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Abstract 
Thousands of human proteins function by binding short linear motifs embedded in intrinsically 
disordered regions. How affinity and specificity are encoded in these binding domains and the 
motifs themselves is not well understood. The evolvability of binding specificity - how rapidly and 
extensively it can change upon mutation - is also largely unexplored, as is the contribution of 
‘fuzzy’ dynamic residues to affinity and specificity in protein-protein interactions. Here we report 
the first complete map of specificity encoding for a globular protein domain. Quantifying 
>200,000 energetic interactions between a PDZ domain and its ligand identifies 20 major 
energetically coupled pairs of sites that control specificity. These are organized into six 
modules, with most mutations in each module reprogramming specificity for a single position in 
the ligand. Nine of the major energetic couplings controlling specificity are between structural 
contacts and 11 have an allosteric mechanism of action. The dynamic tail of the ligand is more 
robust to mutation than the structured residues but contributes additively to binding affinity and 
communicates with structured residues to enable changes in specificity. Our results quantify the 
binding specificities of >1,800 globular proteins to reveal how specificity is encoded and provide 
a direct comparison of the encoding of affinity and specificity in structured and dynamic 
molecular recognition.  
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Introduction  
Specific physical interactions between proteins underlie nearly all aspects of biology from 
transcription and signaling to mechanics and neuronal information processing1. Many protein-
protein interactions are mediated by intrinsically disordered regions (IDRs) of proteins which do 
not form stable secondary and/or tertiary structures2,3. While some IDRs adopt conditional 
structures upon binding to their partners4–6, others remain disordered upon binding, forming so-
called ‘fuzzy’ complexes7,8. The ensemble of conformations afforded by fuzzy binding has been 
shown to facilitate diverse regulatory functions in eukaryotes 7,9–11 but how dynamic binding and 
conformational heterogeneity contribute to binding affinity and/or specificity is not well 
understood8,12–15. 
 
One of the most frequent modes of protein-protein interaction in human cells is the binding of a 
globular domain to a short linear motif (SLiM) embedded within an IDR3,16,17. These peptide 
recognition domains typically exist in large protein families and have affinity for many potential 
binding targets18,19. How binding specificity is encoded in these domains and how these large 
protein families evolve without causing interaction cross-talk is a major area of interest20 and is 
crucial for understanding human disease and drug development21,22. PDZ (postsynaptic density 
95, PSD-95; discs large, Dlg; zonula occludens-1, ZO-1) domains, for example, are the largest 
family of human protein interaction domains with more than 270 PDZ domains in 155 human 
proteins19. These domains typically bind to IDRs at the C-termini of proteins18,19,21. Upon binding, 
the last four amino acids of a PDZ ligand adopt a well-defined structure23 and have historically 
been used to classify PDZ domains into distinct groups based on the identity of the P0 (C-
terminal) and P-2 positions24. The adjacent residues of the IDR however typically remain 
dynamic in the complex25, with X-ray structures revealing progressively increasing motion in the 
bound complex moving away from the C-terminus (Fig. 1a). While these adjacent N-terminal 
residues have not been nearly as well-studied, there is evidence that they are also important for 
binding21,25,26, consistent with an emerging theme that the context around SLiM consensus sites 
is important for function27. The PDZ domain-peptide interaction thus presents an elegant model 
system in which to understand not only how affinity and specificity are encoded, but also how 
this encoding is distributed between structured versus dynamic binding modes. 
 
Here we present the first complete map of how binding affinity and specificity are encoded in a 
globular protein domain interacting with a disordered peptide. Our map reveals that specificity 
encoding in the domain is highly modular, with distinct residues determining specificity for each 
position in the ligand by both direct and allosteric mechanisms. The more dynamic, ‘fuzzy’, tail 
of the peptide is more robust to mutation but can be used to additively tune affinity. These more 
dynamic residues make only small contributions to specificity through interactions with the 
domain, but they do contribute to specificity via interactions with the structured part of the 
peptide. 
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Results  

Quantifying a combinatorial genetic landscape for peptide 
recognition 
The third PDZ domain (PDZ3) from PSD-95 binds to the C-termini of proteins matching the 
consensus motif -X-S/T-X-Φ-COOH (where X is any amino acid, aa, and Φ is a hydrophobic 
residue)22,28,29. The bound peptide is structured at the C-terminus but increasingly dynamic 
before the last four residues (Fig. 1b), a general property of PDZ domains bound to short 
ligands (Fig. 1a). To better define the binding specificity of PDZ3 for the canonical structured C-
terminal part of the ligand, we quantified its binding to >100,000 variants of a 9 aa peptide from 
the CRIPT protein in which the sequence of each of the last four aa (positions 0 to -3) was fully 
randomized to any of the 20 aa (Fig. 1c-f). Binding was quantified using a highly-validated 
protein fragment complementation assay (PCA)30 (Fig. S1b) and binding scores were very 
reproducible between replicate experiments (Fig. S2b-c, e, h-i). The position-weight matrix for 
the top 1% of binders matched the reported consensus22,28,29 from a previous selection 
experiment22 (Fig. 1g). The distribution of binding fitness (Fig. 1f) and proportion of peptides 
binding to PDZ3 (Fig. 1h) sharply decreased with an increasing number of substitutions. 
However, because of the exponential increase in the size of sequence space when combining 
mutations (Fig. 1h), there are actually more peptides with 4 aa changes that bind PDZ3 than 
peptides with one mutation (179 vs 73; 4.8-fold more, Fig. 1h). Position-weight matrices for 
peptides containing between one and four mutations show that the preference for T/S at the -2 
position and hydrophobic residues (including cysteine) at the 0 position do not change with 
increasing mutation order (Fig. 1g-h).  

Additive energy models accurately predict peptide binding 
Precisely quantifying the binding of PDZ3 to >100,000 peptides provides an opportunity to 
evaluate the extent to which binding to each of the four C-terminal residues is independent of 
sequence variation at the other three sites. We used MoCHI31 to fit a two-state thermodynamic 
model to our binding data. The model accounts for the non-linear relationship between the 
Gibbs free energy of binding (dG) and the fraction of ligand bound to PDZ3 but otherwise 
assumes that the energetic effects of mutations (ddG) combine additively with no pairwise or 
higher order energetic couplings between mutations at different sites (Fig. 2a and Methods).  
Fitted to a balanced set of >7,000 binding and non-binding genotypes, the model provides very 
good predictive performance (R2=0.75 evaluated by 10-fold cross validation, Fig. 2b-iii).  Not 
accounting for the non-linear relationship between the fraction of ligand bound and the binding 
energy resulted in worse predictive performance (R2=0.56, Fig. S3c) and systematically biased 
predictions (Fig. S3c residuals). Moreover, allowing energetic couplings between mutations in 
different sites did not improve predictive performance (R2=0.5 by 10-fold cross-validation, Fig. 
S3c). The additive energy model represents a very large compression of the binding data 
(>1000-fold, 110,000 genotypes/76 model coefficients) and formally shows that the effects of 
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mutations in the C-terminus of the ligand have largely energetically independent effects on 
binding.   

Dynamic residues are important for binding affinity  
We next focused on the N-terminal residues in the CRIPT peptide (position -4 to -7) which 
display a progressive increase in dynamicity in the PDZ3-CRIPT complex (Fig. 1b). To test the 
importance of these more dynamic residues to binding, we quantified the binding of >90,000 
variants of CRIPT in which the four aa before the consensus binding motif were randomized to 
all other aa (positions -4 to -7) (Fig. 1c-f). Binding measurements were well correlated across 
independent experiments as with the C terminus (Fig. S2a, d, f-g). The distribution of binding 
scores was, however, very different to that of the C-terminus library (Fig. 1d), with a more 
gradual decrease in binding with an increasing number of substitutions (Fig. 1f). Thus, although 
mutations in these four aa typically have smaller effects on PDZ3 binding than mutations in the 
C-terminal four aa, the region still makes an important contribution to binding affinity, with a 
clear preference for positively charged and aromatic residues at the -4 and -5 positions (Fig. 
1g), and the combined effects of multiple substitutions frequently being very detrimental (Fig. 1f, 
h).  
 
Fitting an additive thermodynamic model to the data, we again found that mutations have largely 
independent energetic effects (R2=0.73 by 10-fold cross-validation, Fig. 2b-i). Ignoring the non-
linear relationship between free energy (dG) and binding again resulted in biased predictions 
(Fig. S3c). Allowing energetic couplings between mutations provided almost the same predictive 
performance as the additive model (R2=0.76 Fig. S3c). Therefore, as for mutations in the C-
terminus, the effects of mutations in this more dynamic region of the ligand are largely 
energetically independent.   

The mutational energy matrix for PDZ3 binding 
The combined energy matrices for positions 0 to -3 and -4 to -7 provide a complete description 
of the energetic effects of substitutions in all eight positions of the PDZ3 ligand (Fig. 2c, Fig. 
S3d-e).  Substitutions in positions 0 and -2 are most detrimental for binding, consistent with the 
description of the consensus motif as X-S/T-X-Φ-COOH22,24,28. However, not all substitutions in 
positions 0 and -2 have the same energetic effects and many changes at positions -1 and -3 
also cause large changes in binding energy. Moreover, mutations at position -4, which is outside 
of the canonical motif, have the third largest energetic effects and multiple substitutions in 
positions -5 and -7 cause detrimental (ddG>0) energy changes (Fig. 2c).   
 
The energy matrix also reveals that CRIPT harbors sites where many mutations are 
energetically favorable (ddG<0), with a concentration in all of the first five positions (Fig. 2c).  
For example, E is energetically favored at position -3; W, F, R and H are all favored at position -
5; K and R favored at -6; and R is favored at -7 (Fig. 2c). Indeed, in the first four positions but 
not in the C-terminal four positions, the net charge of the peptide is a strong predictor of binding 
strength (Spearman’s rho=0.57 for N, -0.04 for C, Fig. 1i, Fig. S2j), with positively charged 
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peptides having higher binding scores. The ability of many substitutions in the N-terminal region 
of the peptide to increase affinity further emphasizes the importance of this region for binding, 
with the longer range of electrostatic interactions32 compared to other non-covalent interactions 
consistent with a dynamic or ‘fuzzy’ contribution8 to affinity.  

Quantifying >200,000 energetic interactions between a PDZ 
domain and its ligand  
We next designed an experiment to understand how the binding specificity of PDZ3 is encoded 
in the globular protein domain (Fig. 3a-b, Fig. S4). We performed a comprehensive set of 
double mutant cycles, mutating every position in PDZ3 and CRIPT to every other aa alone and 
in trans-double mutant combinations and measured binding (Fig. 3c). The binding 
measurements were highly correlated with measurements from the combinatorial CRIPT 
mutagenesis libraries (R2=0.937 and 0.875 for N and C, n=36 and n=68, respectively, Fig. S2f-
i), allowing us to normalize binding scores across independent experiments (Methods). 
Consistent with previous data33,34, mutations in PDZ3 detrimental for binding are strongly 
enriched in the binding interface with CRIPT (Fig. 3d-e).  
 
In total this dataset precisely defines the binding specificity of >1,800 globular proteins: we 
quantified the binding specificity of nearly every mutation in PDZ3 for nearly every mutation at 
every position in the ligand (Fig. S4f). Formally, changes in specificity are identified when there 
is an energetic coupling (or genetic interaction) between a mutation in the PDZ domain and a 
mutation in the ligand i.e. when binding is not well predicted by an additive energy model (Fig. 
3f). The binding scores in this much larger experiment were also extremely well correlated 
across three replicate selections (Pearson’s r>0.91, Fig. S4d), as were the inferred free energy 
changes (ddGs, Fig. S4g), allowing us to quantify >200,000 energetic couplings between 
mutations in PDZ3 and its ligand.  

Hundreds of mutations in a PDZ domain change its binding 
specificity 
In total, we identified over 600 non-zero energetic couplings between mutations in PDZ3 and 
mutations in the ligand (Z-test, Benjamini-Hochberg FDR<0.1, Fig. S5a). We define a 
specificity-changing mutation as one where the observed binding has a positive and significant 
(Z-test, FDR<0.1) residual to our additive energy model (Fig. 3f) and the observed binding score 
passes our threshold for non-binding variants (i.e. is binding) (Fig. S5b-c). These non-additive 
energetic interactions involve 340 distinct mutations in 73 different positions in the PDZ domain, 
and 114 distinct mutations in all 8 residues of the ligand (Fig. 3g). Mutations in PDZ3 can 
therefore alter its specificity for all 8 positions within the ligand. 
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Major specificity encoding residues and the modular encoding of 
binding specificity  
We next identified the residues in PDZ3 most important for encoding specificity for each ligand 
position. In total, 20 pairs of PDZ3-ligand residues are enriched for specificity-changing 
mutations (hypergeometric test, FDR<0.1, Fig. 4a). We refer to the PDZ3 residues within these 
pairs as major specificity encoding residues. There are two major specificity-encoding residues 
for ligand position 0, six for position -1, five for position -2, three for position -3, three for position 
-4, and one for position -5 (Fig. 4a, Fig. S5f).  
 
Strikingly, the major specificity encoding residues are largely distinct for each ligand position 
(Fig. 4a, Fig. S5e). There are 17 unique PDZ positions across the 20 pairs of positions. 14/17 
PDZ positions only act as a major specificity determinant for a single ligand position, with 3 
acting as major specificity determining sites for two ligand positions (Fig. S5e). The encoding of 
specificity in the PDZ domain is thus highly modular, with specificity for each ligand residue 
largely encoded by a distinct subset of residues in the domain. 
 
The 3 exceptions are positions N326 and S339, which are both major specificity-encoding 
residues for positions -1 and -3, and G330, which defines the specificity for positions -2 and -4. 
N326 and S339 are contacts of each other and of -3 (N326 contacts -1 as well) (Fig. S5h). 
Similarly, G330 contacts H372 (Fig. S5h), which is a contact of position -2. G330 is also 
adjacent to E331, which is a contact of -4 (Fig. S5g). These positions therefore form small 
networks of specificity-defining residues, with pairs of residues in PDZ3 interacting with pairs of 
residues in the ligand. 

Direct and allosteric reprogramming of specificity 
Visualizing the 20 energetically coupled pairs of residues on the structure of the PDZ3-CRIPT 
complex (Fig. 4b-j), shows that not only are the major specificity encoding residues distinct for 
each ligand position, but they are also spatially clustered. Indeed 11/17 of the major specificity 
encoding residues constitute the PDZ3 binding interface (Fig. 4a) and out of the 20 major 
energetically coupled pairs of residues, 9 are directly contacting each other (<5Å apart and/or 
predicted to be specifically contacting each other, Fig. 4c-j, Fig. S5g), suggesting local energetic 
coupling as the mechanism of action.  
 
A further 11 pairs of major specificity encoding residues are not structural contacts. These 
residues must therefore encode specificity allosterically. Most of these allosteric energetic 
couplings are, however, local involving PDZ3 residues at the binding interface that contact other 
residues in the ligand (Fig. 4c-j). Others are the contacts of PDZ3 residues that contact the 
ligand (Fig. S5g-h). 
 
In summary, specificity is encoded both modularly and locally within the PDZ domain.  
Mutations in a discrete set of spatially clustered sites reprogram specificity for each ligand 
residue. 
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A comprehensive map of specificity-changing mutations  
For each pair of positions enriched in specificity-changing mutations, we were interested to see 
if and how the coupled mutations in the domain and ligand are related to each other (Fig. 5a, 
Fig. S6), as well as how energetic couplings are related to changes in binding (compared to the 
wildtype preference) and raw binding scores (Fig. 5a). The majority of mutations that we identify 
in major specificity encoding residues change specificity such that the mutated ligand residue is 
preferred over wildtype, similar to ‘class-switching’ phenotypes22,33 (Fig. 5a, middle panel). 
Others bind the mutated and wildtype ligand with similar energy, acting similarly to ‘class-
bridging’ specificity changes22,33.  
 
Interestingly, the diversity of specificity-changes that could be accommodated at each position 
in the ligand seems loosely related to the dynamicity of the ligand position, except for position 0 
(Fig. 5b). The most diverse specificity changes are carried out through position -2, followed 
closely by -1 and -3 (Fig. 5b). This is consistent with previous reports that found specificity 
“modulators” of PDZ domains at non-canonical motif positions in the ligand35. It is also 
consistent with a study in which all positions common to the binding site across PDZ domains 
(N=10 sites) were mutated and found that only one common binding residue enacts a specificity 
change through V021, suggesting that this is a general effect across PDZ domains.  
 
Overall, we find a large diversity of mutational couplings. While some positions are clearly 
dominated by charge-charge interactions (Fig. 5a, position -3), we hypothesize others are 
mediated by a gain/loss of sidechain interactions and/or increased movement in the binding 
pocket (Fig. 5a). We highlight some of the coupled sites and mutations below for each of the six 
modules defining specificity for each ligand residue.   

Module 0 
Mutations in PDZ3 that change specificity for position 0 are quite distributed in the domain with 
relatively weak effects (Fig. 5a). For example, L379 mutated to V/I changes specificity to V0F, 
whereas mutating L379 to polar residues G/S/T changes specificity to V0L. More 
physicochemically diverse changes to position 0 specificity can occur through A343 mutations to 
M/W, both of which enable a preference for V0D (but interestingly, not V0E). These changes 
increase the binding fitness of V0D from quite detrimental in the wildtype PDZ3 context to being 
preferred in the mutant PDZ3 (Fig. 5a). L379 is in the binding interface, close (<5Å) in the 
structure to V0 and contacts K380, a contact of neighboring ligand residue -1. However, A343 is 
far in the structure and must have a more indirect allosteric mechanism (Fig. 5a). Within the full 
map of PDZ3 energetic couplings, there is also a small cluster of mutations that enables a 
specificity change to V0K: E305F, E310R, G333P, and F325T (Fig. S7).   

Module -1 
The determinants for specificity to position -1 are comprised of N326 (a contact of S-1), as well 
as S339 (a contact of N326), F325 (a contact of V0), and farther (>5Å) away in the structure are 
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G324, G345, and L342. These positions are mainly concentrated in the B2 and B3 beta-sheets 
and are in the binding interface (Fig. 4a). Many mutations in N326 cause the specificity-change 
to W and/or F/I/L (Fig. 5a). The broadest effect (W/M/I/L/V) is seen for N326P and N326G, both 
amino acids with special conformations. Interestingly, negatively charged (D/E) and polar 
mutations (G/S/T) at N326 change the -1 specificity to positively charged residues (R/K).  
 
Similarly to N326, G324 mutations to D/E change specificity in -1 to R/K (but also W/H), and 
G324R/M/L change specificity to L. G345 is another case where mutations to aromatic or 
hydrophobic residues (W/M/L/C) and Q cause specificity changes (to F/W/L at -1). A similar 
pattern is true for L342, where changes to hydrophobic/aromatic residues favor changes in 
specificity to hydrophobic residues at position -1, and there is increased binding to positively 
charged residues (H/R/K). Similarly, F325L and M greatly increase preference to bind H and I, 
respectively.  

Module -2 
Position -2 binding specificity is encoded by H372 (a contact of T-2) and A376 (a contact of 
H372 and K380, contacts of T-2 and V0, respectively) (Fig. 5, Fig. S5g-h). It is also encoded by 
G329 (a contact of K-4 and H372), G330, and I336, all in the B2 and B3 beta-strands that 
contain residues directly involved in binding. 4/5 of these sites overlap with a previous study that 
found these positions as epistatic in PDZ333 and 3/4 overlap with those previously identified to 
strongly change specificity at -2 to F33.  
 
The PDZ3 residue most strongly energetically coupled to position -2 is H372 (FDR<0.001, 
hypergeometric test). Indeed, PDZ3 position 372 and ligand position -2 are the most strongly 
coupled pair of positions in the dataset (table S1). This directly contacting position pair is 
connected by more than 70 energetic couplings. H372A was previously found to be a “class-
switching” mutation22,33. changing the preference at the T-2 position to an aromatic residue (F). 
As noted in a previous study, it is not only H372A that achieves this change in specificity, but 
many other mutations as well22,33.  We gain resolution into the -2 preference and find that it can 
also be broadened to include other aromatic residues (W/Y), as well as hydrophobic and 
positively charged residues (Fig. 5a). For example, H372V/I/L/G/P/A change the position -2 
specificity to aromatic, hydrophobic, and positively charged residues. H372C/T have more 
specific preference to aromatic or hydrophobic (but not positively charged) residues, and H372D 
shifts specificity to aromatic residues only. Interestingly, a fourth class of specificity change (T-
2D, to an acidic residue) can be achieved with a A376C/G mutation.   
 
In terms of residues that are not direct contacts, hydrophobic and aromatic mutations in G329 
change -2 specificity to hydrophobic residues (M/I/L). Similarly, mutations in the adjacent 
residue, G330, to V or A change specificity to I, and G330W changes specificity to I/C/V/F. 
Consistent with previous reports that G330T is a class-bridging mutation22, we find that it 
clusters (along with G330S and G330W) with class-switching mutations in H372 when 
considering the complete map of PDZ domains with at least one significant specificity encoding 
mutation (Fig. S7). 
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Module -3 
The main specificity-encoding positions for -3 are N326 (a contact of Q-3 and S-1), S339 (a 
contact of Q-3), and F340 (a contact of N326 and S339), meaning that the network of 
specificity-changing mutations around position -3 is fully connected by hydrogen bonds (Fig. 
S5g-h). N326 mutations to negatively charged residues (D/E) change -3 specificity to positively 
charged residues (R/K) and there is a similar pattern with S339, where mutations to D/E (or Q, 
and more weakly C) change preference at -3 to R/K. The same strong charge-coupling pattern 
can be seen for F340, where mutations to D/E create a preference for Q-3K/R.  

Module -4 
Specificity changes for position -4 occur via mutations at E331 and E373, both negatively 
charged contacts of K-4, located in the B2-B3 loop and the A2 helix, respectively, as well as 
G330 (a shared specificity-determinant of position -2). E331W/Y changes specificity of -4 to 
Y/F/W, as does G330W. In contrast, E331N changes specificity of -4 to the negatively charged 
residues D/E. Similarly, the polar mutation E373Q enables a -4E specificity change. The 
interactions between position -4 and E331 are interesting, as these residues were found to form 
transient salt bridges in molecular dynamics simulations25 as well as through our analysis of 
contacts from the crystal structure (Fig. S5g). 

Module -5 
Position -5 has a single major specificity determinant: V328. Once again, we find interesting 
charge-based couplings: V328E (negatively charged) enables binding to positively charged R/H, 
and V328R (positively charged) enables binding negatively charged D/E. Though V328 does not 
interact with Y-5 according to the crystal structure, V328 does contact PDZ positions G329 and 
I336, both of which encode specificity for T-2, indicating an allosteric mechanism of action. 

Specificity encoding through a disordered tail 
Our energetic coupling analysis between the domain and peptide yielded a limited role for the 
dynamic tail of CRIPT in defining specificity via energetic interactions with the globular domain. 
We were thus motivated to construct another library of variants in which we made all possible 
double mutants across the entire peptide (Fig. 6a), yielding more than 8,000 energetic coupling 
measurements across the 8 aa of the peptide (Fig. 6b-c). Once again, we found excellent 
reproducibility across replicate experiments and libraries (Fig. S8a-e). We used the same 
modelling approach (Fig. 6d, Fig. S8f-g) and quantification of residuals as above to find pairs of 
sites in CRIPT that are enriched in energetic couplings (Fig. 6e). This identified a significant 
coupling (FDR<0.1, hypergeometric test) between the structured and dynamic parts of the 
peptide, between the -3 and -5 positions (Fig. 6e). This pair of sites contains more than 20 
significant (FDR<0.1, Z-test) specificity-changing mutations (Fig. 6f), most of which are linked to 
a change in position -3 to a G residue. Substitution to a G at -3 enables a specificity change to 
any residue that is not positively charged or aromatic at the -5 position (Fig. 6f). We hypothesize 
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that the mechanism for this interaction could be via the gain/loss of (dynamic) sidechain-
sidechain interactions, as Q-3 and Y-5 sidechains are oriented toward the same side in the 
ligand and glycine would remove the sidechain and add flexibility to the chain. Another potential 
mechanism could be through the Y-5 interaction with V328 as an intermediary, as this position 
also has Van der Waal’s contacts with Q-3 (Fig. S5g).  
 
Interestingly, quantifying second order interactions for residues in the dynamic N-terminus in our 
combinatorial library also identified high confidence (95% CI < 1 kcal/mol) dddGs involving 
mutations at Y-5, with both being examples of positive sign epistasis (Fig. S6). Y-5G and K-
7W/Y are both weakly detrimental as single mutations, but together they are favored 
energetically (Fig. S6d). Y-5 E/D (and to a lesser extent G/N/S) are coupled to K-4G (Fig. S6f), 
again individually being detrimental but energetically favored when combined. These results 
suggest that not only is Y-5 coupled to Q-3, as seen above, but it also communicates with K-7 
and K-4. An energetic coupling network thus links residues as distant as K-7 to the structured 
region of the ligand at the binding site, and in turn to the domain itself.  

Discussion  
Here we have constructed the first comprehensive map of how binding specificity is encoded in 
a globular protein domain. The map required the binding specificities of >1,800 proteins to be 
experimentally measured and provides a comprehensive and interpretable energy model 
describing how mutations throughout a protein domain reprogram its binding specificity.    
 
Quantifying >200,000 energetic couplings between mutations in a PDZ domain and mutations in 
its peptide ligand allowed us to identify hundreds of mutations that alter the binding specificity of 
the domain. These mutations are concentrated in 20 major energetically coupled pairs of sites 
that are the primary determinants of binding specificity. Despite its distributed nature, specificity 
encoding is highly modular, with different residues in the PDZ domain largely encoding 
specificity for each residue in the ligand.   
 
The largely independent encoding of specificity in six different modules for each of six different 
ligand sites means that specificity can be orthogonally re-programmed for each peptide site. 
The specificity for each peptide residue is encoded in a spatially clustered set of residues and 
by a mixture of direct and allosteric mechanisms of action.    
 
Our results also show that N-terminal ligand residues that remain dynamic upon binding to the 
PDZ domain make an important contribution to affinity. However, mutations in the PDZ domain 
do not alter the effects of mutations in these dynamic residues, suggesting that they contribute 
little to the specificity of binding through the domain, at least in the immediate sequence space. 
The affinity contribution from these residues appears to be mostly via electrostatic interactions. 
It is possible therefore that multiple charge changes on the PDZ domain may be required to 
alter the specificity of recognition of these sites. 
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While dynamic residues do not enable widespread changes in specificity through the domain, 
we do find that they can do so by communicating with structured residues in the ligand. We also 
find points of communication between the dynamic residues that could propagate to the binding 
site. To our knowledge, our analysis is the first comprehensive quantification of energetic 
couplings between dynamic and structured portions of a disordered peptide and between both 
regions and a protein to which they bind (Fig. 7).  
 
The rapid and high-throughput quantification of energetic couplings makes it possible to gain a 
comprehensive and mechanistic view of how specificity and affinity are defined in protein 
interaction domains and peptides. The approach can be applied to both structured and dynamic 
regions of proteins, allowing it to be used on the wide spectrum of protein forms that includes 
varying levels of protein disorder36.  
 
Looking forward, we propose that applying this approach to many different protein-peptide and 
protein-protein interactions will generate a dataset of sufficient size and diversity to train 
machine learning models to predict, understand and engineer specificity changes from 
sequence for all protein-protein interactions. 
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Figure 1. Combinatorial mutagenesis of a peptide ligand. a) Normalized b-factor vs position of residue for PDB 
structures of PDZ3 crystallized with its ligand b) PDZ3-CRIPT structure (PDB ID: 5heb22) where CRIPT is coloured by 
b-factor (normalized to be on the same scale as all other available PDZ3 structures with their ligands). K-7 is 
represented in white and dashed/moving lines since it is absent from the crystal structure. c) library design and 
pipeline to determine binding fitness for all possible mutants of dynamic N and structured C terminus of CRIPT d) 
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density distribution of binding fitness and e) AA hamming distance for all variants of N vs C f) Hamming distance vs. 
fitness of N vs C g) Position weight matrix (PWM) based on binding fitness scores for top 1% of variants in N vs C. h) 
Number and percent of top 1% of variants stratified by AA Hamming distance and their associated PWMs. i) 
Increasing net charge of residues in N results in incrementally increased fitness, but not in C.  
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Figure 2. Energetic couplings in dynamic and structured portions of CRIPT. a) Two-state MoCHI thermodynamic 
model to transform binding fitness scores of mutations into energetic terms (ddG) of binding. b) Performance of 
model and additive trait coefficients of the dynamic N (left, panel i and ii) and structured C (right, panel iii and iv) 
portions of CRIPT. c) Heatmap of energetic binding terms for the dynamic N (left) and structured C (right) portions of 
CRIPT for all possible mutations (y-axis, coloured and ordered by physicochemical property).  
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Figure 3. Measuring >200,000 energetic couplings between PDZ3 and CRIPT allows identification of specificity-
encoding sites between the domain and peptide. a) Design of PDZ3-CRIPT trans library in which a library of all single 
substitutions in CRIPT is combined with a library of all single substitutions in PDZ3. Both libraries also contained 
designed STOP mutations and synonymous substitutions to comprise a total of 320k possible genotypes. b) AA 
Hamming distance and c) density distribution of binding fitness across the library for variants that pass quality 
thresholds. d) PDZ3-CRIPT structure (PDB ID: 5heb22) coloured by the average binding fitness effect for single 
substitutions. The canonical/constrained binding motif sites in CRIPT are labelled and have the strongest average 
binding fitness defects, as expected. e) heatmaps showing binding fitness of single substitutions in CRIPT (left) and 
PDZ3. STOP mutations are designed to only be in the N-terminus of CRIPT and two blocks of PDZ3. Most widely 
deleterious effects are at the binding interface (also seen in d)). f) Performance of first order 2-state MoCHI model on 
>240k variants (left) and residuals to the model (right) where those hexbins that pass FDR threshold of 10% 
(significantly different z-score from background) are outlined in yellow. g) Number of unique specificity-changing 
mutations (FDR<0.1) across CRIPT (left) and PDZ3 (right). 
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Figure 4. Major specificity encoding residues for each residue of a peptide. a) Heatmap showing number of 
specificity-changing mutations across every position-pair in PDZ3 and CRIPT. Outlined boxes mark those that pass 
FDR thresholds for enrichment as shown (solid FDR <0.01, dashed FDR 0.01-0.1) and comprise the major specificity 
encoding sites. PDZ annotations for binding interface (< 5Å) and secondary structure are shown along x axis). b) 
Number of specificity-changing mutations across each position pair versus distance between the position pair in 
question. Circles are coloured by FDR of enrichment, showing as in a) that most position pairs are not enriched in 
specificity-changing mutations and that position-pairs that are enriched in specificity-changing mutations tend to be 
closer to each other in the structure. c) – j) PDZ3-CRIPT (PDB ID: 5heb22) structure coloured by number of 
specificity-changing mutations, split by the identity of the CRIPT residue (highlighted in orange [V0, S-1, T-2, Q-3, K-
4, Y-5, N-6, K-7] in separate panels). Number of specificity-changing mutations is thresholded between 1 and 10 to 
more clearly show range for significant (FDR<0.1) sites. Only positions in PDZ3 that pass the FDR threshold of 0.1 
are labelled.  
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Figure 5. A complete map of all specificity-changing mutations across major specificity encoding sites in PDZ3-CRIPT 
a) Three columns of heatmaps show the energetic coupling (binding fitness residual), change in binding (binding 
fitness of mutant vs. wildtype), and raw binding fitness scores for all major specificity-changing PDZ3 mutations. 
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Mutations are colored by physicochemical property and positions in PDZ are colored by their position in PDZ (from N 
to C-terminus) as well as their contact/allosteric classification for the CRIPT residue that they are coupled to. b) 
Number of observed unique specificity changes in CRIPT vs b-factor for each residue. 
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Figure 5. (continued) 
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Figure 6. Measuring >8,000 energetic couplings between CRIPT residues reveals specificity-encoding positions 
within the dynamic peptide. a) Design of CRIPT cis double mutant library b) Density distributions of fitness and c) 
barplot of amino acid hamming distance for all variants d) Performance of first order MoCHI model fit on the CRIPT 
cis double mutant data e) Heatmap of the number of specificity-changing mutations per pair of CRIPT positions, with 
one significantly enriched coupled site outlined in black (FDR<0.1) f) Heatmap of residuals for each pair of mutations 
in the significantly coupled CRIPT sites Q-3 and Y-5.  
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Figure 7. Summary of domain-peptide and peptide-peptide energetic couplings. PDZ3-CRIPT (PDB ID: 5heb22) 
structure where energetically coupled sites are indicated with coloured pseudobonds. Orange pseudobonds indicate 
couplings between structurally close residues (<5Å), yellow pseudobonds indicate couplings between structurally far 
residues (>5Å) or those for which distance cannot be determined in the crystal structure. Width of pseudobonds 
indicates effect size (i.e. number of specificity-changing mutations between that pair of residues).  
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Materials and Methods 
Media 
 

• LB: 10 g/L Bacto-tryptone, 5 g/L Yeast extract, 10 g/L NaCl. Autoclaved 20 min at 
120ºC. 

• YPD: 20 g/L glucose, 20 g/L Peptone, 10 g/L Yeast extract. Autoclaved 20 min at 120ºC. 
• SORB: 1 M sorbitol, 100 mM LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA. 
• Filter sterilized (0.2 mm Nylon membrane, ThermoScientific). 
• Plate mixture: 40% PEG3350, 100 mM LiOAc, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 

8.0. Filter sterilized. 
• Recovery medium: YPD (20 g/L glucose, 20 g/L Peptone, 10 g/L Yeast extract) +0.5 M 

sorbitol. Filter sterilized. 
• SD -URA: 6.7 g/L Yeast Nitrogen base without amino acid, 20 g/L glucose, 0.77 g/L 

complete supplement mixture drop-out without uracil. Filter sterilized. 
• SD -URA/ADE: 6.7 g/L Yeast Nitrogen base without amino acid, 20 g/L glucose, 0.76 g/L 

complete supplement mixture drop-out without uracil, adenine and methionine. Filter 
sterilized. 

• MTX competition medium: SD –URA/ADE + 200 ug/mL methotrexate (BioShop Canada 
Inc., Canada), 2% DMSO. 

• DNA extraction buffer: 2% Triton-X, 1% SDS, 100mM NaCl, 10mM Tris-HCl pH8, 1mM 
EDTA pH8. 

 
B-factor analysis 

We obtained all 214 available PDZ domain family entries bound to a ligand from the PDB. We 
used the Bio3D37 R package to read in the entries, filtering for those with 2 unique chains in the 
structure (n = 61), further filtered for those that had B-factors available (n = 58). We normalized 
the B-factors by the minimum value within that chain in order to be able to compare B-factors 
across crystal structures. We filtered the length of chain B to be in the first quartile of the dataset 
(in order to roughly filter for PDZ domains bound to a peptide ligand that was 10 aa or less) and 
present the 14 PDZs bound to a short ligand and their respective normalized B-factors in Fig. 
1a).  

Library construction 

We designed four libraries to probe different questions about the PDZ3-CRIPT interaction (Fig. 
S1a). All libraries had the same backbone bindingPCA vector structure of DLG4-PDZ3 (aa 303-
402) N-terminally fused to DHFR3 and CRIPT (0 to -8) N-terminally fused to DHFR1,2 as in34. 
All plasmids used in the study are described in table S2. 

Combinatorial N- and C-terminal CRIPT libraries were each ordered as an NNK degenerate 
oligo from IDT and cloned into the bindingPCA vector containing PSD95-PDZ3 (aa 303-402) 
fused to DHFR3 and no bait fused to DHFR1,2 (hence “empty”). The library transformation was 
bottlenecked in E. coli such that the combinatorial space of variants was reduced from the 
possible 324 total variants (32 possible codons at 4 positions) to 204 in order to facilitate greater 
downstream sequencing depth for each variant.   

The CRIPT “cis” double mutant library was ordered as an IDT pool of NNK oligos with 28 NNK 
degenerate oligos encoding all different combinations of double mutants across CRIPT 
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positions 0 to -8. The library was transformed into the same empty vector as the CRIPT N and 
CRIPT C libraries described above. 

The PDZ3-CRIPT “trans” double mutant library was ordered as 3 separate TWIST oligo pools. 
PDZ3 (aa 303-402) was split into two non-overlapping blocks for mutagenesis: Block 1 encoding 
the first 50 aa in the domain and Block 2 encoding the latter 50 aa in the domain. We designed 
1000 variants encoding the following for each block: wildtype, all possible single mutants, half of 
all possible synonymous mutants, and half of all possible single STOP codon variants starting at 
the N-terminus of each block. Variants were designed such that each possible single mutant 
codon was firstly scored by the number of nucleotide substitutions away from wildtype (such 
that 2-3 substitutions were preferred, followed by 1, followed by 0) and then by the most optimal 
yeast codon (based on the S. cerevisiae codon usage table). This design strategy enabled us to 
use non-overlapping reads to sequence the long amplicons that encoded PDZ3 at one end and 
CRIPT at the other (schematic in Fig. S4a, designed library and results in Fig. S4b). The CRIPT 
single mutant library was designed in the same way but ordered as a single block due to its 
short length. Each library was amplified using distinct primers and transformed separately into 
the same backbone/bindingPCA vector (PGJJ001 as in 34). The PDZ3 portion of the Block 1 and 
Block 2 vectors were then cloned in two separate reactions into the vector with the CRIPT single 
mutant library to produce 2 double mutant library vectors (PDZ3 Block 1 single mutants + 
CRIPT single mutants, PDZ3 Block 2 single mutants + CRIPT single mutants).  

Large-scale transformations of libraries into yeast and competition assays 

We transformed each library of variants into S. cerevisiae in 3 replicates at a large volume 
scaled to the size of the library in order to ensure that all variants were present in multiple (at 
least 100) copies as in previous work34,38 to prevent bottlenecking the library. We grew the 
cultures to saturation in synthetic complete media with 2% glucose as a carbon source. We 
harvested these cultures as the “input” replicates to our selection assay, and subjected the input 
library to selection. The selection experiment is based on a well-described protein 
complementation assay30 wherein the yeast are grown in synthetic complete media with added 
methotrexate (MTX), a drug that requires dihydrofolate reductase (DHFR) for metabolization. In 
the presence of MTX, CRIPT (or the bait protein) must be bound to PDZ3 (the prey protein) to 
bring together the split fragments of DHFR and enable cell growth (Fig. S1a). We harvested 
these cultures as the “output” from the selection assay. We extracted the DNA from each 
replicate using a standard phenol chloroform procedure as in34. To prepare the DNA for Illumina 
sequencing, we used two PCR steps to obtain the amplicon for each library (table S3). In PCR1, 
we added frameshifting oligonucleotides (table S4) and amplified the regions of interest 
(amplicon with constant region and mutated region) from the extracted DNA with 5 cycles. In 
PCR2 we added Illumina sequencing barcodes with PCR using the minimum number of cycles 
necessary to reach amplification plateau for each sample based on a qPCR run.  

Next Generation Sequencing and analysis of sequencing data (read counts to fitness scores) 

We use sequencing as a quantitative readout for binding between PDZ3 and CRIPT (Fig. S1b). 
We obtained reliable sequencing data for a total of close to half a million variants across all four 
libraries, obtaining a fitness score (and associated error) for each variant using DimSum39. 
Parameters used to filter sequencing reads for DimSum required an input count of 10 reads in 
at least one replicate, and we filtered each dataset for the specific design of each library (i.e. 
libraries made with NNK degenerate oligos were filtered for NNK design and the custom pdz3-
cript trans libraries were filtered to only keep designed variants).   
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Normalization of fitness scores across experiments 

All 4 libraries contained overlapping variants that had highly correlated fitness (binding) scores 
when processed independently (Fig. S2f,h, Fig. S8 c). In order to make all scores comparable 
across the study, we used a linear transformation based on these highly correlated shared 
variants to normalize each library (Fig. S2g,i, Fig. S8d).  

Position-weight matrices 

All position-weight matrices were constructed using ggseqlogo40 with a custom Zappo-based41 
color scheme to mark physicochemically related amino acids. 

Calculation of physicochemical properties 

We calculated features from a curated list of amino acid property scales (n=386) 
(http://www.genome.jp/aaindex/) as in42 to quantify the correlation of these scores with the binding 
scores for the combinatorial N and C libraries in Fig. 1. We present those features that had a | 
Spearman’s r | > 0.4 for either the N or C libraries in Fig. S2J.    

Modeling phenotype to free energy with MoCHI 

To translate the fitness scores, which capture the phenotypic effects of mutations, into free 
energy terms, we used the MoCHI package31 to model the fitness with a two-state 
thermodynamic model for protein binding. Briefly, MoCHI takes as input amino acid sequences 
of each variant and predicts their fitness while correcting for global non-linearities (non-specific 
epistasis). Using the coefficients extracted from the model, we obtain the change in free energy 
associated with each mutation for the phenotype in question (in our case, binding). We used 
default parameters for a two-state model with one phenotype (binding) for all datasets. We used 
L1 and L2 regularization with a lambda of 10-6. We evaluated the model using the held-out “fold” 
from the 10 times that the model was run on the dataset. 

The CRIPT C combinatorial library contained an overabundance (>90%) of non-binding 
variants, so we balanced the dataset by sampling the distribution of >100k variants without 
replacement so that the variants with the largest distance from the peak of non-binding variants 
(specified by 2 s.d. away from mean of STOP codon binding distribution) had a higher 
probability of being sampled (Fig. S3a-b). We used a distance function based on a power-law 
distribution to weight the sampling probability as follows: 

 𝑊! 	= 	 𝑘
"	–	

!"
#  

Where 𝑊! is the sampling weight of each variant binding score 𝑥!, 𝑑 is the mean binding score 
for the non-binding/dead mode, and 𝑘 is a constant (=1010, chosen to balance the dataset 
towards a reasonable percentage of binding variants [~25%], Fig. S3b). 

To test the reproducibility of the model results, we repeated the sampling procedure 10 times 
and performed the three implementations of MoCHI modeling (linear model with no global 
epistasis, two-state thermodynamic model with first order terms, two-state thermodynamic 
model with second order terms) (Fig. S3f). We found the modeling results to be extremely stable 
across 10 iterations and therefore show one representative iteration in Fig. 2, Fig. S3 and Fig. 
S4.   
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Analysis of residuals to quantify energetic couplings 

For both PDZ3-CRIPT trans and cis CRIPT double mutant libraries we quantified the residuals 
from the observed vs. mean predicted binding fitness for each variant in the respective dataset. 
We converted the residuals to Z-scores (using the error derived from DimSum as the 
denominator) and performed a Z-test to derive p-values for each variant as the Z-scores were 
normally distributed. We corrected the p-values for multiple testing (Benjamini-Hochberg) and 
report the FDR values associated with residuals where relevant. Residuals (energetic couplings) 
that are significant by the multiple test-corrected Z-test, >0 and pertain to variants that pass the 
non-binding threshold (i.e. are binding) are classified as specificity-changing. To test for 
enrichment of specificity-changing mutations in PDZ3-CRIPT pairs, we did a test for enrichment 
(hypergeometric test) of specificity-changing mutations across all pairs of sites. We again 
performed multiple test correction (Benjamini-Hochberg) on these to identify the major 
specificity encoding residues/coupled sites as those that pass an FDR threshold of 0.1. We 
highlight these major energetically coupled sites in Fig. 4 and Fig. 5a, and list them in table S1. 

Unsupervised clustering of binding residuals 

We clustered the vector of binding residuals to all possible CRIPT variants for each PDZ3 
variant that had at least one specificity-changing mutation (N=340), filtered to include those 
PDZ3 variants with >80% data present (N=290). We used Cluster 3.043 to perform unsupervised 
hierarchical clustering with a weighted cosine distance, average linkage and otherwise default 
parameters. We used JavaTreeview44 to visualize the full cluster plot and several manually 
highlighted clusters in Fig. S7.  

Protein contact determination 

We used getContacts (https://getcontacts.github.io/) to predict contacting residues using 
get_static_contacts.py with the 5heb.pdb22 structure, --itypes option set to “all”, and otherwise 
default parameters. We also used the Bio3D37 package to calculate inter-residue distances 
between specific residues in PDZ3 and CRIPT based on the 5heb22 structure from PDB. 

Visualization of protein structures 

All protein structures were based on the PDZ3-CRIPT structure with PDB ID 5heb22. In Fig. 1b 
we present the full crystalized structure, but since the K-7 position is missing, we added this 
residue using ChimeraX45 v1.4 and therefore present it as a cartoon with motion lines around it 
and no associated B-factor. All other represented protein structures, e.g. in Fig. 3d, Fig. 4c-j, 
Fig. 7, and Fig. S7 include only those residues in PDZ3 and CRIPT that we had in our 
mutagenesis design, i.e. aa 303-402 in PDZ3 and 0 to -7 in CRIPT. All quantitative visualization 
on structures was performed with the color by attribute function in ChimeraX and links between 
energetically coupled residues (Fig. 7) were drawn via the pseudobonds function.  
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Supplementary Figures 

 
Figure S1. Overview of experimental design. a) designed libraries used to probe genetic encoding of PDZ3-CRIPT 
binding. b) libraries of variants are transformed into yeast and selected via a protein complementation assay (refs) 
that quantifies PDZ3-CRIPT binding. 
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Figure S2. Overview of CRIPT combinatorial N and C data and quality. a) replicate fitness correlations (Pearson’s r) 
for all N-terminal CRIPT variants b) replicate fitness correlations (Pearson’s r) for all C-terminal CRIPT variants and c) 
top 1% of variants d) replicate count correlations (Pearson’s r) for N-terminal CRIPT and e) C-terminal CRIPT. f-i) 
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normalization of fitness via a linear transformation using shared variants between CRIPT combinatorial libraries and 
the pdz3-cript trans double mutant library. j) Top physicochemical features that correlate (Spearman’s rho > 0.4) with 
binding fitness scores in N or C dataset.  
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Figure S3. Additional MoCHI modeling results for combinatorial CRIPT N and CRIPT C datasets a) distribution of all 
variants in CRIPT C combinatorial library, marking percentage of variants that are “alive”/binding (i.e. 2 s.d. away 
from the mean of the distribution of STOP codons) b) distribution of subsampled variants that were used to balance 
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the dataset (see Methods) c) performance of several models on CRIPT N (left) and C (right) datasets, including a 
linear model that does not account for global epistasis (top), residuals of a 2-state MoCHI model shown in Fig. 2 
(middle), and a 2-state MoCHI model that takes into account interactions between mutations (bottom). d) The 
relationship between ddG values and error, with cutoff of 1 kcal/mol indicated by dashed line to represent confident 
ddGs – all ddG values with high error values are in the V0 and T-2 positions that also have the highest ddG values. e) 
correlation between ddGs from 1st order vs 2nd order MoCHI model for CRIPT N and C datasets. Error bars for x and 
y axis indicate respective 95% confidence interval in kcal/mol. f) Results from running all models on 10 iterations of 
subsampling the CRIPT C dataset. Mean of model performance (i.e. explained variance, R2 observed vs. predicted 
fitness) via 10-fold cross-validation for the 10 models is shown with 95% confidence intervals (2*s.d.) for each model.  
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Figure S4. Overview of PDZ3-CRIPT trans library data and quality. a) sequencing strategy of PDZ3-CRIPT double 
mutant library where R1 and R2 denote forward and reverse sequencing reads, respectively. b) PDZ3-CRIPT library 
sequenced variants (_seq_>10 to reflect more than 10 input reads in the sample) reflect library design to maximize 
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number of nucleotide substitutions for each encoded variant along with the most optimal yeast codon (see methods) 
c) replicate count correlations for PDZ3-CRIPT library d) replicate fitness correlations for PDZ3-CRIPT library e) 
percent of reads in input sample at each position (out of total reads in input) for each of the 100 positions assayed 
across the PDZ domain – even sequencing expectation is 1%, denoted by dashed red line, showing that most 
positions are evenly sampled except for the missing tail end of block 2. f) all-by-all heatmap of binding fitness for 
PDZ3-CRIPT double mutants. Mutation physicochemical properties are represented by colours as shown in Fig. 1), 
positions are coloured from N to C (dark to light gradient). g) correlation between ddGs from two-state MoCHI model 
trained on combinatorial CRIPT libraries vs. PDZ3-CRIPT libraries with corresponding 95% confidence intervals as 
error bars on x and y axes. 
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Figure S5. Determination of specificity-changing mutations and association with structural contacts. a) FDR of binding 
fitness residuals to MoCHI 2-state model for PDZ3-CRIPT mutants with different cutoffs b) distribution of STOP 
codon binding fitness and threshold for “dead”/non-binding threshold (2 s.d. away from STOP codon variant fitness 
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mean). c) definition of a specificity-changing mutation d) density plot of distance between PDZ3-CRIPT mutated 
position pairs vs. binding fitness residual (y axis), with those hexbins that have all residuals with FDR<0.1 outlined in 
yellow e) the number of CRIPT positions for which each major specificity encoding residue in PDZ encodes 
specificity, showing that the vast majority encode specificity for only one CRIPT position f) Number of major specificity 
encoding residues (in PDZ3) for each CRIPT position (-6 and -7 have zero) g) PDZ3 position vs. CRIPT position 
showing position pairs enriched in specificity-changing mutations (major specificity-encoding sites) outlined by FDR 
value (solid vs dashed line representing <1% vs 1-10% respectively) and the contact type of each pair as classified 
by getContacts (see Methods); vdw = van der waal’s, hbbb = hydrogen bond backbone-backbone, hbsb = hydrogen 
bond sidechain-backbone, hbss = hydrogen bond sidechain-sidechain, sb = salt bridge, wb = water bond, hp = 
hydrophobics g) PDZ3 positions of major specificity-encoding residues (y axis) and their contacts in PDZ3 as 
determined by getContacts. CRIPT residue for which each PDZ3 position encodes specificity is represented by filled 
circles. 
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Figure S6. Clustered heatmaps of all 20 PDZ3-CRIPT major pairs of specificity encoding positions (i.e. significantly 
enriched FDR<0.1 for specificity-changing mutations). 
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Figure S7. Clustered heatmap of binding residuals for all PDZ mutations (y-axis, N=290) that have at least one 
associated specificity-changing mutation in CRIPT (x axis, N=152). Outlined boxes represent manually-chosen 
clusters that point to PDZ positions enriched for specificity-changing mutations (H372, N326, S339) as shown in 
detail in Fig. 5 but also other sets of positions that are seemingly unrelated (orange, purple, blue clusters) with 
corresponding structural annotations of these sites to the right of each cluster. 
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Figure S8. Overview of CRIPT cis double mutant library data and quality. a) replicate count correlations and b) 
replicate fitness correlations for all variants. c) correlation and d) normalization using linear transformation of shared 
variants across CRIPT cis double mutant library (y axis) and PDZ3-CRIPT double mutant trans library e) all-by-all 
binding fitness heatmap of all double mutants f) additive trait coefficients and g) residuals from fitting MoCHI two-state 
model h) distribution of variants with STOP codons and justification for non-binding/dead variants threshold (2 s.d. 
away from mean of STOP variants).  
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Figure S9. 1st and 2nd order interactions for CRIPT N as determined by MoCHI31. a)-f) Clustered heatmap of 2nd order 
interactions (dddGs) for CRIPT N combinatorial dataset with first order ddG terms for the individual mutations plotted 
on the x and y axes. 
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Supplementary tables: 
 

Rank Pair ID  CRIPT 
N vs. C 

FDR (enrichment in 
number of spec. 
changing mutations 
across all pairs) 

Number of 
spec. 
changing 
mutations 

PDZ3 
residue 

CRIPT 
residue 

Distance 
between residues 
(Å) 

1 372_-2 C 2.03E-125 74 H372 T-2 2.715445 
2 326_-1 C 1.49E-83 57 N326 S-1 3.593695 
3 339_-3 C 1.22E-38 32 S339 Q-3 2.543977 
4 324_-1 C 7.82E-14 16 G324 S-1 7.03372 
5 326_-3 C 1.32E-08 12 N326 Q-3 3.08644 
6 379_0 C 7.58E-06 9 L379 V0 4.245281 
7 376_-2 C 3.74E-05 8 A376 T-2 3.924201 
8 329_-2 C 0.000116 7 G329 T-2 9.165152 
9 331_-4 N 0.000116 8 E331 K-4 3.126404 
10 339_-1 C 0.000116 8 S339 S-1 8.3229 
11 345_-1 C 0.000116 8 G345 S-1 11.18858 
12 342_-1 C 0.000121 8 L342 S-1 7.746873 
13 343_0 C 0.000607 7 A343 V0 12.59954 
14 325_-1 C 0.007777 6 F325 S-1 7.572008 
15 328_-5 N 0.007777 6 V328 Y-5 8.612266 
16 330_-2 C 0.025456 5 G330 T-2 9.862768 
17 336_-2 C 0.028273 5 I336 T-2 8.526768 
18 340_-3 C 0.033814 5 F340 Q-3 4.862758 
19 330_-4 N 0.057264 5 G330 K-4 7.177915 
20 373_-4 N 0.076377 5 E373 K-4 2.670947 

Table S1. Major (FDR<0.1, hypergeometric test) energetically coupled pairs of sites that control specificity 
 

plasmid description link use source 
pGJJ001 bindingPCA 

vector with 
DHFR3 and 
DHFR1,2 fused 
to nothing 
(empty bait and 
prey sites) 

https://benchling.com/s/seq-
FRMVd55qhXRSdnCerIB4?m=slm-
HFeYB6ebmq6hKEVlXJ7S 

Vector for CRIPT single mutant 
library combined with PDZ3 
block 1 and block 2 libraries 

Faure, 
Domingo, 
Schmiedel et 
al. Nature 
202234 

pGJJ215 bindingPCA 
vectors with 
DHFR3 fused to 
wildtype PDZ3, 
empty "bait" for 
inserting CRIPT 
libraries 

https://benchling.com/s/seq-
YgJTHoCogB748M3lvrz1?m=slm-
96kiUpsaHHKMnzOCiKvI 

Vector for CRIPT N and C 
combinatorial libraries, CRIPT 
cis double mutant library  

JDE/Lehner lab 

pGJJ211 DHFR3 fused to 
wildtype PDZ3 

https://benchling.com/s/seq-
ZLKW8KZ0LU1BsoN88fBn?m=slm-
pK7yOttj3EJwRkSJzK98 

Vector for PDZ3 block 1 and 
block 2 libraries 

JDE/Lehner lab 
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pGJJ518 bindingPCA 
vector with 
wildtype PDZ3, 
wildtype CRIPT 

https://benchling.com/s/seq-
5EQ0SO1NzUXy4soExGvc?m=slm-
maaM0f6pwkJWq60vFxQR 

Wildtype control (used to obtain 
empirical estimates of 
sequencing error, quantify 
amount of plasmid in genomic 
DNA extractions and test 
bindingPCA assay) 

This work 

Table S2. Plasmid sequences used in this study 
 

amplicon link notes 

CRIPT_N /  
CRIPT_C / 
CRIPT_CIS_DOUBLE 

https://benchling.com/s/seq-
ZjVNfyB4q0j7ghLbVvos?m=slm-
tekXiMuhgKyP7qCWdIhJ 

Reference amplicon for CRIPT N, CRIPT C 
combinatorial libraries and CRIPT CIS double mutant 
library 

PDZB1_CRIPT https://benchling.com/s/seq-
m7a9OYYNBzp1HrSv0cgQ?m=slm-
j3wlHLONBYjdpZy7uZVO 

Reference amplicon for PDZ3-CRIPT trans double 
mutant library -- block 1 of PDZ3 

PDZB2_CRIPT https://benchling.com/s/seq-
5krvszGJdAW94riW4Pmi?m=slm-
b0Ku0YyzgXMeTFhjQ54N 

Reference amplicon for PDZ3-CRIPT trans double 
mutant library -- block 2 of PDZ3 

Table S3. Amplicon sequences used in this study 
 

name sequence forward_
reverse 

library_1 library_2 library_3 

oTZ132 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTAGGTGGAGGCGGATCCACC 

forward_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ134 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNAGGTGGAGGCGGATCCACC 

forward_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ135 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNNAGGTGGAGGCGGATCCACC 

forward_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ136 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTCNBAGGTGGAGGCGGATCCACC 

forward_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ137 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTTBHYAGGTGGAGGCGGATCCAC
C 

forward_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ138 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTGAHYYAGGTGGAGGCGGATCCA
CC 

forward_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ133 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTtcgaaggctttaatttgaCTAGTCTA 

reverse_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ139 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTNtcgaaggctttaatttgaCTAGTCTA 

reverse_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ140 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTNNtcgaaggctttaatttgaCTAGTCT
A 

reverse_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.25.591103doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591103
http://creativecommons.org/licenses/by-nc-nd/4.0/


oTZ141 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTRNWtcgaaggctttaatttgaCTAGT
CTA 

reverse_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ142 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTCRSNtcgaaggctttaatttgaCTAGT
CTA 

reverse_
CRIPT 

CRIPT_N CRIPT_C CRIPT_CIS_DOUBLE 

oTZ154 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTAGGTGGAGGCGGATCCACC 

reverse_
CRIPT 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ155 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTNAGGTGGAGGCGGATCCAC
C 

reverse_
CRIPT 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ156 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTNNAGGTGGAGGCGGATCCA
CC 

reverse_
CRIPT 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ157 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTCNBAGGTGGAGGCGGATCCA
CC 

reverse_
CRIPT 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ158 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTTBHYAGGTGGAGGCGGATCC
ACC 

reverse_
CRIPT 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ159 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTGAHYYAGGTGGAGGCGGATC
CACC 

reverse_
CRIPT 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ160 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTTCGGGAGGTGGAGCTAGC 

forward_
PDZ3B1 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ161 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNTCGGGAGGTGGAGCTAGC 

forward_
PDZ3B1 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ162 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNNTCGGGAGGTGGAGCTAGC 

forward_
PDZ3B1 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ163 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTCNWTCGGGAGGTGGAGCTAGC 

forward_
PDZ3B1 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ164 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTAWBRTCGGGAGGTGGAGCTAG
C 

forward_
PDZ3B1 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ165 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTTBANWTCGGGAGGTGGAGCTA
GC 

forward_
PDZ3B1 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ166 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTGCAGACCTCAGTGGGGAG 

forward_
PDZ3B2 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 
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oTZ167 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNGCAGACCTCAGTGGGGAG 

forward_
PDZ3B2 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ168 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNWGCAGACCTCAGTGGGGAG 

forward_
PDZ3B2 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ169 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTNNWGCAGACCTCAGTGGGGAG 

forward_
PDZ3B2 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ170 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTCSNWGCAGACCTCAGTGGGGA
G 

forward_
PDZ3B2 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

oTZ171 ACACTCTTTCCCTACACGACGCTCTTCC
GATCTTANNTGCAGACCTCAGTGGGGA
G 

forward_
PDZ3B2 

PDZ3CRIP
T_TRANS_
DOUBLE 

NA NA 

Table S4. List of frameshifting oligonucleotides used for PCR1  
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