














   

 

   
 

 
 
Figure 5. AP-3 contains two amphipathic helices 
A. Cryo-EM model of AP-3ARF+cargo (center) with a zoom in view of cryo-EM density for an 
amphipathic helix on the δ (left) and μ3 subunits (right). B. Helical wheel diagrams and sequence 
alignments for the δ and μ3 amphipathic helices. The hydrophobic face for each helix is colored 
yellow in the schematic and the alignments. C. Membrane binding assay for mGreenLantern 
(mGL) fusions of the δ and μ3 amphipathic helices (AH). For each construct, binding was done 
identically and then washed with in either low salt (LS, 100 mM NaCl), high salt (HS, 1 M NaCl), 
or 0.1% Triton X-100 buffers. D. Schematic of membrane-bound AP-3 showing all known and 
predicted amphipathic helices. 
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Figure 6. Model for AP-3 membrane recruitment, cargo engagement, and coat assembly 
A. Schematic showing AP-3 recruitment to a sorting endosome and enrichment into AP-3 coated 
structures. B. Step-wise recruitment and assembly of AP-3 based on the four cryo-EM structures 
from this work.  
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Methods 
Full methods are available in the supplemental materials. 
 
Reagents 
Protease inhibitors and affinity resins were purchased from Gold Biotechnology, Inc. and 
Promega. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-
L-serine (DOPS), 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) (PI), and L-α-
phosphatidylinositol-3-phosphate (PI3P) were all purchased from Avanti Polar Lipids. Lipidated 
TGN38 cargo peptide (Oleic acid-S{Lys}KVTRRPKASDYQRL) (Uniprot P19814) was synthesized 
by Biomatik and lipidated LAMPI-cargo peptide ({Oleic acid}GRKRSHAGYQTI) (Uniprot P11279) 
was synthesized by Synpeptide. HRV 3C protease, Cth protease, and Nuclease A (NucA) were 
purified in house. 
 
Recombinant protein purification 
All DNA constructs used in this paper were propagated in 5-alpha Competent E. coli (New 
England Biolabs) in PDM media57 or Lysogeny Broth (LB), with ORFs being verified via whole 
plasmid nanopore sequencing. Constructs were transformed into expression E. coli lines (see 
individual methods). Small cultures were grown overnight at 32.5°C in Lysogeny Broth (LB, Miller 
formulation) before being expanded into large volumes for expression. The initial steps of isolation 
and purification were identical, and are as follows: after expression, cells were harvested via 
centrifugation, resuspended in appropriate lysis buffers supplemented with protease inhibitor 
cocktail and 1 mg of chicken egg white Lysozyme per 1 mL of lysate, mixed at 4°C for 20 minutes, 
and stored at -80°C. All subsequent protein purification steps were performed at 4°C. Cell pellets 
were thawed and treated with NucA for 20 minutes prior to lysis via sonication. Lysates were 
clarified via centrifugation at ~30,000xg for 45 minutes and mixed with appropriate resins in a 
batch-binding format for at least 1 hour at 4°C. All protein concentrations were determined via 
absorbance A280, except for Arf1 constructs, which were quantified via standard curve with Pierce 
Protein Assay Reagent (ThermoFisher Scientific). 
 
AP-3 complex purification 
AP-3 “core” (δ 1-617; β3 residues 1-677; μ3; σ3) was co-expressed on two bi-cistronic vectors in 
E. coli BL21 Star cells (Invitrogen) with HRV-cleavable GST tags on the C-termini of δ and β3. 9-
Liter cultures of LB were grown at 37°C and induced in mid-log phase with 0.5 mM Isopropyl β-d-
1-thiogalactopyranoside (IPTG) at 18°C for 18h. Following pelleting, cell lysis, and clarification, 
protein was bound to glutathione resin (GoldBio), extensively washed, and eluted using on-bead 
cleavage with HRV 3C protease. AP-3 was further purified using size-exclusion chromatography 
on a Superdex 200 Increase column (Cytiva).  
 
Myristoylated Arf1 purification 
Full-length human Arf1 bearing a Q71L mutation was fused to a C-terminal cysteine protease 
domain (CPD) fusion with a 10xpolyhistidine tag. Arf1 was co-expressed in BL21 (DE3) E. coli 
with plasmids encoding human myristoyltransferase 1 (hNMT1) and E. coli 
methionylaminopeptidase (MAP). LB cultures were supplemented with 50 µM myristic acid 20 
minutes prior to induction. Cultures were induced with 0.4 mM IPTG at 20°C for 18h. Following 
pelting, cell lysis, and clarification, protein was bound to Ni-NTA resin (GoldBio), extensively 
washed, and cleaved via addition of 150 μM phytic acid. Eluted Arf1 was then brought to 3 M 
NaCl and bound to a Phenyl Sepharose HiTrap column and eluted with a high to low salt gradient. 
Arf1 was further purified using size-exclusion chromatography on a Superdex 75 Increase column 
(Cytiva). 
 
His-tagged purifications 
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Several constructs used in this study were purified as fusions to an N-terminal 10x polyhistidine 
fused with either a Halo tag, a SUMO tag, or both. For each, proteins were expressed in a BL21 
E. coli variant and purified via batch binding on Ni-NTA resin (GoldBio). Expression conditions, 
buffers, and other details are in the supplemental methods. 
 
MSP2N2 purification 
MSP2N2 was purified essentially as described31. Briefly, MSP2N was expressed in BL21 (DE3) 
E. coli at 20°C for 16 hours with 0.5 mM IPTG. Following pelting, cell lysis, and clarification, protein 
was bound to Ni-NTA resin (GoldBio), extensively washed with buffers containing 1% Triton X-
100 and 50 mM cholate and eluted using 500 mM Imidazole. MSP2N2 was further purified via ion 
exchange chromatography using a HiTrap Q HP column (Cytiva). 
 
In vitro pulldowns 
Halo-tagged fusion proteins (200 pmol) were bound to 10 μL of Magne® HaloTag® Beads (20% 
slurry, Promega), followed by washing. Bound beads were incubated with 200 pmol of AP-3, 
incubated for 1 hr, and eluted for 1-3 hrs with 100 pmol of HRV 3C protease. For all Arf1 pulldowns, 
full-length Arf1 bearing an L8K and Q71L mutation was used. GTP exchange was performed 
during the initial binding of Halo-Arf1 to the resin. 
 
Membrane binding assays 
Supported lipid bilayers (SLBs) were assembled from silica microspheres (Bangs Labs) and small 
unilamellar vesicles (SUVs), essentially as described 30. Membranes contained a molar lipid ratio 
of 75% DOPC, 20% DOPS, and 5% PI(3)P. SLBs were mixed with 1 nmol of mGreenLantern 
fusion protein in 100 μL volume and washed with buffer containing 100 mM NaCl (low salt), 1 M 
NaCl (high salt), or 0.1% Triton X-100. To ensure the integrity of the membrane, SLBs were never 
aspirated into the pipette tip and pelleting was performed at 400xg. 
 
Nanodisc assembly and purification 
Nanodiscs were assembled as in 31. Briefly, chloroform stocks of synthetic lipids (DOPC, DOPS, 
PI3P) with or without lipidated cargo were mixed and dried down using a gentle stream of nitrogen. 
After overnight incubation in a vacuum desiccator, lipids were resuspended in warm cholate-
containing buffer and bath sonicated until the solution was clear. Purified MSP2N2 scaffold protein 
(50 pmol) was added to bring the final reaction to 500 μL volume with 100 μM MSP2N2. Lipids 
were at a 1:40 to 1:60 molar ratio relative to MSP2N2. Assembly was initialized by addition of 
BioBeads (Bio-Rad) and overnight incubation on a tube rotator at room temperature. Nanodiscs 
were applied to a Superose 6 10/300 column (Cytiva) and only used for experiments when eluting 
as a monodisperse peak at the expected elution volume. 
 
Nanodisc/cargo/Arf1/AP-3 assembly for cryo-EM 
Nanodiscs were assembled with MSP2N2 and a lipid ratio of 73 mol% DOPC: 20 mol% DOPS: 5 
mol%PI3P: 2 mol% oleic acid-conjugated cargo peptide. Purified AP-3 core was incubated with 
LAMPI-containing nanodiscs for 1 hr at 21°C followed by addition of myrArf1, GTP, sARNO, and 
EDTA and gently inverted for an additional 25 mins before being quenched via addition of MgCl2 
to produce ~4 μM of assembled complex. 
 
AlphaFold model prediction 
For all instances of AlphaFold58 modeling in this study, models were predicted with AlphaFold2 
multimer v2 or v3 using a local full install on the UNC Longleaf High-Performance Cluster (HPC). 
Standard parameters were used except the number of recycles was increased to 24 with a 0.5 
tolerance. Certain comparisons were made with pre-computed AlphaFold predictions associated 
with the relevant UNIPROT entry and are noted in the text and/or figure legends. 
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Cryo-EM structure determination 
Preliminary apo AP-3 screening 
Initial cryo-EM analyses were performed at the UNC Cryo-EM core facility. Briefly, samples were 
prepared on a Vitrobot Mark IV robot (FEI) operated at 100% humidity and 4°C with a blot force 
of -10 and a blot time of 4 s. 3 μL of sample at 1-4 μM was applied to QuantiFoil 1.2/1.3 grids that 
were hydrophilized using an Argon/Oxygen plasma with a TergeoEM plasma cleaner (PIE 
Scientific). Samples were imaged using a ThermoFisher Talos Arctica cryoTEM operating at 200 
keV in nanoprobe mode and equipped with a Gatan K3 direct electron detector. 
 
Blot-free sample preparation 
Self-wicking nanowire grids (1.2/0.8, 300 copper mesh) were from from SPT Labtech (Cat #4150-
40001). The backside was coated with a layer of gold ~400-500 Å thick using an Edwards Auto 
306 gold evaporator. Self-wicking grids were loaded into a chameleonâ vitrification robot (SPT 
Labtech) and glow-discharged using an air-based plasma. AP-3 samples were dispensed in a 
“one-stripe” or “two-stripe” mode, before wicking for an empirically determined period of time 
before plunging into nitrogen-cooled liquid ethane. For apo AP-3, the following conditions were 
used: glow discharge was for 40 s at 12 mA; protein concentration was ~7 μM; sample was 
dispensed using “two-stripe”; wicking was 140-180 ms. AP-3/Arf1/nanodisc samples used the 
following conditions: glow discharge was for 200 s at 12 mA; protein concentration was ~4 μM; 
sample was dispensed using “one-stripe”; wicking was 170 ms. 
 
Data collection 
Data were collected at the Simons Electron Microscopy Center at the New York Structural Biology 
Center (NYSBC) on a ThermoFisher Titan Krios equipped with a Gatan Imaging Filter (GIF). The 
microscope was operated at 300 keV in nanoprobe mode at a nominal magnification of 80,000x 
or 105,000x, corresponding to a magnified pixel size of 1.058 Å/pixel and 0.826 Å/pixel, 
respectively. The GIF was set to a slit width of 20 eV. Data were recorded on a Gatan K3 direct 
electron detector operating in super-resolution mode or counting mode. Nominal defocus target 
was set for -0.4 to -1.4 μm. A total dose of 49-57 e-/Å2 was applied across 50 frames at a rate of 
26-30 e-/Å2/s. For apo AP-3, four datasets were collected: Data Set 1 – untilted, 3038 movies; 
Data Set 1 - 20° tilt, 4282 movies; Data Set 3 - 30° tilt, 4123 movies; Data Set 4 - 40° tilt, 6102 
movies. For the Tgn38 nanodisc sample, two datasets were collected: Data Set 1 – untilted, 7591 
movies; Data Set 2 - 30° tilt, 9006 movies. For the LAMPI nanodisc sample, two datasets were 
collected: Data Set 1 – 20° tilt, 6108 movies; Data Set 2 - 45° tilt, 5493 movies. Representative 
micrographs are shown in Supp. Figs. 2, 6, 7.  
 
Data processing 
All data processing unless otherwise noted was performed using cryoSPARC v4.4.159. Each 
dataset was processed independently with the following workflow. Dose fractionated movies were 
aligned using the Patch Motion Correction function with dose weighting enabled. CTF estimation 
was performed with Patch CTF estimation. Datasets were curated to remove micrographs with 
defocus values below 0.4 μm and above 2.5 μm and to remove micrographs with CTF fits worse 
than 5 Å. For each dataset, micrographs were picked with three methods: Blob Picker tool in 
cryoSPARC, Template Picker tool in cryoSPARC, and crYOLO60. Particles were extracted, and 
processed independently with extensive 2D classification. “Clean” particles were merged and 
duplicates removed. Processing pipelines and classes from the final 2D classification with “clean” 
particles are shown in Supp. Figs. 2, 6. 
 
Structure determination – Apo AP-3 
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“Clean” particles from all picking methods were combined and duplicates removed before 3D 
classification. For apo AP-3, all particles (~2.7 million particles) were classified using ab initio 
model generation with 3 classes. This yielded an initial model for 3D refinement but did not work 
to meaningfully classify the data into distinct sub-populations. Instead, all particles were subjected 
to Non-Uniform (NU) refinement, which yielded a map at a nominal FSC resolution of 3.8 Å, but 
with somewhat fractured density for the N-terminus of β3. Particles were further classified using 
3D classification without alignment, yielding a final subset of particles (~1.2 million particles) with 
well-defined secondary structure for all components of the complex and a nominal gold-standard 
FSC (GSFSC) resolution of 3.6 Å. This map was deposited into the Electron Microscopy Database 
(EMDB) under accession code EMD-XXXX.  
 
Structure determination – Tgn38-nanodisc bound AP-3 
“Clean” particles from all picking methods were combined and used for a final 2D classification. 
In general, these particles were less well behaved than the apo AP-3 data, with a much smaller 
proportion showing obvious secondary structure. A subset of 183,333 particles was identified 
using ab initio model generation for 3D classification that corresponded to the “bowl” of AP-3 (i.e. 
missing the μ3-CTD) with extra density on the δ subunit at the predicted Arf1 interface. These 
particles lead to refinement with a nominal gold standard FSC resolution of 6.7 Å. This map suffers 
from a preferred orientation problem but was sufficient to unambiguously dock molecular models 
for AP-3 and Arf1. A subset of 27,075 particles corresponding to a “super complex” of AP-3 bound 
to Tgn38 and two copies of Arf1 was found by selecting unique 2D classes from the original 
processing. An initial model was generated using ab initio model generation. NU refinement led 
to a model with a nominal gold standard FSC resolution of 8.2 Å. A model of AP-3 in the cargo-
bound conformation and bound to two Arf1 molecules was docked into the map using ChimeraX. 
These data are outlined in Supp. Fig. 5. 
 
Structure determination – LAMPI-nanodisc bound AP-3 
Approximately 1 million “clean” particles from all picking methods were combined and used for 
3D classification using ab initio model generation with 3 classes. This yielded classes 
corresponding to apo-AP3, AP-3 bound to a single Arf1 molecule (AP-3monoARF), and a dimer of 
AP-3 (AP-3β-dimer). The apo AP-3 particles were discarded and the AP-3monoARF and AP-3β-dimer 

subsets were further processed. The AP-3monoARF particles were refined and then classified into 6 
classes using 3D classification without alignment. This yielded a final dataset of 285,082 particles, 
which were refined using NU refinement to a final nominal GSFSC resolution of 4.6 Å. This map 
was deposited into the EMDB under accession code EMD-XXXX. The original AP-3β-dimer class 
had one well-resolved protomer and one with fractured density. These particles were classified 
using ab initio model generation with 3 classes, yielding a mix of AP-3β-dimer particles with better 
resolved density for both copies of AP-3 and AP-3 “monomers” that have two copies of Arf1 and 
are in the cargo bound conformation with visible density for the μ3-CTD (AP-3ARF+cargo). The AP-
3β-dimer particles were subjected to a round of C1 refinement, followed by 3D classification without 
alignment with a focus mask on the fragmented AP-3 protomer. This yielded a subset of 122,155 
particles with well-resolved density for both copies of AP-3 in a C1 refinement. These particles 
were subjected to NU refinement with C2 symmetry, leading to final map with a nominal GSFSC 
resolution of 4.3 Å (deposited under EMDB accession code EMD-XXXX). This results in a map 
with well resolved density at the dimeric interface, but fragmenting towards the distal ends of the 
complex, especially in the δ-Arf1 complex. To better resolve the Arf1 homo-dimeric interface that 
mediates the AP-3β-dimer, we performed a round of local refinement with C2 symmetry using a 
focus mask that encompassed Arf1, the N-terminus of β3, and μ3. This led to map with a final 
GSFSC resolution of 4.2 Å (deposited under EMDB accession code EMD-XXXX). To determine 
a model of the “monomeric” AP-3ARF+cargo, we used symmetry expansion and partial signal 
subtraction on all AP-3β-dimer particles to remove one copy of AP3 from the dimer. To achieve this, 
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a refinement was performed in cryoSPARC, the particles were re-extracted in Relion twice, each 
time centered on one of the two protomers. The particles were reconstructed into 3D volumes 
using the “Homogenous Reconstruct Only” tool in cryoSPARC, followed by partial signal 
subtraction. This dataset of “monomeric” AP-3ARF+cargo particles was combined with the AP-
3ARF+cargo particles identified during the first stages of 3D classification and refined. Particles were 
furthered classified using 3D classification without alignment, which lead to a final refinement with 
a GSFSC resolution of 4.5 Å (deposited under EMDB accession code EMD-XXXX). To better 
resolve the interface with the membrane, two focused refinements were performed using masks 
that encompassed either the δ-Arf1 interface and a portion of the nanodisc density, or the β3-Arf1 
interface and a portion of the nanodisc density. This led to focused refinement maps with an 
overall GSFSC resolution of 5.6 Å and 4.3 Å, respectively (deposited under EMDB accession 
codes EMD-XXXX and EMD-XXXX). 
 
Model building and validation 
For each structure, an Alphafold model was predicted using sequences for human AP-3 “core” (δ 
1-617; β3 residues 1-677; μ3; σ3), either with or without Arf1. The initial Alphafold model was 
docked into the cryo-EM map and sub-regions were moved using the “fit-in-map” function in 
ChimeraX61. Unless otherwise noted, model building and visualization was performed with a 
deepEMhancer62 sharpened map and refinement was performed against a B-factor sharpened 
map. 
 
Apo AP-3 model building  
To refine our AP-3 model, we used a multi-model approach using Rosetta63–65. Using the Alphafold 
starting model docked into the sharpened final map, ~1,000 models were generated using 
Rosetta66 and ranked using the Rosetta energy score. The top 10% of models were then ranked 
according to MolProbity67 score and the top 5 models were then further refined using Rosetta 
Relax. At this point, the models had <1 Å rmsd, so a single model was selected with the highest 
MolProbity score. Hydrogens were removed and B-factors were refined in Phenix (v1.21.1)68. 
 
AP-3monoARF model building  
To refine our AP-3monoARF model, we docked the refined apo AP-3 model into the map and manually 
re-docked subunits using the Chimera “Fit in Map” command. The GTP-bound Arf1 model came 
from a high resolution crystal structure of Arf1 Q71L (1O3Y)69. The model was refined using 
phenix.real_space_refine with secondary structure restraints enforced. For the AP-3 model, all 
side chains were truncated to a poly-ALA backbone. For Arf1, the model was replaced with 1O3Y 
(chain A), and then all side chains except for those directly interacting with GTP-Mg were 
truncated to the C-beta atom.  
 
AP-3ARF+cargo model building 
To refine our AP-3ARF+cargo model, we used the same approach as with apo AP-3 with these 
modifications. An Alphafold model was generated using the sequences for human AP-3 core and 
two copies of Arf1. No LAMPI peptide was included. The Arf1 molecules came from 1O3Y.pdb. 
The LAMPI peptide was modeled using an Alphafold prediction of only the μ3-CTD and the 12-
mer LAMPI sequence corresponding to our synthetic peptide. This model compared well to a 
published structure of μ3-CTD bound to the YxxΦ motif of Tgn38 (4IKN)12. The main interaction 
not observed in a previous study and not modeled by Alphafold was packing of the β3 N-terminal 
tail into the dileucine cargo-binding packet of σ3. To model this interaction, we aligned the crystal 
structure of closed AP-211 using the σ2 and σ3 subunits. We used the location of AP-2 β2 Phe7 
to fix the location of AP-3 β3 F37. This phenylalanine is the best stereochemical fit to bridge the 
first alpha helix of β3 to the dileucine binding pocket and is also highly conserved compared to 
other candidate residues, as judged by Consurf70 analysis (Supp. Figs. 7F). With β3 Phe37 fixed 
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bound to σ3, the linker residues were manually built in Coot71. This model was then the starting 
model to generate 1000 Rosetta models. The top 20% of models based on Rosetta energy score 
were manually scored for fit to the density in the β3 N-terminus, then all models with reasonable 
builds were evaluated for stereochemical validity with phenix.molprobity. The top 5 models were 
used as a starting model for RosettaCM asking for 1000 models, then scored by Rosetta energy 
score and Molprobity. The best model was subjected to one round of Rosetta Relax, followed by 
B-factor refinement in Phenix. 
 
AP-3β-dimer  model building 
To refine our AP-3β-dimer model, two copies of the AP-3ARF+cargo model were docked into the cryo-
EM density and real space refined using phenix.real_space_refine, with secondary structure and 
NCS restraints enforced, followed by B-factor refinement. 
 
AP-3ARF-homodimer model building 
The best model from the AP-3β-dimer model building was docked into the map. Regions not 
encompassed by the focus map were removed. Due to the high-quality of this map, a single round 
of real space refinement using phenix.real_space_refine was performed, using secondary 
structure and NCS restraints, followed by B-factor refinement. 
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