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Abstract 29 

Chromosomal inversions can preserve combinations of favorable alleles by suppressing 30 
recombination. Simultaneously, they reduce the effectiveness of purifying selection enabling 31 
deleterious alleles to accumulate. This study explores how areas of low recombination, including 32 
centromeric regions and chromosomal inversions, contribute to the accumulation of deleterious 33 
and favorable loci in 225 Mangifera indica genomes from the Australian Mango Breeding 34 
Program. Here, we identify 17 chromosomal inversions that cover 7.7% (29.7Mb) of the M. indica 35 
genome: eight pericentric (inversion includes the centromere) and nine paracentric (inversion is 36 
on one arm of the chromosome). Our results show that these large pericentric inversions are 37 
accumulating deleterious loci, while the paracentric inversions show deleterious levels above and 38 
below the genome wide average. We find that despite their deleterious load, chromosomal 39 
inversions contain small effect loci linked to variation in crucial breeding traits, indicating that 40 
chromosomal inversions have likely facilitated their selection. The results from this study have 41 
important implications for selective breeding of favorable combinations of alleles in regions of low 42 
recombination. 43 

Significance Statement 44 

Chromosomal inversions and other low recombination regions of the genome can drive trait 45 
evolution. Fewer recombination events can assist in maintaining favorable combinations of 46 
alleles, but it can also make disentangling favorable and deleterious alleles difficult. 47 
Understanding whether these low recombination regions contain favorable or deleterious loci 48 
could drive our decision to increase or decrease the frequency of these regions in target breeding 49 
populations. Breeding for large segments of the genome based on presence or absence of an 50 
inversion can rapidly drive large trait differences within few generations. Harnessing the impact of 51 
large low recombination regions of the genome could have major implications for future genetic 52 
improvement in breeding. 53 

Introduction 54 

Low recombination regions of the genome, such as those harboring chromosomal inversions, 55 
play a major role in trait evolution. An inversion occurs when a segment of chromosome breaks 56 
off and re-attaches in the reverse direction. Chromosomal inversions are prevalent in natural (1-5) 57 
and domesticated plant populations (e.g. rice (6, 7), wheat (8), barley (9), cucumber (10), melon 58 
(11), soybeans (12), cotton (13) and tomatoes (14)). The mismatch of loci between the inverted 59 
and non-inverted segments limits recombination between them, enabling inversions to maintain 60 
combinations of alleles (15). The accumulation of selectively advantageous alleles in inverted 61 
segments highlights their evolutionary role in trait evolution. For example, inversions have been 62 
implicated in adaptive evolution across a wide-range of species, including sunflower (3), 63 
monkeyflowers (5), threespine sticklebacks (2), cod (4), and deer mice (1). Despite the known 64 
role of inversions in driving the evolution of favorable traits in nature, selecting for desirable 65 
inversions rarely occurs in plant breeding populations (16). 66 
 67 
Selective breeding for inversion variation has often occurred incidentally during domestication. 68 
When the genetic architecture of these traits is largely captured by inversions, selection for these 69 
traits drives the frequency of the inversion to increase in the population. For example, selection 70 
for domestication genes in soybean likely drove a sweep for a large inversion (43.30-43.66Mb) on 71 
chromosome seven (12). In rice, inversions on chromosome six contain genes for rice blast 72 
disease resistance (7) and in Brassica napus researchers found inversions persistently contained 73 
disease resistance genes (17). It is often difficult to assess whether the inversion or the desirable 74 
alleles arose first, but evidence of inversions harboring desirable breeding traits continues to 75 
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emerge as researchers identify chromosomal inversions in their breeding populations (16). 76 
Harnessing these low recombination regions, containing linked desirable combinations of alleles, 77 
for selective breeding could open the door for simple genotyping of inversion presence/absence 78 
and enable substantial changes in multiple traits in few generations. 79 
 80 
Methods for identifying chromosomal inversions often require long read sequencing on few 81 
individuals. However, this is an expensive approach, so methods that can quickly and cheaply 82 
scan the genome for candidate inversions are a great complement to study regions of low 83 
recombination. Local principal component analysis (PCA), which uses inexpensive short read 84 
sequencing, can reveal candidate chromosomal inversions that are driving genetic differentiation 85 
(3, 18). The local PCA approach identifies outlier regions that are more genetically structured 86 
than the genome average. A typical signature of an inversion segregates these outlier regions 87 
into three clusters, predicted to reflect 0, 1 or 2 copies of the inversion for diploid species. If 88 
heterozygosity is high in the group of individuals predicted to carry one copy of the inverted 89 
chromosomal segment, we could more confidently infer the presence of an inversion. 90 
Furthermore, genetic differentiation should be maximum between the two homozygous clusters, 91 
which reflect groups of individuals with collinear chromosomes (i.e., 0 or 2 copies of the inferred 92 
inversion). Because recombination is prevented between the homozygous clusters, we also 93 
expect to see a drop in nucleotide diversity and an increase in linkage disequilibrium in these 94 
potential inversion regions. This chromosomal inversion identification approach will likely identify 95 
large inversions driving population differentiation, which could uncover the variation underlying 96 
key traits for selective breeding.  97 
 98 
Low recombination regions of the genome accumulate deleterious alleles in natural and 99 
domesticated populations (19-23). Fewer recombination events during meiosis in regions 100 
containing chromosomal inversions and centromeres, prevent the effective separation and 101 
removal of mutations that reduce fitness from those that increase fitness (24). New mutations 102 
arise across the genome every generation, and deleterious mutations arise more frequently than 103 
beneficial mutations, as there are more ways to disrupt function than improve function (25). As 104 
such, regions of low recombination can become sinkholes for mutations with slight to moderate 105 
deleterious effects on populations. Gossmann, et al. (26) found that on average in plants, 25% of 106 
new nonsynonymous mutations (those that change the amino acid) behave as effectively neutral, 107 
the remaining being mostly deleterious with few being advantageous. Factors, such as selection 108 
(natural or artificial) and lack of genetic diversity, can amplify the accumulation of deleterious 109 
mutations in regions of low recombination (22, 27). One example includes selection for favorable 110 
alleles that leads to an increase in frequency of harmful alleles that are in genetic linkage (28). 111 
Another factor that is prevalent in breeding populations is low genetic diversity from recent 112 
bottlenecks, which can drive slightly deleterious alleles to become fixed in the population (29). If 113 
there are no other haplotypes without the deleterious alleles, then there is no opportunity for 114 
selection to purge the harmful alleles until new variation is introduced into the population. These 115 
deleterious alleles are thought to cause inbreeding depression (30), which can drive reductions in 116 
yield. Thus, crop breeding could be improved if deleterious mutations are removed from the 117 
genome (22).  118 
 119 
Here we explore how regions of low recombination in the genome - centromeres and 120 
chromosomal inversions - contribute to the accumulation of desirable and deleterious loci in 225 121 
Mangifera indica genomes from the Australian Mango Breeding Program. We identified candidate 122 
centromere locations, using tandem repeat signatures in the M. indica cv. ‘Alphonso’ genome. 123 
The local PCA approach was implemented to identify candidate chromosomal inversions across 124 
the population, and these results were corroborated using long read sequencing on few 125 
individuals. To identify desirable loci, we found sites underlying five key mango breeding traits – 126 
fruit blush color, fruit firmness, fruit weight, total soluble solids (proxy for sweetness) and trunk 127 
circumference (proxy for tree size). To identify deleterious loci we implemented a sequence 128 
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homology approach (Sorting Intolerant From Tolerant For Genomes (31, 32)), where non-129 
synonymous mutations in regions conserved across many species will produce higher deleterious 130 
scores. Our study seeks to understand the impact of low recombination regions of the genome on 131 
the balance between the accumulation of desirable and deleterious alleles in breeding 132 
populations, which has important implications for simplifying breeding practices. 133 

Results 134 

Centromeres accumulate genetic differentiation and chromosomal inversions in M. indica 135 
To identify areas of genetic differentiation in the mango gene pool, we performed a local PCA, as 136 
implemented in Huang et al. (3), on SNPs derived from whole genome sequences of 225 137 
Mangifera indica. We found 28 genomic regions (0.16 - 4.43Mb in size) across 17 chromosomes 138 
(total of 20; SI Appendix, Table S1) displaying extreme genetic differentiation (4 SD from the 139 
genome-wide average; SI Appendix, Fig. S1). We estimated the centromere location in the M. 140 
indica cv. ‘Alphonso’ genome using tandem repeats (±1Mb; SI Appendix, Fig. S2 and Table S1) 141 
(33). We discovered half of the regions of major differentiation overlap the predicted centromere 142 
(SI Appendix, Table S1), indicating that low recombination regions of the genome might play a 143 
role in allowing genetic differentiation in M. indica to persist. 144 
 145 
We tested for differences in homozygosity between local PCA clusters to identify potential 146 
chromosomal inversions. For each region of major differentiation identified by local PCA, 147 
individuals were separated into three genotype groups using kmeans clustering. The central 148 
cluster is expected to be heterozygous for the inversion and the other two are predicted to contain 149 
alternate homozygote individuals for the inversion. Thus, if measured homozygosity significantly 150 
differs between the predicted heterozygous cluster and the two predicted homozygous clusters, 151 
we will consider these regions as potential chromosomal inversions. Homozygosity was 152 
differentiated in the expected direction in 17/28 genomic regions displaying extreme genetic 153 
differentiation (SI Appendix, Fig. S3). Thus, we further investigated these 17 potential 154 
chromosomal inversions across the M. indica genome (Table 1), where eight were pericentric 155 
(inversion contains the centromere) and nine paracentric (inversion is on one arm of the 156 
chromosome). These 17 potential chromosomal inversions, encompassing 7.7% of the genome, 157 
were abundant around centromeres, which further decreases the recombination events in this 158 
area of the genome.  159 
 160 
If these 17 potential inversions identified by the local PCA are true inversions, we expect to see 161 
specific signatures in population genomic analyses (Fig. 1). All 17 potential inversion regions 162 
often cluster into three distinct groups in multi-variate space on PC1 (SI Appendix, Fig. S4), with 163 
the discreteness of the clusters ranging between 0.85-0.98 (maximum discreteness is 1; SI 164 
Appendix, Table S3). Additionally, genetic differentiation (FST) between the homozygous clusters 165 
(clusters 0 and 2) was 4.9-fold higher within the 17 potential inversions compared to the rest of 166 
the genome (FST Mean ± SD: inv = 0.49 ± 0.22 and non-inv = 0.10 ± 0.12), consistent with these 167 
clusters being fixed for opposing haplotypes. The smaller M. indica inversion on chromosome 17, 168 
miinv17.0, was the only candidate not showing signs of elevated FST, which might have been 169 
driven by miinv17.1, which overlaps this region. Pericentric inversion regions exhibited higher 170 
genetic differentiation compared to paracentric (FST: pericentric = 0.56 ± 0.20 and paracentric = 171 
0.34 ± 0.17), with pericentric regions containing the highest FST peaks. There was a reduction in 172 
nucleotide diversity in at least one of the homozygous clusters in most (7/8) pericentric inversion 173 
regions (SI Appendix, Fig. S3), as expected for areas of reduced recombination. On the other 174 
hand, only 3/9 paracentric inversions showed a dip in nucleotide diversity within the inversion 175 
region (SI Appendix, Fig. S3), suggesting greater gene exchange (known as gene flux (34)) 176 
between clusters in paracentric inversions. Overall, our findings highlight that pericentric 177 
inversions in M. indica have high genetic differentiation and low nucleotide diversity, consistent 178 
with chromosomal inversions that reduce the exchange of alleles between chromosomes that 179 
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contain the inversion and those that do not. On the other hand, paracentric inversions have less 180 
distinct inversion signatures, as they seem to have experienced some gene flux between clusters. 181 
 182 
To assess whether the predicted centromere and inversion regions have signatures of reduced 183 
recombination, we evaluated linkage disequilibrium (LD) patterns. Consistent with few 184 
recombination events, there was high LD around the centromere in all chromosomes that could 185 
be assessed (n=19), revealing the role the centromere plays in reducing recombination in this 186 
gene pool. As expected, most potential inversions show an increase in LD across all genotypes in 187 
the inversion region compared to the surrounding genomic regions (SI Appendix, Fig. S3). For 188 
paracentric inversions, genotypes with the same chromosomal arrangement (same cluster) 189 
should recombine freely. However, we did not observe this expected pattern for LD for the most 190 
common homozygous cluster in paracentric inversions. We found that across paracentric 191 
inversions, the most common homozygous cluster often had similar LD levels to all genotypes (SI 192 
Appendix, Fig. S3). Conversely, as pericentric inversions encompass the centromere, high LD 193 
was observed within and between clusters as expected. Overall, our results are consistent with 194 
signatures of low recombination with high LD in all predicted centromeric regions and most 195 
predicted inversion regions. 196 
 197 
To corroborate these inversions with PacBio high fidelity long-read sequencing (HiFi), we 198 
completed pairwise comparisons between the ‘Alphonso’ reference genome used for the local 199 
PCA and haplotype sequences of three genomes where all the chromosomes were assembled 200 
telomere-to-telomere (SI Appendix, Fig. S5). These three genomes corroborated all but one of the 201 
local PCA identified inversions, providing strong evidence for the prevalence of these inversions 202 
within the M. indica gene pool. Interestingly, in contrast to paracentric inversions, multiple HiFi 203 
inversions were often identified within the local PCA pericentric inversions (Table 1). This 204 
indicates that centromeres are indeed hotspots for the origin and persistence of inversions, where 205 
the local PCA approach identifies multiple similar, closely located pericentric inversions as a 206 
single block of differentiated genomic structure. 207 
 208 
Overall, chromosomal inversions and regions of genetic differentiation accumulate in the 209 
centromeric areas of M. indica. This observation implies that low recombination regions could 210 
facilitate the preservation of genetic variation that might otherwise be susceptible to disruption 211 
through recombination. Such hotspots of genetic differentiation might contribute to variation in key 212 
breeding traits. 213 

Inversions harbor loci for key breeding traits 214 
To understand the potential role of identified inversions in shaping genetic variation for key mango 215 
breeding traits, we assessed the joint contribution of the inversions to trait variation using two 216 
approaches. The first approach fitted all inversions as fixed effects in a linear model and the 217 
second approach tested the importance of each inversion in fitting an iterative random forest 218 
model for each trait. The key mango traits included fruit blush color, fruit firmness, fruit weight, 219 
total soluble solids (an indicator of sweetness) and trunk circumference (an indicator of tree size). 220 
We found that 11 of the 17 inversions are associated with at least one of these traits (Table 1 and 221 
SI Appendix, Table S4). Both models show that the inversions jointly explain a large amount of 222 
the genetic variation in blush color (33%) and total soluble solids (21%), but a moderate amount 223 
for trunk circumference (16%) and fruit weight (12%), and very low for fruit firmness (2%) (SI 224 
Appendix, Table S5). Among these inversions, miinv6.0 shows an additive relationship with blush 225 
color and weight, where accessions in genotype cluster 0 have more blush and heavier fruit than 226 
the other clusters (Fig. 2). Selection for miinv6.0 cluster 0 accessions could be a simple approach 227 
to increase fruit blush color and weight in M. indica. These results suggest that inversions 228 
facilitate the maintenance and persistence of allelic combinations that contribute to variation in 229 
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these key breeding traits.  230 
 231 
To identify the genes underlying these key breeding traits and their association with the 232 
inversions, we examined the distribution of loci discovered using genome-wide association 233 
studies (GWAS). The GWAS for blush color and total soluble solids showed a single major cluster 234 
of associated SNPs (Fig. 3), or quantitative trait loci (QTL). One of the most associated SNPs 235 
within the QTL for blush color (miBCSNP15:10730980) explains a very large portion of the 236 
genetic variation in blush color (45%; SI Appendix, Fig. S6) and for total soluble solids, the top 237 
SNP (miTSSSNP5:7109828) explains 19% of the genetic variation (SI Appendix, Fig. S7). On the 238 
other hand, fruit firmness, trunk circumference, and fruit weight associated SNPs were spread 239 
throughout the genome, with multiple QTLs (Fig. 3), indicative of highly polygenic traits. Overall, 240 
we found 44 (10.1%) GWAS SNPs within the identified 17 inversions, which does not exceed 241 
what you would expect by chance (quantiles 2.5% = 10.4% and 97.5% = 10.6% from 1,000 242 
bootstraps). Even though there is no enrichment of GWAS signals across all inversions, one 243 
inversion (miinv5.0) is unusually rich in harboring GWAS SNPs (quantiles 2.5% = 0.96% and 244 
97.5% = 1.01% from 1,000 bootstraps). miinv5.0 contains 32 (7.36%) GWAS SNPs for total 245 
soluble solids within miTSSQTL5 (Fig. 3). The absence of enrichment of GWAS SNPs within 246 
other inversions might be due to many small effect loci not detectable with a low powered GWAS. 247 
 248 
We assessed the enrichment of genes within inversions to evaluate the contribution of each 249 
inversion to function. Here, we focused on fruit blush color as the pathways involved in 250 
pigmentation are well known. Among the four inversions associated with blush color identified 251 
from the linear joint analysis (miinv1.0, 3.0, 6.0 and 9.0), three exhibit strong enrichments of 252 
relevance when using the top 100 ranked neighbor genes determined by multi-omic network 253 
analysis (see Methods; Dataset S1). Specifically, miinv9.0 is enriched for genes influencing levels 254 
of carotenoid, known to impart the orange or yellow colors on mango skin (35). Conversely, 255 
miinv1.0 is enriched for genes influencing levels of flavonoid and miinv6.0 for jasmonic acid 256 
signaling. Preharvest spraying of jasmonic acid is known to increase blush through upregulation 257 
of the flavonoid - anthocyanin (36, 37). Consistent with the major role of anthocyanin in producing 258 
red blush, the QTL in chromosome 15 from the blush color GWAS (Fig. 3), contains a 259 
transcription factor MYB114-like (MYB1) that is known to affect anthocyanin production in many 260 
cultivated species. Kanzaki, et al. (38) identified MYB1 as a regulator of light dependent red 261 
coloration in mango. This implies that anthocyanin regulation is key to red blush in mango and the 262 
genetic variation underlying this is spread across multiple chromosomal inversions and other 263 
pockets of the genome such as chromosome 15 (Fig. 4). 264 
 265 
These results suggest that loci of large effect together with allelic variation contained in 266 
chromosomal inversions help create specific combinations of alleles that contribute to key 267 
breeding traits in mango. As such, polygenic selection aided by chromosomal inversions has 268 
likely contributed to trait differentiation among mango accessions from origins across the world. 269 
The potential for selecting large chromosomal rearrangements, such as inversions, instead of 270 
SNPs, opens a novel and potentially efficient avenue for selection of favorable polygenic traits.  271 

Centromeres and large pericentric inversions have high deleterious scores 272 
To investigate the distribution of deleterious alleles in the Australian mango gene pool that could 273 
antagonize selection for important traits, we implemented Sorting Intolerant From Tolerant (SIFT) 274 
(39) that identifies damaging mutations based on sequence homology. Here, we defined a 275 
deleterious score as 1-SIFT, where > 0.95 are putative deleterious mutations. We found that 19% 276 
(n=37,503) of genic sites across the genome are deleterious, with the remaining genic SNPs 277 
being non-damaging or tolerated (SI Appendix, Table S6). As expected, deleterious alleles are at 278 
low frequencies in the mango gene pool (SI Appendix, Fig. S8). 279 
 280 
To test the prediction that deleterious alleles accumulate in regions of low recombination in the M. 281 
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indica genome, we assessed the average deleterious score in centromeric and inversion regions. 282 
We found that sites within 1Mb of the predicted centromere have a higher deleterious score 283 
compared to the rest of the genome (mean deleterious score: centromere = 0.506 and non-284 
centromere = 0.484; quantile 97.5% = 0.486 from 1,000 bootstraps). This is consistent with 285 
regions of low recombination accumulating deleterious alleles, where selection cannot purge 286 
them easily. The deleterious score of pericentric inversions was also higher relative to the rest of 287 
the genome (mean deleterious score: pericentric inv = 0.501 and non-pericentric inv = 0.485; 288 
quantile 97.5% = 0.487 from 1,000 bootstraps), but deleterious scores for paracentric inversions 289 
were not significantly different from background levels (mean deleterious score: paracentric inv = 290 
0.483 and non-pericentric inv = 0.485; quantile 97.5% = 0.487 and 2.5% = 0.483 from 1,000 291 
bootstraps). Specifically, deleterious scores varied considerably across the 17 inversions, where 292 
miinv4.0 had the highest deleterious score (0.597) and miinv1.1 the lowest (0.362; Table 1). For 293 
pericentric inversions, the distribution of deleterious scores is driven by inversion size, where 294 
large pericentric inversions have high deleterious scores (Fig. 5). This suggests that the size of 295 
the mutational target in non-recombining regions of the genome might contribute to the 296 
accumulation of deleterious alleles. 297 

QTL regions under selection display low deleterious scores 298 
We have shown that harmful alleles often gather in regions with low recombination in M. indica. 299 
However, a critical question arises: can selection effectively overcome the drag of these 300 
deleterious alleles to increase the frequency of desirable alleles? To explore this, we focused on a 301 
large QTL for total soluble solids (miTSSQTL5 = 3.2Mb) that has a 1Mb overlap with a sizable 302 
pericentric chromosomal inversion (miinv5.0 = 3.6Mb). Despite this inversion being laden with 303 
deleterious alleles, the QTL for total soluble solids has a smaller deleterious score compared to 304 
the genome background (mean deleterious score: miinv5.0 = 0.535, miTSSQTL5 = 0.482, 1Mb 305 
overlap = 0.507 and background = 0.485; quantiles 2.5% = 0.483 and 97.5% = 0.487 from 1,000 306 
bootstraps). This suggests that strong selection might have occurred for desirable alleles in this 307 
QTL, overcoming linkage to detrimental alleles.  308 
 309 
To further understand the evolution of this QTL (miTSSQTL5), we evaluated the frequency of the 310 
main locus for this trait - the top GWAS SNP for total soluble solids (miTSSSNP5:7109828). This 311 
SNP lies within miinv5.0 (330kb from the end) and exhibits a significant association with the 312 
inversion (Fisher’s exact test, n = 225, P < 0.0001), where inversion cluster 2 is fixed for the most 313 
common allele at this site. Inversion cluster 0 and 1 have low frequencies of the alternate allele. 314 
The common allele (frequency in the gene-pool = 0.92) is additively associated with a favorable 315 
high total soluble solids value (40), suggesting the desirable allele is close to fixation in the gene 316 
pool. These results suggest that intense selection for high total soluble solids could be driving this 317 
allele to fixation in M. indica.  318 
 319 
Consistent with signatures of selection in the mango genome, QTLs for traits that have been 320 
actively selected for in mango breeding programs, like fruit blush color, total soluble solids, and 321 
fruit weight, show a reduced deleterious score (SI Appendix, Table S7). Our findings suggest that 322 
the power of selection in breeding has not only shaped desirable traits but has incidentally 323 
minimized potentially harmful alleles in cultivated mango varieties. 324 

Discussion  325 

Chromosomal inversions are known to play a large role in trait evolution in nature (1-5, 41, 42), 326 
yet inversions are rarely used as a tool for breeding (see exceptions in maize (43) and rice (44)). 327 
In many cases, selection for breeding traits has likely led to the incidental change in frequency of 328 
an inversion (12). Intentionally harnessing the influence of these low recombination regions could 329 
drive major shifts in key agronomical traits. Our study is a step forward for understanding the role 330 
of chromosomal inversions in maintaining breeding trait variation. Here, we provide empirical 331 
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evidence in M. indica to suggest that chromosomal inversions are a major force driving breeding 332 
trait evolution, through the aggregation of small effect alleles in regions of low recombination. 333 
Further, we find these chromosomal inversions are often located across centromeres, where 334 
large pericentric inversions are accumulating putative deleterious alleles. Although these 335 
deleterious alleles can lead to reduced fitness, our data also suggests that pockets of deleterious 336 
alleles could be potentially removed through selection for desirable traits. The results from this 337 
study suggest selection for desirable inversions could be a simple effective strategy for breeding 338 
for polygenic traits. 339 
 340 
Pericentric inversions amplify the low recombination rates near centromeres making it unlikely to 341 
generate haplotype recombinants. This severely limits the potential for the inversion to be broken 342 
up by gene flux and could explain why polymorphic inversions were commonly located within 343 
centromere regions here in mango and other species such as deer mice (1). The severely 344 
reduced recombination can also help explain why pericentric inversions are large in mango, 345 
maize (43), and sunflower (45), and have stronger genetic signatures and divergence compared 346 
to paracentric inversions, as shown in this study. Paracentric inversions do not have the same 347 
level of suppressed recombination, so there are more opportunities for recombinants to arise 348 
within the inversion via gene flux. The centromere-amplifying effect might provide pericentric 349 
inversions the ability to preserve allelic combinations as stable polymorphisms, while paracentric 350 
inversions might be more transient in the polymorphic state.  351 
 352 
The severe reduction in recombination in these large pericentric inversions might also contribute 353 
to the accumulation of more deleterious alleles. Our results are consistent with sorghum and 354 
maize, where predicted deleterious mutations were frequent in severely suppressed 355 
recombination regions, such as centromeres (20, 23). However, in regions of the genome that are 356 
not as severely suppressed such as paracentric inversions, we found no overall accumulation of 357 
deleterious alleles within inversions, which is similar to deer mice (1) and sunflower (45) that also 358 
used the local PCA approach to identify polymorphic inversions. Harringmeyer and Hoekstra (1) 359 
suggest inversion homozygotes allow recombination to be uninterrupted, thus implying that the 360 
inverted regions will gradually purge deleterious alleles as inversion haplotypes increase in 361 
frequency in the population. Phylogenetic analysis of the inversions with wild and domesticated 362 
Mangifera will help elucidate the age of these inversions and whether they facilitated the 363 
accumulation of favorable or deleterious loci. 364 
 365 
Natural and artificial selection can purge deleterious alleles from regions of the genome, but it can 366 
also drive the accumulation of deleterious alleles. In populations with substantial haplotype 367 
diversity, selection can replace the harmful haplotypes with the favorable haplotypes (22, 46). On 368 
the other hand, deleterious alleles genetically linked to loci targeted by selection can spread in 369 
the population (21, 28, 47). In the absence of recombination, these linked regions span larger 370 
distances which increases the probability of deleterious alleles evolving together with selected 371 
alleles. Our study found that QTLs for fruit blush color, weight and total soluble solids have 372 
reduced deleterious scores. This result mirror those by Zhu et al. (46) that found strong artificial 373 
selection was correlated with low genetic load in rice, soybean, tomato, grape, and pineapple, 374 
with the exception of centromeric regions. These results highlight the amplifying effects of 375 
centromeres on reducing recombination rate, which is particularly evident in mango in large 376 
pericentric inversions that harbor both deleterious and favorable loci (e.g. miinv5.0, miinv1.0 and 377 
miinv3.0). After close examination of the one QTL overlapping an inversion, we see that selection 378 
for the total soluble solids QTL likely helped remove deleterious loci in tight linkage. These results 379 
suggest that selection for loci within QTL peaks may induce linked purifying selection against 380 
nearby deleterious variants, even in regions of low recombination. Overall, examining genome 381 
structure dynamics surrounding sites under selection provides unique insights into the tensions 382 
between maintaining desirable variation and removing deleterious mutations. 383 
 384 
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The clustering of loci for key breeding traits within inversions implicates a broader role of 385 
structural mutations like inversions in orchestrating complex, polygenic trait architectures. 386 
Targeting of inversions containing adaptive loci for polygenic traits has been observed in nature 387 
(41). For breeding, tracking chromosomal rearrangements may offer a more efficient approach 388 
than using individual SNPs as we can leverage the combination of alleles held together by low 389 
recombination. For example, we suggest a simple approach to increase mango fruit blush color 390 
and weight by selecting for individuals identified in cluster 0 of the inversion on chromosome 6. 391 
This can be combined with selection for other inversions to further increase trait values. To 392 
identify these inversions in untested accessions, inexpensive sequencing methods such as 393 
targeted capture and low coverage sequencing can be completed to identify some of the SNPs in 394 
the region. Future studies should analyze the contribution of these inversions to trait variation in 395 
different breeding programs to understand the contribution of the environment and management 396 
practices, and therefore its utility outside of the Australian mango breeding program.  397 
 398 
Exploring the interconnections between centromeric suppression of recombination, chromosomal 399 
inversion dynamics, maintenance of breeding trait variation, and accumulation of deleterious 400 
mutations provides fundamental insights into genome architecture evolution. These findings 401 
deliver direct applied outcomes surrounding optimal tracking of chromosomal inversions to select 402 
for complex mango breeding traits rather than individual loci. Our research also carries broader 403 
relevance for the ubiquity of centromeric expansive effects in shaping chromosome-wide 404 
variability and trade-offs between positive and negative selection over generational timescales. 405 
Overall, our results can facilitate the elimination of deleterious effects and enable the selection of 406 
favorable traits, resulting in remarkable improvements in mango varieties. Moreover, the insights 407 
garnered from our research hold the potential for application to other tree crop species, thereby 408 
enhancing overall crop productivity. 409 

Materials and Methods 410 

Plant material 411 
We selected 225 Mangifera indica from the gene pool collection of the Australian Mango Breeding 412 
Program managed by the Department of Agriculture and Fisheries at Walkamin Research Station, 413 
Queensland (17.1341°S, 145.4271°E). These samples were originally imported from 24 countries 414 
across five geographical regions and grafted onto the uniform polyembryonic rootstock, 415 
Kensington Pride. The samples with one parent known are from an open-pollination cross 416 
(Dataset S2).  417 

Genotyping 418 
We extracted DNA from 225 mango accessions collected from Walkamin Research Station. DNA 419 
was extracted from young leaves following Healey, Furtado, Cooper and Henry (48) CTAB 420 
(cetyltrimethylammonium bromide) method with the following modifications. 5 g of young leaves 421 
were ground using a mortar and pestle. 16 mL nuclear lysis buffer and 4 mL Sarkosyl solution 422 
were added and gently mixed with the leaf tissue. Tubes were incubated for 2 h at 65°C in a 423 
water bath with periodic mixing. The RNAse digest (step 5) was moved to day 2 and allowed to 424 
incubate at room temperature for 1 h. 5 M NaCl was added to the final concentration of 0.25 M 425 
and mixed well. 0.35 vol 100% EtOH was added and quickly mixed. The samples were incubated 426 
on ice for 10 mins and centrifuged for 15 mins at 10°C at 9,000 rpm. The solution was transferred 427 
to a new tube and an equal volume of chloroform was added and gently inverted 50 times. 428 
Samples were again centrifuged for 15 mins at 10°C at 9,000 rpm. The upper phase of the 429 
solution was transferred to a new tube. One volume of isopropanol was added and the tube was 430 
inverted to mix and centrifuged for 15 mins at 10°C at 13,000 rpm. The solution was removed and 431 
500 μl 70% EtOH was added and centrifuged for 15 mins at 10°C at 13,000 rpm. The solution 432 
was removed, and the dry pellet was resuspended in TE buffer. DNA quality and quantity was 433 
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assessed using qubit, nanodrop, and a 1% agarose gel. For the nanodrop 260/280, samples 434 
were between 1.7 – 2 and 260/230 > 1.4. 435 
 436 
We performed whole genome sequencing on 225 mango samples at the Ramaciotti Centre for 437 
Genomics, UNSW, New South Wales, Australia. Sequencing libraries were generated using the 438 
Illumina DNA-prep kit and subjected to 150bp PE sequencing on one S4 flow cell of a NovaSeq 439 
6000 Illumina sequencer. Sequencing was undertaken to obtain a minimum data depth for each 440 
of the samples; 41 mango samples with an expected coverage of 40X and 184 mango samples 441 
with an expected coverage of 15X. The size of the raw data provided by the Ramaciotti was more 442 
than requested.  443 

Alignments and variant calling 444 
To obtain SNPs for downstream analyses we joint-called SNPs using the GATK4 software 445 
package and best practices developed by the Broad Institute for variant detection. The publicly 446 
available GATK pipeline (https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/) was heavily 447 
modified to include functionality for read processing, deduplication, quality control, parallel 448 
processing and joint-calling. Trimmed paired-end reads and singletons from 225 re-sequenced M. 449 
indica genomes (25x average coverage, 100x maximum coverage) were aligned to the M. indica 450 
cv ‘Alphonso’ reference genome (NCBI GenBank assembly accession: GCA_011075055.1) (49) 451 
using BWA MEM v0.7.17 (50) with ‘-v 3 -Y -K 100000000 -M’ parameters. This approach 452 
produced 44,125,383 SNPs (1 every 9 bases).  453 

Quality filtering 454 
The data was quality filtered using the following parameters in VCFtools v0.1.17 (51): minimum 455 
genotype quality of 20; minimum depth per sample of 5; missing data per site 50% (initial relaxed 456 
threshold); maximum mean depth of 50 for all sites (removal of paralogues); and a missing data 457 
per site 20% (stringent threshold). All accessions have more than 85% of SNPs. We then used 458 
GATK VariantFiltration for standard quality filtering which removed: QualByDepth < 2; quality 459 
score < 30; StrandOddsRatio > 3; FisherStrand > 60; RMSMappingQuality < 40; 460 
MappingQualityRankSumTest < -12.5; ReadPosRankSum < -8. Indels were then removed using 461 
VCFtools v0.1.17(51) and contigs that did not align to a chromosome were removed using 462 
BCFtools v1.12 (52). 463 

Predicting centromere locations 464 

To predict centromere locations on each chromosome, we used RepeatOBserver (33).  465 
Centromeres were identified as the regions on each chromosome where the most repeat lengths 466 
reached a minimum abundance, implying the dominance of a single centromeric repeating 467 
sequence in this window. Specifically, chromosomes were divided into 2Mb windows. The total 468 
abundance of each repeat length was determined in each window. The window where each 469 
repeat length minimized its abundance was identified. A histogram of the number of repeats 470 
minimizing in any given window was plotted (SI Appendix, Fig. S2). The peak in the histograms is 471 
the predicted centromere location.  472 

Local principal component analysis 473 

To prepare the data for local PCA, we removed invariant sites using GATK SelectVariant v4.2.5 474 
(53). We removed sites with greater than 95% missing data using VCFtools v0.1.17 (51). We 475 
converted the SNP dataset to BCF format with BCFtools v1.12 (52) and 15,957,988 SNPs were 476 
used for analysis. 477 
 478 
To detect genomic regions of unusual population structure we performed a local PCA using the R 479 
package ‘lostruct’ v0.0.0.9000 (18). We performed a PCA on windows of 1,000 SNPs across the 480 
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genome using the lostruct function eigen_windows. To measure similarity between these PCA 481 
matrices (for the first two PC values) we applied the pc_dist function in lostruct. We extracted the 482 
first 40 Multidimensional Scaling (MDS) coordinates in R v4.1.3. To visualize clustered outliers 483 
with extreme population structure relative to the genome wide average we plotted the MDS 484 
coordinates along each chromosome. Following Huang, Andrew, Owens, Ostevik and Rieseberg 485 
(3), we defined outliers as windows with MDS values greater than 4 standard deviations from the 486 
genome wide mean. We combined outlier windows with less than 10 windows between them to 487 
form clusters, with clusters requiring a minimum of four outlier windows to be considered. To 488 
determine if the distribution of outliers deviated from random expectations, we performed 1,000 489 
permutations of windows with a significance value of p < 0.01. For each MDS coordinate we 490 
analyzed outlier clusters in both positive and negative directions separately. For chromosomes 491 
with outlier clusters on multiple MDS coordinates we collapsed those with a Pearson’s product 492 
moment correlation coefficient greater than 0.8 and selected the MDS coordinate with the larger 493 
number of outliers. We defined the coordinates of each inversion candidate by the start of the first 494 
outlier window in the cluster and the end of the last outlier window. 495 
 496 
To find outlier clusters for which samples were divided into three groups (representing two 497 
homozygous and a heterozygote genotype, as expected for a polymorphic inversion) we 498 
performed PCA with the R function ‘kmeans’. The maximum, minimum and middle of the PC1 499 
scores were used as the centers for each of the three clusters and the discreteness of the 500 
clusters was measured as the proportion of the between-cluster sum of squares over the total 501 
sum of squares. 502 

Homozygosity 503 

To identify signatures of chromosomal inversions from the 28 outlier windows identified in the 504 
local PCA, we calculated observed homozygosity within each outlier window using the --het flag 505 
in VCFtools v0.1.17 (51). Outlier windows with local PCA clusters 0 and 2 (predicted homozygous 506 
clusters) that are significantly higher in homozygosity compared to cluster 1 (predicted 507 
heterozygous cluster) were considered as potential chromosomal inversions in this study. 508 

Genetic differentiation 509 

We measured genetic differentiation (FST) between local PCA clusters 0 and 2, the predicted 510 
homozygous clusters. We removed SNPs with MAF < 0.01 and applied --weir-fst-pop for 10kb 511 
windows in VCFtools v0.1.17 (51). The weighted FST output was used for all analyses. 512 

Nucleotide diversity 513 
Nucleotide diversity (π) was estimated on all 263 million sites (including invariant) across 10kb 514 
non-overlapping windows using pixy v1.2.7.beta1 (54) for each inversion cluster. Pixy was used 515 
due to its unbiased estimates of nucleotide diversity in the presence of missing data. 516 

Linkage disequilibrium  517 

We calculated mean linkage disequilibrium (LD) across the genome with pairwise r2 for all SNPs 518 
in non-overlapping 200kb windows using plink v1.9 (55). 519 

PacBio high fidelity long-read sequencing 520 

To verify the chromosomal inversions identified using the local PCA method, we completed 521 
genome comparisons between M. indica cv. ‘Alphonso’ (CATAS_Mindica_2.1) and three 522 
telomere-to-telomere genomes created using PacBio high fidelity long-read sequencing. 523 
Methodology for DNA extraction, library preparation and genome creation can be found in 524 
Wijesundara et al. (56). Genome comparison between M. indica cv. ‘Alphonso’ 525 
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(CATAS_Mindica_2.1) and Irwin, Kensington Pride and M. laurina haplotypes were conducted 526 
separately to identify inversions between genomes. The genomes were aligned using MUMer v4 527 
(57) with parameters maxmatch -c 100 -b 500 -l 50. Each alignment was filtered using the delta-528 
filter option implemented in MUMer with parameters -m -i 90 -l 100. Sequence differences 529 
analysis was performed using the Synteny and Rearrangement Identifier (58) and visualized 530 
using plotsr v1.1.0 (59). 531 

Phenotyping 532 

We phenotyped five key breeding traits in the Australian mango gene pool – fruit blush color, fruit 533 
firmness, fruit weight, total soluble solids and trunk circumference (Dataset S2). All fruit samples 534 
were harvested from trees after maturity (> five years old). Each accession had ten fruits 535 
assessed from the outside of each tree, where the fruit is exposed to full sun. After harvest the 536 
fruit was de-sapped, where they were dipped for 5 minutes in a hot fungicide dip at 52°C with 1.0 537 
ml L-1 Fludioxonil (230g/L). Fruit blush color was assessed in 205 accessions annually for at 538 
least 2 years by categorizing the fruit blush color as either: no blush, orange, pink, red or 539 
burgundy. The average hue angle (°) for each blush color category was calculated using a Konica 540 
Minolta spectrophotometer (colormeter) in the LAB color space (L*= lightness; a* = redness; b* = 541 
yellowness) and the formula: h = arctan(b*⁄(a*)). Fruit firmness was assessed in ripe fruit of 199 542 
accessions using an analogue firmness meter. The fruit was placed into a V-shaped metal stand 543 
and a load of 50 g placed on the fruit for 30 s. The vertical displacement (mm) of the fruit over this 544 
time was recorded and the mean from ten fruit was used. Fruit weight (g) in 199 accessions was 545 
assessed in ten mature fruit prior to ripening. The fruit was weighed on a digital laboratory 546 
balance and the mean weight of the ten fruit was used. Total soluble solids was assessed using 547 
the juice from one cheek for 198 accessions. A cheek was placed on a digital refractometer and 548 
total soluble solids was measured on the BRIX scale. The BRIX values from ten fruit were 549 
averaged for each accession. Trunk circumference (cm) was assessed on 178 accessions by 550 
measuring the scion 10 cm above the graft on trees that are 12 years old. Trunk circumference 551 
and fruit firmness are normally distributed, while total soluble solids underwent log10 552 
transformation and fruit weight square root transformation. Blush color was not normally 553 
distributed and unable to be transformed. 554 

Joint contribution of inversions on trait value 555 

We considered each of the 17 putative inversions as genetic markers and genotyped them as 0, 556 
1 and 2 (homozygous, heterozygous, and homozygous alternate states according to the local 557 
PCA clustering described above) in 225 mango accessions. We then fit a linear model for each of 558 
the breeding traits using the 17 inversion markers as fixed effects. Significant inversions were 559 
recorded for each trait, and the total variance explained by all inversions for a trait was given by 560 
the adjusted R2 value of the model. We also fit a non-linear iterative Random Forest model for 561 
each trait using ‘iRF’ v3.0.0 in R (60) and selected the top 3 most predictive inversions for each 562 
trait according to sorted variable importance. 563 

Genome wide association study 564 
To identify the putative loci underlying three key mango traits, we performed a genome wide 565 
association study (GWAS) in plink v1.9 (55). Rare alleles (MAF < 0.01) and non-independent 566 
SNPs (window size of 50kb, step size of 10 and r2 threshold of 0.1) were removed from the 567 
dataset, leaving 871,869 SNPs. To account for population structure, we performed a PCA in plink 568 
v1.9 (55) on the subset of individuals with phenotypic data - blush color (n=205) and fruit firmness 569 
(n=199), fruit weight (n=199), trunk circumference (n=178) and total soluble solids (n=198). The 570 
number of principal components included as covariates in the linear model was determined using 571 
quantile-quantile plots, where blush color = PC1-PC5, fruit firmness = PC1-PC4, fruit weight = 572 
PC1-PC5, trunk circumference = PC1-PC6, and total soluble solids = PC1-PC4. A linear 573 
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association was conducted in plink v1.9 (55) for each trait independently. For blush color, we 574 
corroborated our results with a binary GWAS (no blush vs blush), which had a genomic inflation 575 
factor of 1.09 and produced similar results. 576 

Enrichment of GWAS loci within inversions 577 
To determine whether the GWAS SNPs were enriched within the 17 identified inversions, we 578 
performed 1000 bootstraps in JMP v16.0.0. Of the 871,869 SNPs in the GWAS, the top 0.01% of 579 
associated SNPs for each trait was used as the random seed (n=435). Values above the 97.5% 580 
quantile were considered enriched for GWAS SNPs. We then tested for enrichment of GWAS 581 
signals in miinv5.0 using the same method.  582 

Functional enrichment and multi-omic context of genes within inversions 583 
To understand the functional contribution of each inversion, we found the most functionally 584 
related genes in a multi-omic network context. First, genes within each inversion region were 585 
extracted and MangoBase (61) was used to map them to Arabidopsis gene ortholog identifiers. 586 
We analyzed each inversion’s Arabidopsis gene list for enrichment of functional annotation terms 587 
(GO BP and KEGG) using the R package ‘gprofiler2’ v0.2.2. We used RWRtoolkit v0.1 in R (62) 588 
together with an 8-layer multiplex Arabidopsis network containing publicly available gene-gene 589 
edges describing gene regulatory relationships, protein-protein interactions, metabolic pathways 590 
and gene knockout-effect similarity. For each inversion, we ran the RWR_LOE function on the 591 
multiplex network using the inversion’s gene list as seeds. This function uses the RWR network 592 
propagation algorithm to explore the multiplex topology from all seed genes jointly to score all 593 
other genes in the network according to the strength of their connectivity to the seeds. We added 594 
the top 100 highest scoring genes to the gene list of each inversion and then performed 595 
enrichment analysis on the expanded gene list. 596 

Identification of putative deleterious alleles 597 

To identify putative deleterious alleles, we used Sorting Intolerant From Tolerant For Genomes 598 
(SIFT4G) (31, 32). SIFT uses sequence homology to predict whether an amino acid substitution 599 
affects protein function. To create a reference protein set, we used uniref90 from uniprot (version 600 
last modified on 2022-05-25). Genome and annotation files (GTF) for the ‘Alphonso’ 601 
(CATAS_Mindica_2.1) genome were downloaded from the National Center for Biotechnology 602 
Information (NCBI) Reference Sequence (RefSeq). To create a mango SIFT4G database, the 603 
SIFT4G_Create_Genomic_DB (https://github.com/pauline-ng/SIFT4G_Create_Genomic_DB) 604 
pipeline was followed. SIFT predictions (Dataset S3) were then created using SIFT4G 605 
(https://github.com/rvaser/sift4g) with the mango database and the VCF file containing 225 606 
mango accessions. We defined a deleterious score as 1-SIFT, where > 0.95 are putative 607 
deleterious mutations.  608 
 609 
To reduce the effects of reference bias we used the ancestral allele instead of the reference allele 610 
to predict deleterious mutations. We used SNPs where Mangifera odorata is homozygous for the 611 
reference allele to classify the ancestral state. A deleterious score is then assigned to the derived 612 
allele. We understand M. odorata will not directly capture the most common recent ancestor of M. 613 
indica as M. odorata has likely accumulated genetic differences since splitting from M. indica. 614 
However, without using M. odorata to classify the ancestral state, accessions closely related to 615 
Alphonso would be identified as having fewer putative deleterious mutations as SIFT uses the 616 
difference between the reference allele and the alternate allele to determine the amino acid 617 
change that is occurring at that site. We note that we might have introduced other biases in 618 
relation to divergence from this outgroup species.  619 
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Allelic frequency 620 

To plot the distribution of allelic frequencies across deleterious loci, we output allelic frequencies 621 
for all SNPs with estimated deleterious scores using the --freq and --position flags in VCFtools 622 
v0.1.17 (51).  623 

Deleterious score statistics 624 
To determine whether centromeres, inversions or QTL’s had a deleterious score that was 625 
significantly different from the genome average, we performed 1000 bootstraps in JMP v16.0.0 626 
for each comparison. The random seed was based on the number of data points across 627 
inversions, centromeres or QTL’s. Values below the 2.5% quantile were considered significantly 628 
lower than the genome wide average and values above the 97.5% quantile were considered 629 
higher than the genome wide average. Deleterious scores were split into three categories based 630 
on their distance from the genome average.  631 
 632 
To identify whether there was an association between miinv5.0 and the most associated SNP in 633 
the total soluble solids QTL, we implemented a fisher’s exact test between cluster number of 634 
miinv5.0 and the genotypes of miTSSSNP5:7109828 using JMP v16.0.0. The genotypes for this 635 
site were obtained using BCFtools query v1.12 (52) with --regions flag. 636 
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Figures and Tables 791 
 792 
Table 1. The 17 putative chromosomal inversions (inv) and their locations in the M. indica cv. 793 
‘Alphonso’ (CATAS_Mindica_2.1) genome. Inversions are named according to the order to which 794 
they appear on a chromosome e.g. the first M. indica inversion on chromosome 1 (miinv1.0). 795 
Inversions are pericentric (located across the centromere) or paracentric (located on one arm of 796 
the chromosome). Sixteen of the inversions identified using a local PCA were corroborated with 797 
comparisons between the ‘Alphonso’ genome and haplotypes of three high fidelity (HiFi) 798 
genomes. The number of HiFi inversions identified within each of the local PCA inversions is 799 
shown. These inversions have a deleterious score lower (-) or higher (+) than the genome 800 
average (quantiles 2.5% = 0.483 and 97.5% = 0.487 from 1,000 bootstraps). Deleterious scores 801 
are represented as + >0.487, ++ >0.524, +++ >0.560, - <0.483, - - <0.443 and, - - - <0.402. Trait 802 
associations with each inversion were tested using two methods, an iterative random forest 803 
(ranking 1-3 shown) and a linear model (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). The five mango 804 
traits: fruit blush color (BC), fruit firmness (FF), fruit weight (FW), total soluble solids (TSS) and 805 
trunk circumference (TC). 806 

Inv Inv 
type 

Inv 
start 
(Mb) 

Inv 
end 
(Mb) 

Region 
size 
(Mb) 

N HiFi 
invs 

within 
region 

Deleterious 
score 

Trait associations 

BC FF FW TSS TC 

miinv1.0 Pericentric 12.3 15.8 3.5 4 ++ ** 

miinv3.0 Pericentric 14.6 17.9 3.3 6 + * 1 

miinv4.1 Pericentric 8.3 9.3 1.0 0 - 1** 3** 

miinv5.0 Pericentric 3.9 7.4 3.6 1 ++  2 2 

miinv8.0 Pericentric 14.3 18.2 4.0 5 ++

miinv9.0 Pericentric 5.1 7.0 1.9 2 - 2*

miinv14.0 Pericentric 8.7 11.5 2.8 4 -

miinv20.0 Pericentric 4.1 5.3 1.2 3 - - - * ***

miinv1.1 Paracentric 16.3 16.5 0.2 1 - - - 3 3 2 * 

miinv1.2 Paracentric 16.9 17.3 0.4 1 - - -

miinv4.0 Paracentric 5.4 7.0 1.6 5 +++

miinv6.0 Paracentric 9.6 10.1 0.5 1 + 1*** 1*** 2 

miinv7.0 Paracentric 15.4 17.9 2.5 1 - 3*** 

miinv11.0 Paracentric 15.5 16.5 1.0 1 + 3 

miinv13.0 Paracentric 6.3 7.5 1.2 1 ++

miinv17.0 Paracentric 0.8 2.1 1.3 1 - * 1*** 

miinv17.1 Paracentric 1.3 2.0 0.6 1 -

807 
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Fig. 5. Inversion size predicts deleterious score in M indica. High deleterious scores (1-SIFT) reflect more 
deleterious alleles. The inversions are classified as paracentric (located on one side of the chromosomal arm) and 
pericentric (located across the centromere). 
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