Abstract
Most fish species are ectothermic and rely on behavioral strategies to control their body temperature in heterothermal environments. Both thermotaxis and thermokinesis have been suggested as important underlying mechanisms. However, to what extent these behaviors allow fish to respond to rapid (timescales of minutes) and strong thermal disturbances, like those caused by anthropogenic water releases into natural freshwater systems, is poorly understood. Here, we quantify this response for a salmonid species with a novel laboratory approach coupled with image-based tracking. We exposed brown trout parr (Salmo trutta), acclimated to 12 °C, to rapidly forming cold- and warm-water interfaces with temperatures ranging from 4 to 20 °C. We found that fish actively avoided colder water (≤8 °C) through a rapid response that combined thermotaxis and thermokinesis. In contrast, fish did not avoid warmer water and frequently crossed interfaces having temperature contrasts of up to 8 °C. This study shows that brown trout parr swiftly deploy multiple behavioral strategies to minimize exposure to cold water and take advantage of warm water, illustrating their capability to cope with rapidly occurring thermal alterations.
Competing Interest Statement
The authors have declared no competing interest.