




Fig. S9 Brain-to-brain alignment under smaller axis perturbations (A), (B) and (C) depict alignment
between conspecifics neural responses in human ventral visual cortex, macaque IT and human auditory cortex,
measured using the pairwise matching score. Alignment is examined as a function of the number of plane (2D)
rotations (c) normalized by the total number of planes (x-axis) and the angle of each 2D rotation (drawn from
fπ/4, π/ 16, π/32, π/64g). Error bars are SEM over multiple splits of the data. The results show that higher angles
of plane rotation and a greater number of plane rotations more strongly reduce alignment.

Fig. S10 Model-to-brain alignment as a function of time in the auditory domain Left: Alignment
of auditory deep convolutional neural network representations (self-supervised network with AudioNTT architec-
ture) with biological neural representations in the auditory cortex (ECoG recordings) aggregated across different
temporal windows following stimulus onset. Alignment is measured using the pairwise matching correlation score.
Right: Difference in alignment of the auditory DCNN representation with neural representations in the human
auditory cortex aggregated across different temporal windows at no rotation (α = 0) and full rotation of the
DCNN axis (α = 1). Error bars are SEM over multiple splits of the data.
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Fig. S11 Responses of the music and speech-selective sparse components in the auditory self-supervised DCNN,
as obtained by the NMF procedure, to a distinct set of 36 natural speech/music sounds and their correspond-
ing modulation-matched controls. Signed t-test is used to evaluate whether the response to natural sounds was
consistently greater than responses to corresponding modulation-matched sounds for these two categories. The
modulation-matched synthetic sounds were generated to match the spectrotemporal modulation statistics of the
corresponding natural music and speech sounds [105].

Fig. S12 Lineplots show the mean lifetime sparseness, computed using the sparseness measure proposed in Vinje
and Gallant (2000), across all units in the representation at different axis rotations. Values near 0 indicate low
sparsity, and values near 1 indicate high sparsity. From left to right, the representations include the macaque
IT neural responses (from the Macaque-NSD dataset), self-supervised visual DCNN activations, human auditory
cortex responses (ECoG) and self-supervised auditory DCNN activations.
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Fig. S13 Alignment between conspecifics neural responses in human fusiform face area (FFA, left panel) and
the parahippocampal place area (PPA, right panel) as a function of axis rotation, measured using the pairwise
matching score. Alignment computed from fMRI activations to the 1000-image NSD stimulus set. Error bars are
SEM over multiple splits of the data. Significance tests compare the alignment values at no rotation (α = 0) with
those at full rotation (α = 1). In each subject, the FFA and PPA were defined as the top 100 most face-selective and
place-selective voxels, respectively, based on functional localizer experiments and anatomical boundaries provided
with NSD. Alignment is expressed as a proportion of the maximal value across all possible axis rotations, assessed
using the maximal basis alignment procedure.
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