Abstract
The overexpression of proto-oncogene Bcl3 is observed in various cancers. Bcl3 is extensively phosphorylated and associates with homodimers of NF-κB p50 and p52 to regulate transcription. Through cellular and biochemical assays, we observed that phospho-mimetic Glu substitution at Ser366 in addition to previously studied Ser33, 114 and 446 is necessary to switch Bcl3 from an IκB-like inhibitor to a transcriptional activator. To study interactive features of p52 and Bcl3, and phosphorylation- mediated changes in Bcl3 that regulate DNA-binding by p52, we performed HDX-MS of both Bcl3 and p52 within various complexes. Nature of interactions within Bcl3:(p52:p52) complex in presence and absence of DNA, differential flexibility of Bcl3, and allosteric changes in Bcl3 upon phospho-modifications revealed why a facile accommodation of DNA requires phosphorylation. The inhibitory nature of unphosphorylated Bcl3 on DNA binding by p52:p52 also relieved by a C-terminal deletion of Bcl3. Overall, this study revealed mechanistic bases of how Bcl3 phosphorylation regulates transcriptional potential of NF-κB and intricate cell physiology, a dysregulation of which can lead to cancers.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
This revision includes corrections of typos and mismatches of figures in the previous version.