New Results
Predicting Differentially Methylated Cytosines in TET and DNMT3 Knockout Mutants via a Large Language Model
View ORCID ProfileSaleh Sereshki, View ORCID ProfileStefano Lonardi
doi: https://doi.org/10.1101/2024.05.02.592257
Saleh Sereshki
1Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
Stefano Lonardi
1Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
Article usage
Posted September 04, 2024.
Predicting Differentially Methylated Cytosines in TET and DNMT3 Knockout Mutants via a Large Language Model
Saleh Sereshki, Stefano Lonardi
bioRxiv 2024.05.02.592257; doi: https://doi.org/10.1101/2024.05.02.592257
Subject Area
Subject Areas
- Biochemistry (12940)
- Bioengineering (9839)
- Bioinformatics (31558)
- Biophysics (16269)
- Cancer Biology (13348)
- Cell Biology (19025)
- Clinical Trials (138)
- Developmental Biology (10315)
- Ecology (15322)
- Epidemiology (2067)
- Evolutionary Biology (19561)
- Genetics (12979)
- Genomics (17941)
- Immunology (13060)
- Microbiology (30498)
- Molecular Biology (12720)
- Neuroscience (66598)
- Paleontology (490)
- Pathology (2061)
- Pharmacology and Toxicology (3548)
- Physiology (5535)
- Plant Biology (11405)
- Synthetic Biology (3170)
- Systems Biology (7836)
- Zoology (1769)