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Abstract

Small proteins with fewer than 100, particularly fewer than 50, amino acids are
still largely unexplored. Nonetheless, they represent an essential part of bacteria’s
often neglected genetic repertoire. In recent years, the development of ribosome
profiling protocols has led to the detection of an increasing number of previ-
ously unknown small proteins. Despite this, they are overlooked in many cases
by automated genome annotation pipelines, and often, no functional descriptions
can be assigned due to a lack of known homologs. To understand and overcome
these limitations, the current abundance of small proteins in existing databases
was evaluated, and a new dedicated database for small proteins and their poten-
tial functions, called ’sORFdb’, was created. To this end, small proteins were
extracted from annotated bacterial genomes in the GenBank database. Subse-
quently, they were quality-filtered, compared, and complemented with proteins
from Swiss-Prot, UniProt, and SmProt to ensure reliable identification and char-
acterization of small proteins. Families of similar small proteins were created using
bidirectional best BLAST hits followed by Markov clustering. Analysis of small
proteins in public databases revealed that their number is still limited due to his-
torical and technical constraints. Additionally, functional descriptions were often
missing despite the presence of potential homologs. As expected, a taxonomic
bias was evident in over-represented clinically relevant bacteria.
This new and comprehensive database is accessible via a feature-rich website
providing specialized search features for sORFs and small proteins of high quality.
Additionally, small protein families with Hidden Markov Models and information

1

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599710doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599710
http://creativecommons.org/licenses/by-nc/4.0/


on taxonomic distribution and other physicochemical properties are available. In
conclusion, the novel small protein database sORFdb is a specialized, taxonomy-
independent database that improves the findability and classification of sORFs,
small proteins, and their functions in bacteria, thereby supporting their future
detection and consistent annotation. All sORFdb data is freely accessible via
https://sorfdb.computational.bio.

Keywords: small proteins, protein families, short open reading frames, sORF,
database, bacteria

1 Background

A significant portion of bacterial proteins are well studied today, broadly available in
public databases, and routinely annotated in newly sequenced genomes [1–3]. Despite
these advancements, the exploration of small proteins of up to 100 amino acids (AAs),
encoded by short open reading frames (sORFs), has been largely neglected, and they
often have been disregarded as noise in eukaryotic and bacterial genomes [1, 4]. Fol-
lowing, we consider small proteins to be functional proteins with a length of 100AA
or fewer.

The application of various length cutoffs for the prediction and identification of
protein sequences has led to an inconsistent definition of small proteins. Historically,
these cutoffs have resulted from limitations in laboratory protocols and gene prediction
tools to reliably detect proteins of such a small size. Gene prediction tools exhibit
higher false-positive rates for smaller proteins, which are addressed by implementing
strict length limits [5, 6]. Due to the high number of false-positive small proteins
in early annotated genomes, minimum length cutoffs were implemented in genome
databases [7], and previous small proteins thought to be coding had to be removed
later [8].

However, in recent years, the development of experimental ribosome profiling tech-
niques and improvements in mass spectroscopy have resulted in the detection of
numerous small proteins [9–11]. Following the identification of small proteins, the
elucidation of their purpose has revealed essential cellular functions, including reg-
ulatory proteins, membrane-associated or secreted proteins, toxin-antitoxin systems,
stress response proteins, and various virulence factors [1, 12–18]. These prominent roles
emphasize that the largely unexplored space of small proteins provides essential func-
tions in bacteria. The best-studied bacterial organisms containing small proteins are
model organisms and clinically relevant species like Escherichia coli and Salmonella
enterica, in which many new proteins and their encoding sORFs have been reported
[10, 18]. The most recently identified proteins in E. coli belonged to small proteins
with up to 100AA, particularly with 50AA or fewer [19].

Consequently, genetic origins and underlying evolutionary mechanisms of small
proteins still need to be better understood [17] as they tend to exhibit features differing
from genes encoding for proteins longer than 100AA in bacteria. In particular, start
codon usage, ribosomal binding sites (RBSs), and composition biases can differ from
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longer coding genes [12, 17, 19–21]. These differences could stem from small proteins
being developed through de novo gene origination, and their comparatively young
evolutionary age is insufficient to show the typical organism-specific features of longer
coding genes [17, 22]. Pervasive translation of sORFs is also possible [22, 23], although
sORFs encoding functional small proteins are probably subject to codon bias [10,
21, 23]. Because of these differences, sORFs and small proteins in bacteria have been
overlooked for a long time and are still underrepresented in public databases.

Clustering and identifying new protein families from protein sequences of average
length has become a standard bioinformatic procedure. The Markov clustering algo-
rithm [24] has been proven to be reliable for identification in general [25, 26]. However,
small proteins challenge existing clustering approaches and tools due to their short
length. A metagenomic study has shown vast numbers of hitherto unknown small
proteins in human microbiomes and protein families identified by clustering [13].

Addressing these issues, we present sORFdb, to our knowledge the first dedi-
cated database for small proteins and sORF sequences in bacteria. It is a high-quality
repository for known sORF and small protein sequences. In addition to protein
sequences, physicochemical features are provided to support the search for small
protein groups of interest. Furthermore, it offers small protein families and hid-
den Markov models, enabling the consistent identification and annotation of these
families and providing entry points for further research. All data of sORFdb are
publicly available for download and can be accessed via an interactive website at
https://sorfdb.computational.bio.

2 Methods and implementation

2.1 Creation of a small protein and sORF database for bacteria

For the creation of the sORFdb database, genomes and protein sequences from vari-
ous data sources were downloaded and processed. From GenBank (Release 256) [27],
the 269,214 latest annotated genomes with an assembly level of “complete genome,”
“chromosome,” or “scaffold” were downloaded and used as the primary source for
sORFs and small proteins. Small proteins up to 100AA in length were retrieved from
the UniProt database (v2023 03) [2]. Curated and non-fragmented small proteins were
downloaded from Swiss-Prot [2], and non-fragmented ones with evidence of existence
at the protein, transcript, or homology level were downloaded from UniProtKB [2]. In
addition, small proteins of the SmProt database (v2.0) [28] were retrieved and stored
with the entries from the UniProt databases in a dataset of verified small proteins.
These were directly added to the sORFdb database. For filtering and identification
steps of hypothetical proteins and small proteins from an unknown annotation source,
the UniRef100 entries [2] of the proteins with evidence and the SmProt proteins were
used. Hidden Markov models (HMMs) from AntiFam (v7.0) [8] and Pfam (v35.0) [29]
were downloaded, compressed with HMMER (v3.3.2) [30] and used for filtering and
scanning for protein domains and motifs.

To extract sORFs and small proteins, several filtering and processing steps were
applied to the aforementioned annotated bacterial genomes from GenBank. Complete,
unambiguous, and unfragmented sORF and protein sequences and their functional
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product descriptions were extracted from the annotated genomes. False-positive small
proteins were filtered out using PyHMMER (v0.9.0) [31] and AntiFam HMMs [8] with
an upper E-value threshold of 1E-5. RBSs of sORFs were detected using Pyrodigal
(v2.1.0) [32]. In addition, extracted small proteins were filtered according to whether
their annotation source was from a known trusted source, i.e., a reference, representa-
tive or NCBI Prokaryotic Genome Annotation Pipeline (PGAP) annotated genome, or
an unknown source. Non-hypothetical proteins from trusted annotation sources were
stored in the sORFdb database. Additionally, hypothetical proteins and proteins from
unknown annotation sources were compared against the dataset of verified small pro-
teins from the Swiss-Prot, UniProt, and SmProt databases using Diamond (v2.1.8)
[33].

To examine homology, BLAST Score Ratio Values (SRV), as proposed by Lerat et
al. [34], were calculated by normalizing bit scores of the best-observed alignment hits
with the maximum bit scores of protein self-hits (Observed score/Maximum score).
This normalization is used because common E-value or bit score thresholds are often
too strict for small proteins due to their short length. All homology-filtered small
proteins with an SRV of 0.7 or higher were stored in the sORFdb database. To detect
very small proteins with only up to 50AA length, potentially missed by the original
genome annotation, a combined approach using Pyrodigal [32], and a homology search
with a minimum SRV threshold of 0.7 was employed. A subsequent filtering step
excludes all hits overlapping with existing annotations and filters for canonical start
codons.

For all small proteins, physicochemical properties were calculated using Biopython
(v1.8.1) [35] and Peptides.py (v0.3.1) [36]. Additionally, they were screened for Pfam
families and domains with an upper E-value threshold of 1E-5. The taxonomy of all
small proteins was adapted to the nomenclature for phyla described by Oren and
Garrity [37].

The workflow for the creation of sORFdb was implemented in Nextflow (v23.04.1)
[38] to achieve an automated and reproducible procedure. The supplemental materi-
als provide all software packages and tools used, along with their respective versions
(Suppl. Tab 1-3).

2.2 Clustering of potential small protein families

sORFdb provides potential small protein families along with corresponding HMMs.
Due to their short length and understudied clustering properties, a custom graph-
based clustering approach was developed to find potential protein families. To reduce
the graph size and focus on less studied small proteins, only non-redundant small
proteins with 50AA or fewer were clustered.

During the initial step of the clustering approach, an all-against-all BLAST search
was performed using BLAST+ (v2.14.1) [39]. SRVs were calculated for all BLAST
hits, and a lower limit of 0.3, as proposed by Lerat et al. [34], was applied to iden-
tify possible homologs. In addition, a minimum mutual alignment coverage of at least
70.0% was required to obtain sequence alignments of higher quality and to exclude
artifacts of small proteins only sharing a few AA. Afterward, singletons comprising
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Fig. 1 Scheme of the data processing and sORFdb compilation workflow
Annotated genomes from GenBank were quality-filtered for complete and unambiguous sORFs and
their annotation source. Small proteins with evidence were retrieved from the Swiss-Prot, UniProt,
and SmProt databases and used for sORFdb and additional quality filtering steps. Hypothetical
proteins and small proteins from an unknown source were filtered using Score Ratio Value cutoffs
based on normalized bit scores. Similarly, missing sORFs were identified. Spurious small proteins were
filtered out using AntiFam. Pfam families and domains were assigned, and physicochemical properties
were calculated for all small proteins.

proteins without homologs and distant hits with only one alignment with another pro-
tein were excluded. The SRVs of the BLAST hits were transformed into a symmetric
undirected graph. For this purpose, SRVs were averaged with their reverse BLAST hit.

Small proteins represent nodes and SRVs weighted edges in the graph. To reduce
the node degrees in the graph and improve the clustering performance, only k best
edges of a node were kept. For this purpose, k was chosen as the minimum number of
edges of a node without creating singletons in the graph. The previous pruning steps
exclude distant proteins that otherwise lead to singletons at high values of k. Therefore,
k was chosen as the smallest possible value for which no singletons were reported.
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Afterward, to remove edges that could lead to incorrect clusters, a heuristic pro-
posed by Apeltsin et al. [40] was applied to every graph component, consisting of a
connected subgraph of proteins unconnected to every other connected subgraph.

The pruned graph was then split into batches of components with similar proper-
ties depending on the component’s mean node degree and mean edge weights. This
was done to improve the selection of the inflation parameter value, which controls
the granularity of the clustering. For all batches, a Markov clustering with different
inflation values, between 1.2 and 4.0, was computed using MCL (v22-282) [24]. The
inflation value was chosen based on the efficiency criterion [41]. A visualization of the
clusters used for family identification is available in the supplemental materials (Suppl.
Fig. 1).

For all clusters with more than five members, multiple sequence alignments were
computed using MUSCLE (v5.1) [42]. Based on these alignments, HMMs were built
using PyHMMER (v0.10.2) [31]. Gathering cutoff values were computed for all HMMs,
and where possible, a protein product was assigned by a major voting decision based
on the annotated protein functions in sORFdb.

2.3 sORFdb website

The data of sORFdb is stored in an Elasticsearch cluster [43]. Access to the data is
provided via a REST API that was implemented in Java with the Vert.x framework
[44]. The website’s graphical user interface was implemented using Vite, Vue, and
Typescript [45–47]. It provides a function for an exact sequence and an ID search using
the API above to match the queries against the sequences and IDs stored within the
Elasticsearch cluster. The alignment-based search uses a BLAST SequenceServer [48]
with all stored small proteins as a database returning the IDs of the matching subject
sequences which then are used for a search in the Elasticsearch cluster. The small
protein family search is performed on the server-side using HMMER (v3.3.2), and the
IDs of matching HMMs are also used to search for the HMM entries in the Elasticsearch
cluster. For all entries cross-links to the original data sources are provided.

The web-frontend, the Elasticsearch server, and the BLAST SequenceServer are
deployed on a scalable Kubernetes cluster, which is hosted in the de.NBI consortium’s
cloud computing infrastructure.

3 Results

Small proteins encoded by sORFs have long been overlooked in bacteria due to
laboratory and computational limitations. With the advent of new laboratory proto-
cols, many small proteins with essential functions have been reported. Despite these
advancements and improvements in gene prediction tools, sORFs and small proteins
still need to be explored. There are no dedicated databases that focus solely on small
proteins in bacteria. sORFdb was created to provide a taxon-independent collection
of high-quality bacterial sORFs, small proteins and their assignments to protein fam-
ilies in a comprehensive database to address this issue. This resource is accessible via
https://sorfdb.computational.bio.
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3.1 A large-scale collection of small proteins

To capture bacterial sORFs and small proteins in a comprehensive, taxonomically
independent, and standardized manner, including potential unannotated sequences,
they were collected from the public data sources GenBank, Swiss-Prot, UniProt,
and SmProt, enriched with additional information on taxonomy and RBS usage and
processed into a dedicated database. As the public databases contain sequences of
varying-quality, all sequences were quality-filtered in a workflow before acceptance.

A total of 31,653,437 sORFs and 34,007,166 small proteins were collected from
public databases. 269,214 annotated bacterial genomes from GenBank were systemat-
ically screened for sORFs and small proteins, and different filtering steps were applied
to extracted sequences. The filtered proteins were split into two groups. The first con-
sists of non-hypothetical small proteins stemming from a trusted annotation source.
The second group contains hypothetical ones or ones stemming from an unknown
annotation source. From the first group, 22,846,872 annotated small proteins were
included in sORFdb. An additional homology-based filtering step was applied to the
second group. 8,596,036 small proteins were kept after applying a strict SRV filter since
they possessed a homolog with an SRV of 0.7 or higher to sequences from Swiss-Prot,
UniProt, or SmProt. For 2,722,346 small proteins previously annotated as ”hypo-
thetical protein,” the product description could be updated using information from
well-annotated homologs. From UniProt, 2,322,213 small proteins with evidence on
transcript, protein, or homology level were collected.

Since automated annotation pipelines rely primarily on computational gene pre-
diction tools, they are limited by hard length cutoffs, and sORFs encoding small
proteins may be missed despite possible homologs. To collect these in the annotated
genomes, they were detected using a combined approach comprising Pyrodigal, a
homolog search, and an overlap and start codon filter. Based on homology alone,
1,363,907 potentially missing small proteins could be detected. After applying the filter
mentioned above, a further 198,723 were stored in the sORFdb database. As a result,
sORFdb contains 5,073,415 non-redundant small protein sequences and 5,640,450 non-
redundant sORF sequences. Despite the absence of sORF sequences for some of the
small proteins collected, the total number of non-redundant proteins is smaller than
that of non-redundant sORFs due to the use of synonymous codons. Detailed infor-
mation on the numbers of the total and unique sORF and small protein sequences, as
well as related database sources, are shown in Table 1.

The group of proteins for which the most new proteins have been reported in recent
years is the group of small proteins with up to 50AA [19]. To investigate the length
distribution of the total and non-redundant small proteins in sORFdb, their lengths
were compared with entries in the UniRef100 database.

In line with expectations, the number of known small proteins in the sORFdb and
the UniRef100 database tremendously declines with decreasing length (Fig. 2). The
historical and the default gene length cutoffs of standard gene prediction tools and
databases (30AA, 38AA, and 60AA) are visible for the predicted UniRef100 entries [5,
7]. In contrast, these cutoffs do neither occur for UniRef100 entries with evidence nor
sORFdb entries. While less numerous than all predicted UniRef100 entries, sORFdb

7

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599710doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599710
http://creativecommons.org/licenses/by-nc/4.0/


Table 1 Number of sORFs and small proteins in sORFdb and
the used public data sources

Database sORFs Small proteins

GenBank
total 31,641,552 31,641,552
non-redundant 5,628,909 4,366,039

Swiss-Prot
total - 30,520
non-redundant - 19,718

UniProt
total - 2,322,213
non-redundant - 1,612,347

SmProt
total 11,885 12,881
non-redundant 11,858 12,419

sORFdb
total 31,653,437 34,007,166
non-redundant 5,640,450 5,073,415

provides a considerably higher number of non-redundant small proteins, especially
with fewer than 50AA, than the UniRef100 entries with evidence.
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Fig. 2 Length distribution of sORFs and small proteins in sORFdb and UniRef100
The number of known small proteins decreases with decreasing sequence length. sORFdb provides
more non-redundant small proteins than the UniRef100 database with evidence. Especially for sORFs
encoding small proteins with few AA, sORFdb provides more entries.
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3.2 Taxonomic distribution

Based on the literature and reports for newly identified small proteins in clinically
relevant species, we suspected a bias in the taxonomic distribution in our sORFdb
database. For this reason, the taxonomy information of sORFs and small proteins
was extracted from source genomes and databases to assess the spread and conser-
vation across different bacterial taxa. Phyla were standardized to use a consistent
nomenclature based on [37].

In line with our expectation, the taxonomic distribution of small proteins in the
sORFdb database showed a clear overrepresentation of clinically relevant species and
model organisms (Fig. 3 A). 60.0% of all small proteins belonged to the phylum
of Pseudomonadota, formerly known as Proteobacteria. Within this phylum, 34.0%
of all protein entries belonged to Escherichia, Klebsiella, and Salmonella genera.
Other dominantly represented genera were Pseudomonas, Bacillus, Staphylococcus,
and Streptococcus, each accounting for 4-6%. This bias is much less prominent in
the taxonomic distribution of non-redundant small proteins (Fig. 3 B). While 42%
of all non-redundant small proteins are also found in Pseudomonadota, there are no
overrepresented genera, as is the case for all entries in the database.
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Fig. 3 Taxonomic distribution of redundant and non-redundant small proteins
(A) Most known small proteins in sORFdb stem from Pseudomonadota, model and clinically relevant
organisms. (B) The taxonomic distribution of non-redundant small proteins showed a much less
pronounced bias in comparison. The figure was created with Krona (v2.8.1) [49].

3.3 Differing genetic properties between sORFs and longer
genes

sORFs are known to have non-canonical start codons more often than genes encoding
proteins with more than 100AA [20]. To determine their start codon usage, these
were extracted from all non-redundant sORF sequences in sORFdb. With decreasing
length, there was a frequency increase in non-canonical start codons, while canonical
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start codons were most frequently used for all sORFs encoding small proteins of more
than 20AA (Fig. 4). Although ATG was the most frequent canonical start codon,
the frequency of the alternative canonical start codons GTG and TTG increased with
decreasing sequence length. sORFs encoding small proteins of 20AA or fewer had a
high proportion of non-canonical start codons compared to longer ones. The codons
AAG, ACG, and AGG occur much more frequently in these than in sORFs encoding
for small proteins with more than 20AA. The non-canonical start codons ATA, ATC,
ATT, and CTG occurred primarily in these longer sORFs. Regarding their source
databases and genera, 73.4% of the sORFs encoding small proteins with 20AA or
fewer belonged to the genus Escherichia. 68.9% of these sORFs were collected from
SmProt, while the remaining sequences were obtained from the GenBank database.
In the group with up to 10AA, 99.8% of the sequences were annotated in the genus
Escherichia, and 99.6% of them were extracted from the SmProt database.
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Fig. 4 Distribution of canonical and non-canonical start codons in sORFs
With decreasing sORF length, the frequency of non-canonical start codons increases. Shorter sORFs
have a higher frequency of the alternative canonical start codons GTG and TTG. The ones encoding
small proteins with 20AA or fewer have the highest frequency of non-canonical start codons. In
addition, they show a shift towards different start codons compared to the non-canonical ones used
in the group with more than 20AA.

sORFs are known to be pervasively transcribed, which can happen through leader-
less translation [22, 23]. To analyze potential leaderless translation, the usage of RBSs
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of the non-redundant sORFs in the annotated genomes from GenBank was examined
using Pyrodigal [32]. RBS could be detected in 73.8% of all non-redundant sORFs.
Despite this fact, the existence of an RBS varies enormously depending on the sequence
length. With decreasing size, the detection of an RBS decreased (Fig. 5). This can
be observed for sORFs encoding small proteins with 60AA or fewer. For all sORFs
encoding small proteins with 10AA or fewer, no RBSs could be detected, and 87.5%
of the ones encoding small proteins with 20AA or fewer also did not have a predicted
RBS.
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Fig. 5 Frequency of sORFs without a detected ribosomal binding site
With decreasing sORF length, the frequency of detected RBSs also decreased, and for sORFs encoding
proteins with 10AA or fewer, no RBSs were found at all.

3.4 Functions of small proteins

Functional characterizations of small proteins have revealed essential roles in bacte-
ria. However, homologs and functional descriptions are often unavailable for newly
discovered small proteins. For this reason, all small proteins were filtered during the
sequence collection process, and hypothetical protein products were re-annotated with
functional descriptions of homologs, if available. In addition, all small proteins were
queried against the Pfam database to assign protein families and domains.

The most common functional descriptions and Pfam hits were analyzed to inves-
tigate whether the functions of the collected small proteins were consistent with the
literature. For 74.0% of the non-redundant small proteins, a Pfam family or domain
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could be assigned, with the number of known assigned Pfam domains decreasing with
decreasing sequence length. Most small proteins in sORFdb are structural proteins of
ribosomes that are highly conserved and well-studied. Besides these, essential func-
tions of regulatory proteins, stress response proteins, and toxin-antitoxin systems are
predominant. This is in line with previous reported findings [1, 14, 15, 17, 19]. Most
regulatory proteins are denoted as helix-turn-helix containing transcriptional regula-
tors. Cold-shock proteins are the most abundant stress response proteins, and the
three most common toxin-antitoxin systems are Type II toxin-antitoxin systems of the
RelE/ParE, HicA or Phd/YeFM families. The top 20 small protein product annota-
tions are available in the Supplementary Material Table 4. Small proteins with 50AA
or fewer also frequently possess the functional description for helix-turn-helix con-
taining transcriptional regulators. However, many of these are membrane-associated,
like the yjcZ family sporulation protein, lmo0937 family protein ATPase subunits,
and others. The most common toxin-antitoxin systems are entericidin family proteins.
This has also been reported in previous studies [1, 12, 17, 19]. In addition, small pro-
teins with the domain of unknown function DUF3265, DUF2256, or DUF1127 are also
frequently found in the annotations of sORFdb and the assigned Pfam domains.

3.5 Families of small proteins in bacteria

While small proteins in bacteria are a rapidly evolving field of research and the number
and deduced functions of novel identified proteins are the subject of current studies,
their families are still understudied [13]. Clusters of similar proteins can be used as
a starting point to identify conservation within and across taxonomic groups and the
evolution of beneficial functions of these proteins. To address this, potential families
were inferred using a custom graph-based clustering approach on the non-redundant
collection of bacterial small proteins.

Small proteins with up to 50AA are the most rapidly growing protein category [19],
and longer proteins have been better studied since they were not affected by histori-
cal cutoffs [5–7]. For this reason, the clustering and the small protein families focused
on the 309,042 less-studied small proteins with up to 50AA. The clustering approach
was developed to handle small protein sequences’ properties better and make minimal
assumptions about their clustering behavior. After applying different pruning strate-
gies, 272,018 small proteins remained for the clustering with MCL. 16,518 clusters
were assigned in total by the graph-based clustering approach, of which 4,073 were
singletons. Clusters with at least five members were used as the basis for the small
protein families. Many of the separate graph components were completely assigned to
one cluster. There were also large complex-structured graph components, consisting
of proteins such as ribosomal or small proteins sharing a domain of unknown function,
for which many clusters were determined (Supplementary materials Fig. 1).

Clusters with at least five members were denoted as small protein families to
distinguish between technical sequence clusters and potential families. Based on this,
8,884 novel small protein families were created. These families had a mean of 27.7 and
a median of 11 members. The most prominent family consisted of 363 members. Most
families had members with a length between 40 and 50AA. Additionally, there were
more families with sequences of approximately 38AA in length. While there was a
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slightly increased number of families with members of around 30AA in length, families
with shorter members were scarce (Fig. 6). HMMs were built for all small protein
families, and accompanying gathering cutoffs were calculated to foster the detection
and annotation of small proteins belonging to the identified families. For 8,798 of
the 8,884 families, a functional description could be assigned using a majority voting
approach based on the existing functional annotation of cluster members. For example,
these families shared simple protein motifs, such as a domain of unknown function or
a functional description. The most abundant functional descriptions assigned to the
families stemmed from ribosomal proteins and regulatory proteins.
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Fig. 6 Distribution of cluster size and sequence length of small protein families
Most small protein families had an average member length between 40 and 50AA or around 30AA.
Most of the families with shorter member proteins had members with a length of about 30AA.
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3.6 Interactive web-based access to sORFdb

An interactive website was developed to provide a user-friendly interface for the
sORFdb database and to integrate additional services for sequence and family search
and data exploration. It makes the collected sORFs, small proteins, small protein
families, and related information easily accessible to the scientific community. To
accomplish this, it offers various functions for the interaction with the collected
data. The database, protein and sORF sequence data, small protein families and the
corresponding HMMs are available for download.

To enable researchers to find homologous sORF and small protein sequences, a
sequence-based search function is provided with a fast, exact search and a similarity-
based BLAST search (Fig. 7 A). In addition, a highly sensitive search for small
proteins belonging to known protein families is available (Fig. 7 B). All sequences and
families are findable and accessible via unique IDs. Besides sequence-based search func-
tions, browse functions are provided to view small proteins and sORFs matching user
selected criteria. These criteria can be based on taxonomy, sequence features, func-
tional description, or physicochemical properties (Fig. 7 C). Search results and filtered
sORFdb entries can be downloaded for local processing. To provide further informa-
tion, links to original resources are provided on a detailed page for each database
entry. Similarly, the small protein families can be browsed and inspected.

4 Discussion

Small proteins of 100AA or fewer encoded by sORFs have long been overlooked in
bacteria [1, 4]. However, the advent of ribosome profiling, improvements in mass spec-
trometry, and metagenomics have led to the identification of numerous sORFs and
small proteins [9–11, 13]. Despite this, sORFs and small proteins with evidence on
transcript or protein level are often missing from public databases and newly anno-
tated genomes. To address these issues, the landscape of publicly available bacterial
sORFs and small proteins in annotated genomes and protein databases was captured
and analyzed to provide a unified, dedicated database for sORFs, small proteins, and
their families.

To the best of our knowledge, sORFdb is currently the largest and most compre-
hensive sequence database for bacterial sORFs, small proteins, and related families.
The combination of different data sources, particularly the integration of GenBank
and the application of filtering steps, provides access to a broad collection of sequences
and a higher number of sequences than individual data sources used. Due to this
approach, sORFdb is taxonomically independent and not focused on specific species
compared to smaller databases such as SmProt [28]. In addition to the small pro-
tein and encoding sORF sequences, information on RBS usage and physicochemical
properties are provided. Most importantly, sORFdb defines families for small bacte-
rial proteins to facilitate the consistent identification of these hard-to-predict proteins
as a starting point for further studies. Regarding the functions of small proteins, the
annotated functions of the non-redundant proteins in sORFdb largely coincide with
the literature. As expected, the most frequently found proteins are ribosomal. The fol-
lowing annotated top functions of regulatory proteins, membrane-associated proteins,
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Fig. 7 Screenshots of the sORFdb web-frontend
(A) The sORFdb website’ search page offers a fast exact and a BLAST-based sequence search for
all sORFs and small proteins in the database. (B) The small protein family page provides access to
the small protein families, their member sequences and properties. (C) The browse page provides an
interactive selection for taxonomy, sequence-based features, and physicochemical properties to view
matching entries in the database.

stress response proteins and toxin-antitoxin systems of small proteins are also often
described in the literature [1, 12–15, 18]. Besides these functions, the Pfam domains
DUF3265, DUF2256, and DUF1127 occur with high frequency in small proteins with
up to 50AA. Recent studies show that proteins with the DUF1127 domain serve
essential functions concerning the sRNA maturation and RNA turnover as well as the
phosphate and carbon metabolism [50, 51]. Based on the DUF1127 small proteins, 37
different families with DUF1127 were identified. In contrast, the 276,091 singletons
and 3,561 clusters with up to 4 small proteins identified with the clustering approach
show the existence of less conserved or understudied groups. This is also consistent
with reports of small proteins conserved in only a few organisms [1]. While the func-
tional annotations of well-studied small proteins in sORFdb align with the known
literature, further investigation is needed for less conserved and understudied groups.

The taxonomic distribution of the available small proteins in sORFdb shows a
clear bias towards Pseudomonadota, particularly towards E. coli (Fig. 3 A). This bias
is due to the historical over-representation of these bacteria in sequenced genomes
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and the fact that most ribosome profiling experiments are conducted in this organism
[10, 18]. Although this bias is not as evident for the non-redundant small proteins
(Fig. 3 B), it still imposes limitations. Combining different databases did not reduce
this known bias, and SmProt, which only contains data from E. coli, further reinforced
this effect. Nevertheless, the taxonomic distribution of non-redundant small proteins
shows that sORFdb covers a broad range of non-clinically relevant bacteria despite
this bias, allowing a taxon-independent search for small proteins.

Since automated annotation pipelines and gene prediction tools are limited in their
ability to predict sORFs, a homology-based approach was used to detect potential
missing sORFs in annotated genomes from GenBank. Identifying missing small pro-
teins was based on assumptions derived from the current knowledge of sORFs encoding
functional proteins, which is biased towards E. coli and related bacteria. Therefore,
only potentially missing small proteins with canonical start codons, a known homolog
and prediction with Pyrodigal were included [10, 12, 21, 23]. Applying this search filter,
198,723 likely non-spurious small proteins were identified from the 1,363,907 candi-
dates found by homology search. This comparatively low number, in conjunction with
the filters applied, and the matching taxonomic bias of the database, indicates that
more than a homology search is needed for identifying small proteins. Another limita-
tion is the computational prediction of sORFs since the used tools are not optimized
for sequences of such short lengths.

The distribution of start codons in non-redundant sORFs contrasts with the cri-
terion for using canonical start codons that was applied for missing sORFs in the
GenBank genomes. As the length decreases, the number of non-canonical start codons
increases and shifts towards different non-canonical start codons compared to sORFs
that encode small proteins with more than 20AA (Fig. 4). A possible reason could
be that most sORFs of this length were collected from SmProt and identified by
ribosome profiling in E. coli alone. Therefore, they might include sORFs encoding
non-functional transcripts expressed by pervasive translation [21, 22]. Alternatively,
these sORFs may be evolutionary young, stemming from de novo gene origination,
and therefore may not exhibit the typical start codon and RBS usage observed in
E. coli [17]. To address this, further studies on the codon usage of sORFs encoding
functional small proteins are needed to distinguish spurious sORFs expressed by per-
vasive translation from sORFs stemming from de novo gene origination and conserved
sORFs.

The selection of an appropriate identity threshold is critical for the clustering of
homologous protein sequences. If prior knowledge is available, a suitable threshold can
be chosen depending on the evolutionary distance or available information about the
composition of the protein families to be clustered. Otherwise, a 30% identity thresh-
old or the application of E-value or bit score thresholds have been shown to capture
more distant homologs [52]. However, this approach cannot be applied to small pro-
teins because for short sequences, even self-hits can have values below these established
thresholds [52]. For this reason, a custom graph-based clustering approach was used
to identify small protein families. This approach was chosen to minimize assumptions
about the clustering behavior of small proteins as much as possible since their cluster-
ing properties are not well known. SRVs based on normalized bit scores were used as a
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similarity metric to address the possibility of insignificant bit scores for shorter small
proteins, which can occur even for self-hits. Here, the lower threshold of 0.3 allows
the detection of distant homologs. The clustering granularity is automatically selected
based on the inflation value with the highest efficiency score. The various pruning
steps aim to improve the clustering by excluding singletons and barely matching small
proteins beforehand.

A total of 8,884 small protein families with at least five members were identified
using this clustering approach. Despite the successful identification of protein families,
only a few families covering sequences with fewer than 30AAs could be identified (Fig.
6). This is due to several limitations, including the small number of collected sequences
of this length in sORFdb (Fig. 2), too few small proteins reported in the literature
being included in databases, and possible low sequence conservation [1]. Most families
cover small proteins with a length between 40 to 50 amino acids and around 30 amino
acids. This is likely due to the fact that there is an increased number of non-redundant
small proteins of about 30AA length in the sORFdb database which is caused by
historical and technical length cutoffs (Fig. 2).

A functional description could be assigned to nearly all protein families, and HMMs
with gathering cutoffs providing high accuracy were built accordingly. The various
filtering steps employed during database creation and clustering reduced the number
of false positives in the database and subsequently in the small protein families. For
this reason the HMMs can be used to accurately predict small proteins for genome
annotation. The most common functional descriptions of the small protein families
were consistent with those reported in the literature, such as toxin-antitoxin systems,
membrane-associated systems, and regulatory proteins [1, 12, 15, 18]. Despite this
consistency of the identified high-quality small protein families, 37,024 small proteins
were a priori excluded from the clustering by filtering strategies, and another 4,073
were reported as singletons. It is unclear whether these are true positives or false pos-
itives. They could be false positives that slipped through the extensive filtering steps
during the database creation. This could be the case for pervasively translated non-
functional small proteins predicted with ribosome profiling [21–23] or for false positives
sORFs detected by gene prediction tools [5, 6]. Another possibility is that they may
be small proteins without homologs in the protein databases or are underrepresented
in bacterial genomes due to difficult detection.

sORFdb provides a comprehensive resource for information on practically all cur-
rently known high-quality sORFs and small proteins. Due to the understudied nature
of these targets, there is still room for improvement in their detection and identification
of their functions. Improved computational gene prediction and laboratory protocols
for the identification of non-spurious small proteins and the elucidation of sORF and
small protein properties are still open fields that need further research.

5 Conclusion

To the best of our knowledge, sORFdb is the first comprehensive, taxonomically
independent database dedicated to sORF and small protein sequences and related
information in bacteria. For this purpose, high-quality information from protein

17

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599710doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599710
http://creativecommons.org/licenses/by-nc/4.0/


and genome databases enriched with physicochemical properties was combined. Fur-
thermore, small protein families identified by a custom graph clustering approach
accompanied by HMMs are provided to foster detection and consistent annotation.

In conclusion, the sORFdb database aims to serve as a high-quality primary
resource for researchers studying sORFs and short proteins. It will help to improve
the functional annotation of sORFs and small proteins, as well as the future detection
of novel short proteins in bacteria.

6 List of abbreviations

AA Amino acid
HMM Hidden Markov model
RBS Ribosomal binding site
sORF Short open reading frame
SRV Score ratio value
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