Abstract
Brain tissue injury caused by mild traumatic brain injury (mTBI) disproportionately concentrates in the midbrain, cerebellum, mesial temporal lobe, and the interface between cortex and white matter at sulcal depths 1–12. The bio-mechanical principles that explain why physical impacts to different parts of the skull translate to common foci of injury concentrated in specific brain structures are unknown. A general and longstanding idea, which has not to date been directly tested in humans, is that different brain regions are differentially susceptible to strain loading11,13–15. We use Magnetic Resonance Elastography (MRE) in healthy participants to develop whole-brain bio-mechanical vulnerability maps that independently define which regions of the brain exhibit disproportionate strain concentration. We then validate those vulnerability maps in a prospective cohort of mTBI patients, using diffusion MRI data collected at three cross-sectional timepoints after injury: acute, sub-acute, chronic. We show that regions that exhibit high strain, measured with MRE, are also the sites of greatest injury, as measured with diffusion MR in mTBI patients. This was the case in acute, subacute, and chronic subgroups of the mTBI cohort. Follow-on analyses decomposed the biomechanical cause of increased strain by showing it is caused jointly by disproportionately higher levels of energy arriving to ‘high-strain’ structures, as well as the inability of ‘high strain’ structures to effectively disperse that energy. These findings establish a causal mechanism that explains the anatomy of injury in mTBI based on in vivo rheological properties of the human brain.
Competing Interest Statement
AAH and BZM hold IP related to predicting injury from mTBI using MRI (US-20220039732-A1).