age was driven by 
lower accuracy with advanced age (β = -0.706). Thus, while 
the PLS regression analysis indicated that age and post-
menopausal status were both negatively related to spatial 
context retrieval accuracy, further analyses showed that the 
effect of age varied by menopause status. Specifically, age 
negatively correlated with accuracy in post- but not pre-
menopausal females. Mirroring the accuracy analysis, 
separate LMMs were conducted for mean RTs in each 
menopausal group. For pre-menopausal females, there was 
no statistically significant effect of task difficulty (F(1, 30) = 
0.164, p = .688) or age (F(1, 30) = 0.775, p = .386). The 
interaction effect was also not significant (F(1, 30) = 0.262, 
p = .613). For post-menopausal females, the same overall 
pattern was evident: no statistically significant effect of task 
difficulty (F(1, 32) = 0.315, p = .579), age (F(1, 32) = 0.375, 
p = .545), or their interaction (F(1, 32) = 0.523, p = .475).  
 
Sex 
For mean accuracy, there were no statistically significant 
effects of task difficulty (F(1, 92) = 0.001, p = .978), age (F(1, 
92) = 2.220, p = .140) or sex (F(1, 92) = 0.039, p = .843). 
However, there was a significant interaction between age 
and sex (F(1, 92) = 8.348, p = .005). This interaction (Fig. 
2C) reflected a negative association between age and 
accuracy in females (β = -0.475, p < .001) but not males (β 
= 0.152, p = .431). No other interactions were statistically 
significant (all p ≥ .584). For mean RTs, there were also no 
significant effects of task difficulty (F(1, 92) = 0.556, p = 
.458), age (F(1, 92) = 2.534, p = .115) or sex (F(1, 92) = 0.363, 
p = .549). Consistent with the mean accuracy analysis, we 
observed a significant interaction between age and sex for 
mean RTs (F(1, 92) = 4.614, p = .034). This interaction 
reflected a positive association between age and mean RTs 
in females (β = 0.419, p < .001) but not males (β = -0.062, p 
= .754). No other interactions were statistically significant 
(all p ≥ .097). 

Given the notable difference in sample size and 
near-significant difference in age between groups, we 
repeated our analyses using a subset of females that were 
matched on age (and education) to the available males. 
These analyses were intended to assess the sensitivity of our 
results. Overall, our results remained unchanged (see 
Supplementary Material). Considering these findings, we 
opted to conduct our brain-behavior PLS analyses on the full 
sample. 

Table 1
Demographic Characteristics Separated by Menopause Status and Sex

Females
(n = 66)

Males
(n = 30)

Post-menopause 
(n = 34)

Pre-menopause 
(n = 32)

51.22 (7.41)53.96 (5.87)57.70 (3.53)***44.34 (2.66)***Age (years), M
(SD)

5.89 (2.51)16.73 (2.56)15.38 (2.65)16.44 (2.26)Education (years), 
M (SD)

25.06 (4.13)25.02 (3.45)25.31 (3.95)24.80 (4.37)BMI (kg/m2), M
(SD)

4.89 (4.90)4.97 (4.41)5.56 (5.51)4.19 (4.12)BDI-II, M (SD)

90.9180.0091.1890.62Handedness, % 
right

11256Antidepressants, n

4NANA4Hormonal birth 
control, na

7NA25Polycystic ovarian 
syndrome, na

309.85 (223.76)***83.83 (15.06)***76.17 (17.49)***359.93 (215.42)***E2 (pmol/L), M
(SD)b

50.90 (44.99)***6.41 (4.20)***87.56 (27.56)***7.70 (4.17)***FSH (IU/L), M
(SD)b

aData were unavailable for 2 participants (1 pre-menopausal female, 1 post-menopausal female).
bDue to detection thresholds of the ELISA used, E2 was measurable in 46 (28 pre-menopausal females, 6
post-menopausal females, 12 males) out of 75 participants (28 pre-menopausal females, 33 post-
menopausal females, 14 males) who donated blood for hormonal analysis. FSH is given as average values
for the 75 participants.
*p < .05, **p < .01, ***p < .001.
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Behavior PLS analyses 
Menopause 
The bPLS analysis examining the association between age 
and WM microstructure as a function of menopause status 
identified one statistically significant LV (LV1meno; p = .036, 
62.34% cross-block covariance explained). LV1meno 
identified WM tracts in which advanced age was associated 
with lower FA and higher MD in both pre- and post-
menopausal females (Fig. 3A). The anterior corona radiata, 
body of the corpus callosum, and genu of the corpus 
callosum contributed reliably to LV1meno (Fig. 3B).  

Given that age was associated with FA and MD in 
both groups, we examined associations between LV1meno 

brain scores for both conditions and mean accuracy 
averaged across easy and hard task versions. We focused on 
this combined measure of performance due to a lack of task 
difficulty effects. Regression analyses revealed that LV1meno 
brain scores for FA (β = -0.422, p < .001) and MD (β = 0.321, 
p = .009) were both significantly related to mean accuracy 
averaged across task versions. Interestingly, when analyzed 
within group, we found that this pattern was evident among 
post-menopausal females (FA: β = -0.352, p = .014; MD: β = 
0.342, p = .011) but not pre-menopausal females (FA: β = -
0.151, p = .449; MD: β = -0.046, p = .818) (Fig. 3C). Thus, 
given that the saliences associated with LV1meno were 
negative, these analyses provide evidence that the 
expression of this LV (lower FA and higher MD with 
advanced age) was related to lower spatial context retrieval 
accuracy in post-menopausal females. 

 
Sex 
The bPLS analysis examining the association between age 
and WM microstructure as a function of sex identified one 
statistically significant LV (LV1sex; p < .001, 62.68% cross-
block covariance explained) and one near-significant LV 
(LV2sex; p = .052, 23.97% cross-block covariance explained; 
for more information, see Supplementary Material). LV1sex 
identified WM tracts in which advanced age was associated 
with lower FA and higher MD in both males and females 
(Fig. 3D). The WM tracts that reliably contributed to this 
pattern were the anterior corona radiata, fornix/stria 
terminalis, and genu of the corpus callosum (Fig. 3E).  

As in the menopause status analysis, we examined 
associations between LV1sex brain scores and mean 
accuracy averaged across task versions. Regression analyses 
revealed that LV1sex brain scores for FA (β = -0.26, p = .011) 
but not MD (β = 0.185, p = .071) were significantly related 
to mean accuracy. Subsequent within-group analyses 
indicated that this was evident in females (β = -0.240, p = 
.036) but not males (β = -0.323, p = .157), although the 
observed patterns were qualitatively similar (Fig. 3F). As 
the saliences associated with this LV were negative, these 
analyses suggest that the expression of this pattern (lower 
FA with advanced age) was related to lower spatial context 
retrieval  retrieval accuracy, and that – statistically – this 
was identified in females but not males.  

Fig 2. Menopause status and sex affect the association between age and spatial context retrieval accuracy. (A) Correlation profile for the 
LV identified by PLS regression. The bars reflect the correlation between the original independent (blue)/dependent (pink/purple) variables and the 
LV. (B) Association between age (standardized) and spatial context retrieval accuracy (standardized) as a function of task difficulty (easy, hard) in 
pre-menopausal females (left) and post-menopausal females (right). Lines of best fit and 95% confidence intervals are based on predicted values. 
(C) Association between age (standardized) and spatial context retrieval accuracy (standardized) in males and females. Lines of best fit and 95% 
confidence intervals are based on predicted values. Abbreviations: Acc = spatial context retrieval accuracy; RT = reaction times (correct spatial 
context retrieval responses); LV = latent variable. 
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Discussion 
The current study investigated sex differences and the effect 
of menopause status on the association between age, spatial 
context memory, and white matter microstructure at 
midlife. Consistent with recent work (Crestol et al., 2023), 
advanced age was associated with lower spatial context 
retrieval accuracy (independent of task difficulty) among 
post- but not pre-menopausal females. To further assess 
whether this association was driven by menopause and not 
early- vs. late-midlife effects, we then examined whether 
females – irrespective of menopause status – exhibited a 
different pattern to males. In contrast to prior lifespan 
studies (Subramaniapillai et al., 2019, 2022; Wang et al., 
2022), we found that advanced age was indeed associated 
with lower spatial context retrieval accuracy in females but 
not males. To our knowledge, this is the first study to 
identify sex differences in the relationship between age and 
episodic memory, assessed using item-location spatial 
context memory paradigms, in middle-aged adults. Taken 
together, our results suggest that the transition from pre- to 
post-menopause is associated with an increased 
vulnerability to age-related changes in the brain and 
cognition, and that this vulnerability appears to contribute 
to sex differences in age-related episodic memory decline at 
midlife. 

Declining ovarian hormone production during the 
menopausal transition offers a plausible explanation for 
these results. The transition from pre- to post-menopause is 
characterized by significant hormonal changes, including a 

marked decrease in estrogen levels, most notably E2 
(Harlow et al., 2012). More than two decades of research in 
rodents and non-human primates has demonstrated that E2 
acts on numerous brain regions, including the hippocampus 
and prefrontal cortex, influencing memory function (Jacobs 
& Goldstein, 2018). Emerging reports in humans 
complement this work, leading some to propose that 
menopause-related reductions in E2 and other estrogens 
increase vulnerability to age-related cognitive decline and 
dementia risk (e.g., Rahman et al., 2019). While we were 
unable to examine the influence of E2 directly in this study, 
owing to the detection threshold of the ELISA used, our 
findings are nevertheless consistent with this proposal.  

At the neural level, advanced age was associated 
with lower FA and higher MD, particularly among the 
anterior corona radiata and genu of the corpus callosum, 
independent of menopause status and sex. These findings 
imply that age-related decline in WM microstructure is 
evident at midlife, notably among regions of frontal WM. 
This is consistent with an anterior-posterior gradient of age-
related decline in WM microstructure, whereby anterior 
(i.e., frontal) tracts exhibit greater vulnerability to age effects 
(Madden & Parks, 2016). However, the lack of menopause- 
and sex-related differences was inconsistent with our 
original hypothesis. One possible explanation is that we did 
not have sufficient statistical power to detect these effects, 
owing to our modest sample size. That said, a recent study 
of 812 middle-aged adults also failed to observe sex 
differences in the effect of age on DTI measures (Eikenes et 
al., 2022). It is possible, therefore, that age-by-sex 

Fig 3. Menopause status and sex affect the association between age-related variability in WM and spatial context retrieval accuracy. (A) 
Brain-behavior correlation profile for LV1meno. The bars reflect the correlation between age and FA/MD in pre- and post-menopausal females. The 
whiskers on the bars reflect 95% confidence intervals based on bootstrap results. (B) Singular image for LV1meno. Only negative salience regions 
were identified and are colored in blue (darker = stronger BSR value). These negative saliences identify WM tracts that were negatively associated 
with the correlation profile. (C) Correlation plots showing the association between brain scores (standardized) for LV1meno (FA, MD) and spatial context 
retrieval accuracy collapsed across easy and hard task versions (standardized). (D) Brain-behavior correlation profile for LV1sex. The bars reflect the 
correlation between age and FA/MD in males and females. The whiskers on the bars reflect 95% confidence intervals based on bootstrap results. 
(E) Singular image for LV1sex. Only negative salience regions were identified and are colored in blue (darker = stronger BSR value). These negative 
saliences identify WM tracts that were negatively associated with the correlation profile. (F) Correlation plots showing the association between brain 
scores (standardized) for LV1sex (FA, MD) and spatial context retrieval accuracy collapsed across easy and hard task versions (standardized). Ab-
breviations: BSR = bootstrap ratio, FA = fractional anisotropy, MD = mean diffusivity, LV = latent variable. 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2024. ; https://doi.org/10.1101/2024.04.24.589653doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.24.589653
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT    9 

interaction effects on WM microstructure are detectable 
only when including participants from a broader range of 
the adult lifespan (e.g., Isaac Tseng et al., 2021). Such an 
explanation does not account for the failure to detect 
menopause-by-age effects, although this is the first study to 
directly address this question. Only one other study to our 
knowledge has investigated menopause status effects on 
WM (Mosconi et al., 2021) and these authors opted to 
include age as a covariate. As such, the lack of menopause-
related differences in the effect of age on WM 
microstructure is not necessarily incongruent with their 
results.  

Intriguingly, while advanced age was associated 
with microstructural variability in the WM of both males 
and females, subsequent analyses showed that the 
expression of this pattern was related to spatial context 
retrieval accuracy in post-menopausal females. That is, 
among post-menopausal females, lower values of FA/higher 
values of MD with advanced age were associated with 
poorer spatial context retrieval accuracy. These findings add 
weight to the view that the transition from pre- to post-
menopause may increase vulnerability to the effects of age 
on the brain and episodic memory at midlife (Crestol et al., 
2023). Furthermore, given that decline was largely restricted 
to frontal WM, it is possible that this vulnerability may 
contribute to increased age-related activation in prefrontal 
and inferior parietal cortices among females 
(Subramaniapillai et al., 2019), potentially serving as a 
compensatory mechanism.  
 The current study has limitations that should be 
considered when interpreting our results. First, it should be 
noted that our pre-menopausal females were not scanned 
during a specific phase of their menstrual cycle, as done in 
some related studies (e.g., Jacobs et al., 2016). It is possible, 
therefore, that menstrual cycle-related variability in 
memory function may have contributed to the lack of age 
effects among this group. However, recent research showing 
that verbal and spatial cognition remain relatively stable 
across the menstrual cycle casts some doubt on this (Pletzer 
et al., 2024). Second, we did not examine the role of white 
matter hyper-intensities (WMHs) in our sample. WMHs are 
common in midlife (d’Arbeloff et al., 2019) and overall 
WMH burden accelerates post-menopause (Lohner et al., 
2022). It is possible, therefore, that group differences in 
WMH burden may have been evident. As prior reports 
indicate that WMHs impact DTI-derived measures (Svärd et 
al., 2017) and are more strongly associated with episodic 
memory than FA (Lockhart et al., 2012), we cannot rule out 
the possibility that our findings were influenced by their 
presence. Third, as is the case for other neuroimaging 
studies of menopause (e.g., Crestol et al., 2023; Jacobs et al., 
2016), this study was cross-sectional. While this approach 
has produced interesting insights, longitudinal studies are 
needed to refine our understanding of the ways in which the 
menopausal transition influences the brain and episodic 
memory. 
 

Conclusions 
In this study, we found that the relationship between 
chronological age and spatial context memory differed as a 
function of menopause status and sex. Advanced age was 
associated with lower retrieval accuracy in post- but not pre-
menopausal females and in females (collapsed across 
menopause status) but not males. We additionally observed 
that the degree to which post-menopausal females exhibited 
age-related decline in frontal WM was linked with lower 
spatial context retrieval accuracy. These results suggest that 
the menopausal transition – a major midlife event in 
females – increases vulnerability to age effects on the brain’s 
WM and episodic memory. This study thus adds to a 
growing body of literature highlighting how menopause 
may act as a critical period in female brain aging and 
underscores the importance of midlife in neurocognitive 
aging. 
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