






Figure 2: Fixed-point and dynamical simulation results. a, Predicted ecological Þxed point forntot = 110 total
defense systems, withnpos

p = 100 maximum counter-defense systems per phage strain. Distance between predicted
ecological Þxed pointn!

b and maximal number of defense systems per bacterial strain,npos
b , is shown as a function of

npos
b and the ratio between the growth rate of bacteria with no defense systems,! max, and the death rate of bacteria,

µ. Gray points represent parameters for which no ecologically stable Þxed point is predicted.b, Representative
simulation results for anntot = 6 system with! max/" = 0 .1 and! n !

b
/" ! 5.7 " 10! 2, displaying the histogram

of population densities of bacterial and phage strains with different numbers of defense/counter-defense systems per
strain.c, Population dynamics of bacteria withnb = n!

b = 2 defense systems each (red) and phage withnp = n!
p = 3

counter-defense systems each (blue) in thentot = 6 simulation of panel (b).d, e Representative simulation results
as in (b), (c), but with bacterial growth rate increased to! max/" = 10 (and! n !

b
/" ! 5.7). f, Dependence of mean

population densities forntot = 6 system (solid curves),ntot = 0 system (dotted curves), and analytical dynamical
Þxed-point prediction from Eqs. (1) (dashed curves).g, Dependence of dynamic ratio (main panel) and timescale
of dynamics (inset) forntot = 6 system (solid curves),ntot = 0 system (dotted curves), and analytical prediction
(Eqs. (3); dashed curves). Here, initial conditions were kept constant independent ofx-axis parameter variation; see
Supplement for further discussion.
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The parameter-dependent dynamic ratio, as well as the timescale of the dynamics (predicted by linear stability analysis;
see Supplementary Section S4), are both in quantitative agreement between the ntot = 6 and 1:1 cases (Fig. 2g). The
growth of the dynamic ratio of bacterial population densities for large ↵ can be understood from Eqs. (3) to result
from the exponential term eC/bBfp

⇠ e↵/� (see Supplementary Section S4). The same scaling behavior applies to the
growth of the dynamic ratio of phage population densities for small ↵: for ↵ ⌧ �, the exponential term e�/(↵�µ)

dominates the dynamic ratio of P . The crossover between the regime of dominant bacterial dynamics and that of
dominant phage dynamics occurs when P fp = bBfp, i.e. when ↵ � µ = � (see Supplementary Section S4). Using
the analytically tractable 1:1 system as a guide, we are thus able to predict the dynamic ratios and timescales of the
parameter-dependent chaotic dynamics for more complex cases with multiple bacterial and phage strains.

We note that our model makes several simplifying assumptions. While we have considered all defense systems
to be qualitatively interchangeable, defense systems in nature operate through different mechanisms and may have
qualitatively different effects on both the growth cost to the bacterium and on the success or failure of the invading
phage (and similarly for phage counter-defense systems) [3]. Interactions among defense systems may also change
their efficacies [15, 16]. We have also focused exclusively on obligate lytic (virulent) phage, neglecting temperate
phage as well as other alternative phage infection strategies [17]. While temperate phage may qualitatively affect the
behavior of many phage-bacteria interactions [18], here, the effect of super-immunity exclusion (i.e. that lysogens are
immune to further infection by phage of the same strain that lysogenized them) may be considered as a special case of a
defense system. Other phage infection strategies may also have only minor effects on our results; for example, chronic
infections wherein phage reproduce and exit the cell without cell lysis may be considered as a modification of the burst
size b. Furthermore, although we have here assumed well-mixed populations, spatial organization likely affects both
the dynamics of phage/bacteria competition and their coexistence, particularly in non-aquatic environments [19]. In
this regard, abortive infection defenses will be a fruitful topic for future work. Finally, while we have focused here
on steady immigration fluxes, a variant of the model described by Eqs. (1), without immigration fluxes but allowing
the bacteria and phage to stochastically gain, lose, and exchange systems with one another through mutations and
horizontal gene transfer, yields qualitatively similar results (see Supplementary Section S3).

In summary, we have developed a model for the dynamics of competing phage and bacteria with different sets
of defense and counter-defense systems. A fixed-point analysis of the model (confirmed by dynamical simulations)
indicates that phage and bacteria typically evolve to have more than one and less than the maximum number of
defense/counter-defense systems in each strain. This qualitative behavior has been observed in nature, and has previ-
ously been explained by the pan-immunity hypothesis, which argues that invading phage can be driven to extinction
as long as some bacteria within a community are immune to the invading phage, and that this immunity can be con-
ferred to other bacteria through horizontal gene transfer [9]. In contrast, we find that within our model, large (but
non-maximal) immunity and counter-immunity repertoires emerge naturally and enable the coexistence of phage and
bacteria. This coexistence is manifested in persistent chaotic dynamics, with the mean, amplitude, and timescale of
these dynamics well predicted by an analysis based on the competition between a single bacterial and a single phage
strain. Although the ecological fixed point of the system (n?

b , n
?
p) depends on the details of the growth costs of defense

and counter-defense systems through ↵nb/µ and bnp (Eq. (2)), we find that the qualitative dynamics depend only on
the ratio ↵/�, so long as immigration is minimal and µ is small enough that bacteria mostly die due to phage predation.
Thus, there are two main regimes of system behavior: slow bacterial growth rate compared to phage death rate (Fig.
2b,c); and fast bacterial growth rate compared to phage death rate (Fig. 2d,e). Finally, although we have focused our
analytical analysis on symmetric systems, our simulations demonstrate that even non-symmetric systems with modest
amounts of heterogeneity are not limited by the principle of competitive exclusion in our model. Thus, we find that the
chaotic dynamics of the system enable the coexistence of more phage (predator) strains than bacterial (prey) strains,
exceeding the biodiversity predicted by other frameworks such as “kill-the-winner” [20, 21].

The discovery that bacteria typically contain multiple coexisting defense systems (and phage contain multiple
counter-defense systems) has raised many questions. Chief among these, what controls the number and type of defense
and counter-defense systems in a particular bacterium or phage? One possibility is that these systems are controlled by
happenstance, with horizontal gene transfer mediating random gains and losses of systems. Alternatively, our simple
model suggests that considering states of evolutionary stability–albeit with fluctuations about these states–may provide
a helpful guiding perspective.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2024. ; https://doi.org/10.1101/2024.07.17.603905doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.17.603905
http://creativecommons.org/licenses/by/4.0/


Acknowledgements
We thank Wenping Cui, Simon Levin, and Pankaj Mehta for useful discussions. This work was supported in part by
grant number DAF2024-342781 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Com-
munity Foundation, by the National Science Foundation through the Center for the Physics of Biological Function
(PHY-1734030), and by the Peter B. Lewis ’55 Lewis-Sigler Institute/Genomics Fund through the Lewis-Sigler In-
stitute of Integrative Genomics at Princeton University (O.K.). This work was performed in part at Aspen Center for
Physics, which is supported by National Science Foundation grant PHY-1607611.

References
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Supplement: Bacterial defense and phage counter-defense lead to
coexistence in a modeled ecosystem

S1 Deriving Eqs. (2)
To derive Eqs. (2), we start from Eqs. (1), making the simplifications discussed in the main text, and assuming that the
immigration terms � and ⌫ are negligible for the purpose of the following analyses. We consider a system composed
exclusively of bacteria with nb defense systems and phage with np counter-defense systems. At a dynamical fixed
point of such a system, due to symmetry, all

�ntot

nb

�
bacterial strains with nb defense systems are present at equal

population densities Bfp
nb , and all

�ntot

np

�
phage strains with np counter-defense systems are present at equal population

densities P fp
np . This dynamical fixed point is given by

Bfp
nb

=
�

kbnp

�np

nb

� ,

P fp
np

=
↵nb � µ

k
�ntot�nb

np�nb

� ,
(S1)

where
�np

nb

�
is the number of bacterial strains each phage strain can infect, and

�ntot�nb

np�nb

�
is the number of phage strains

that can infect each bacterial strain.
This dynamical fixed point will further be an ecological fixed point if it is stable to invasions by bacteria with a

different number of defense systems, or to phage with a different number of counter-defense systems. This will occur
if the growth rates of such invading strains at the dynamical fixed point are negative. We refer to such an ecologically
stable fixed point as (n?

b , n
?
p). The growth rate of an invading bacterial strain with n†

b defense systems at the ecological
fixed point would be

dBn†
b

dt
= Bn†

b

 
↵n†

b
� µ� k

✓
ntot

� n†
b

n?
p � n†

b

◆
P fp
n?
p

!
, (S2)

where Bn†
b

is the population of the invading bacterial strain. Similarly, the growth rate of an invading phage strain
with n†

p counter-defense systems would be

dPn†
p

dt
= Pn†

p

✓
�� + kbn†

p

✓
n†
p

n?
b

◆
Bfp

n?
b

◆
. (S3)

These terms are negative for invading bacterial strains with n†
b = n?

b ± 1 defense systems, and for invading phage
strains with n†

p = n?
p ± 1 counter-defense systems, when

↵n?
b+1 � µ

↵n?
b
� µ

<
n?
p � n?

b

ntot � n?
b

,

↵n?
b
� µ

↵n?
b�1 � µ

>
n?
p � n?

b + 1

ntot � n?
b + 1

,

bn?
p+1

bn?
p

<
n?
p � n?

b + 1

n?
p + 1

,

bn?
p

bn?
p�1

>
n?
p � n?

b

n?
p

.

(S4)

By taking the natural logarithm and substituting derivatives for differences, we arrive at Eqs. (2).
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S2 Ecological fixed point behavior as ntot
! 1

The behavior of the ecological fixed point defined by Eqs. (2) as ntot
! 1 depends on how npos

b and npos
p scale with

ntot. Since ecological stability requires n?
p > n?

b , npos
p > npos

b must hold to avoid the trivial outcome with no phage
present. This inequality is biologically reasonable given the complexity required of defense systems compared to the
relative simplicity of counter-defense systems; as an example, consider the immensely complex Type 1-F CRISPR-Cas
system which can be evaded by phage that express a single short RNA molecule [S1]. As ntot

! 1, there are therefore
three possibilities: 1) npos

b and npos
p are both intensive; 2) npos

b and npos
p are both extensive; 3) npos

b is intensive while
npos
p is extensive. We find that in cases (1) and (2), n?

b and n?
p are approximately equal to npos

b and npos
p , respectively,

as ntot
! 1. However, surprisingly, in case (3) and for concave cost functions g and h, npos

b � n?
b and npos

p � n?
p both

grow with ntot. In this case, each individual bacterium optimally carries a subset of possible defense systems, even
though it could carry far more and still continue to grow (and similarly for phage).

S3 Details of dynamical simulations
We use the following parameters in our simulations, with time units such that � = 1 and population density units
such that k = 1: µ = 10�2; � = ⌫ = 10�15; bmax = 15. Bacterial growth rate ↵ is varied as described in the
main text; all other parameters are kept constant throughout. The bacterial death rate µ = 10�2 was chosen to be
much smaller than the phage death rate � so that we can explore the ↵ < � regime while maintaining µ ⌧ ↵, such that
bacterial populations are primarily limited by phage predation. For example, for ↵n⇤

b
⇡ 0.05 as in Fig. 2b,c, the rate of

bacterial death due to phage predation at the dynamical fixed point,
�ntot�n?

b
n?
p�n?

b

�
kP fp

n?
p
, is approximately 5⇥ larger than µ;

for ↵n⇤
b
⇡ 5 as in Fig. 2d,e, it is approximately 500⇥ larger. The particular values of � and ⌫ matter very little as long

as they are in the regime of slow immigration. (As described in the main text, the opposite regime where immigration
is substantial is qualitatively different because immigration stabilizes the populations of phage and bacteria strains
which would otherwise go extinct). Finally, the particular value of the phage burst size b has very little effect on our
results since the ecological fixed point depends on d

dnp
log bnp (and is therefore unchanged when b is modified by a

multiplicative factor; Eq. (2)) and the qualitative dynamical behavior is mostly determined by ↵/� as described in
Section S4. Natural phage burst sizes are typically of O(100) phage particles per burst, but also are accompanied by a
sizeable time delay between phage infection and lysis. Given that our model neglects this time delay, the effective burst
size must be decreased to reproduce overall phage proliferation rates. bmax = 15 was therefore chosen to correspond
to a burst size of ⇠ 200 for a system with a typical lysis time [S2].

We implement concave cost functions g(nb) = ↵max cos
⇣

⇡nb
2nmax

b

⌘
and h(np) = bmax cos

⇣
⇡np

2nmax
p

⌘
, where we have

set �d = 1 for all defense systems and �d = 1 for all counter-defense systems. nmax
b sets the maximum number of

defense systems bacteria can have before their growth rate ↵ reaches zero, and is somewhat larger than npos
b which is

determined by the net growth rate ↵ � µ reaching zero (and similarly for nmax
p for phage). Strains with more systems

than the maximum don’t grow: g(nb � nmax
b ) = 0, and similarly, h(np � nmax

p ) = 0. In our simulations, we set
nmax
b = 3.27, and nmax

p = 4.5, as these values yielded (n?
b , n

?
p) = (2, 3) and (npos

b , npos
p ) = (3, 4) for our parameter

choices.
In all simulations, the growth rates of individual bacterial strains ↵i, the burst sizes of individual phage strains bj ,

and the infection rates kij were all varied at order 10�5. Specifically, these terms were multiplied by
�
1 + 10�5

⇥ (2r � 1)
�

where r is a random number uniformly distributed between 0 and 1, chosen randomly and independently for each strain
or strain-strain interaction. Thus, small amounts of parameter heterogeneity are added to the system; for example, val-
ues of k ultimately range from (1� 10�5) to (1 + 10�5).

We ran each simulation for 107 time units (equivalent to 1.4⇥ 106 bacterial generations for ↵/µ = 10, or to more
generations for larger ↵).

We also ran simulations initializing the system with only bacterial strains for which nb = n?
b and phage strains

with np = n?
p, and setting the immigration fluxes to zero, � = ⌫ = 0. We found qualitatively and quantitatively

similar results to those displayed in Fig. 2b-e, and observed no phage or bacterial strains going extinct over the course
of these simulations. The simulations in Fig. 2f-g were performed in this manner.

To measure the Lyapunov exponent, we initialized two trajectories using the parameters of Fig. 2b,c, with initial
values of phage populations ⇠ 10�14 higher in one trajectory than the other. Specifically, the initial values in the
second simulation were equal to those of the first, plus 10�14

⇥ (2r � 1), where r is a uniformly distributed random
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number between 0 and 1 chosen independently for each phage strain. We then measured the distance between the
two trajectories as

p
(B �B0)2 where B is the total bacterial population. This value grows exponentially until ⇠ 400

generations, at which point it begins fluctuating between 10�5 and 100. This behavior of the distance between tra-
jectories initialized nearby (namely, exponential growth, followed by fluctuations around a fixed value) is typical of
chaotic systems. The Lyapunov exponent is defined as the slope of the exponential growth segment. To measure this,
the logarithm of the distance was fit to a line (or equivalently, the distance was fit to an exponential). This analysis
was repeated ten times for different instantiations of r, with measurements of the Lyapunov exponent having a mean
of 0.0822 and a standard deviation of 0.0014.

In Fig. 2g, we needed to measure the dynamic ratio in a consistent way for both chaotic and oscillatory systems.
To do this, first, we identified the local peaks and troughs (i.e. where the derivatives of the population densities change
sign). For oscillatory systems, the peaks are all at (very nearly) equal values, as are the troughs. For chaotic systems,
this is not the case. In order to measure the peaks and troughs in a manner that does not change much between different
instantiations of the chaotic dynamics, we therefore defined the dynamic ratio as the ratio of the 90th percentile of the
local population density peaks to the 10th percentile of the local population density troughs. The dynamic timescale
was measured by taking the median of the time between local maxima and the median of the time between local
minima, and averaging these two medians. For oscillatory systems, this measures the period of oscillations.

The simulations in Fig. 2f-g were initiated at Bi = 0.06 ⇥ (1 + r) and Pj = 0.06 ⇥ (1 + r) where r is a
random number uniformly distributed between 0 and 1, chosen independently for each bacterial and each phage strain.
Qualitatively similar results were obtained for simulations initiated at Bi = Bfp

n?
b
⇥ (1 + r) and Pj = P fp

n?
p
⇥ (1 + r),

i.e. where the initial conditions depend on parameter values through the dynamical fixed-point population densities.
Finally, we developed a variant of these simulations to take into account the stochasticity of evolutionary dynamics.

Rather than initiating the system with all strains present, we initialized the system with only one bacterial strain (with
one defense system), and one phage strain (with the corresponding counter-defense system). After every 5 timepoints
of simulation, we performed a mutation step. In this mutation step, new bacterial or phage strains could be created,
by either gaining or losing defense or counter-defense systems. First, we choose whether to mutate the bacteria (with
probability p) or the phage (with probability 1� p); we chose p = 10�2 to approximate the challenge bacteria face in
constructing new defense systems as opposed to the relative simplicity of phage counter-defense systems, as discussed
in the previous section. Next, we select the strain to mutate, proportionally to its population density at the time of
the mutation step. We then determine whether the mutation will be the (a) gain or (b) loss of defense (or counter-
defense) systems, each occurring with probability 1/2. Finally, all possible single mutants either adding or removing a
defense or counter-defense system (depending on which was selected) from the selected strain are added to the system
at a small initial population (10�15), or if they were already present, their population is increased by the same small
amount. These simulations resulted in the same qualitative behavior as the constant immigration rate simulations
discussed in the main text, evolving towards the ecologically stable fixed point at the system level, and exhibiting
chaotic dynamics at the population level.

S4 Dynamical analysis
To understand the dynamical behavior of the system, we turn to the ntot = 0 case, which we refer to as the 1:1 case
since it involves a single bacterial strain and a single phage strain. In the main text, we show that certain aspects of the
dynamical behavior of the 1:1 case closely parallel those of systems with ntot > 0. In this section, we quantitatively
analyze the 1:1 case.

First, we perform linear stability analysis to describe the behavior of the system near the dynamical fixed point. The
essential element of linear stability analysis is the calculation of the eigenvalues of the Jacobian matrix at the dynamical
fixed point (Eqs. (S1)). For the 1:1 case, the eigenvalues are ±i

p
� (↵� µ). That these are imaginary indicates that

the 1:1 case undergoes continued oscillations. The period of these oscillations is given by 2⇡/
p
� (↵� µ). This

prediction is plotted as a dashed curve in the inset to Fig. 2g.
Predicting the amplitude of oscillations is less straightforward, and to our knowledge no generic method enables

this prediction. Linear stability analysis provides no information regarding the amplitude of oscillations. To address
this challenge, we recognize that there is a quantity C satisfying dC/dt = 0. In general, this quantity is given by

C = P fp
np

X

j

 
Pj(t)

P fp
np

� log
Pj(t)

P fp
np

!
+ bBfp

nb

X

i

 
Bi(t)

Bfp
nb

� log
Bi(t)

Bfp
nb

!
. (S5)
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For the 1:1 case, this quantity simplifies to

C = P fp
0

 
P (t)

P fp
0

� log
P (t)

P fp
0

!
+ bBfp

0

 
B(t)

Bfp
0

� log
B(t)

Bfp
0

!
, (S6)

where P fp
0 and Bfp

0 are given by Eqs. (S1) with np = nb = ntot = 0.
Because C is a constant in time, it will also be a constant when P or B are at an extremum. Solving for B at either

extremum of P (i.e. where dP/dt = 0) yields B = Bfp
0 . Similarly, solving for P at either extremum of B yields

P = P fp
0 . Thus, we find that

C = P ext
� P fp

0 log
P ext

P fp
0

+ bBfp
0

= bBext
� bBfp

0 log
Bext

Bfp
0

+ P fp
0 ,

(S7)

where Bext represents the value of B(t) at its maximum or minimum, and similarly for P ext.
We then estimate the values of Pmin, Pmax, Bmin, and Bmax. For the minimum values, we treat the linear terms

(e.g. P ext) as negligible compared to the logarithmic terms; for the maximum values, we treat the logarthmic terms as
negligible. These approximations yield

C = Pmax + bBfp
0 ,

= �P fp
0 log

Pmin

P fp
0

+ bBfp
0 ,

= bBmax + P fp
0 ,

= �bBfp
0 log

Bmin

Bfp
0

+ P fp
0 .

(S8)

Solving for the extrema and simplifying, we find that the dynamic ratios of B and of P are given by Eqs. (3), reprinted
here:

Bmax

Bmin =
C � P fp

0

bBfp
0

exp

"
C � P fp

0

bBfp
0

#
,

Pmax

Pmin =
C � bBfp

0

P fp
0

exp

"
C � bBfp

0

P fp
0

#
.

(S9)

To understand the growth of the dynamic ratio of B for large ↵ and of P for small ↵, we first recognize that the
positivity of the dynamic ratios implies C > P fp

0 and C > bBfp
0 , so that the dynamic ratios can be approximated as

Bmax

Bmin ⇡
C

bBfp
0

exp

"
C

bBfp
0

#
,

Pmax

Pmin ⇡
C

P fp
0

exp

"
C

P fp
0

#
.

(S10)

Substituting in from Eqs. (S8), we find

Bmax

Bmin ⇡
bBmax + P fp

0

bBfp
0

exp

"
bBmax + P fp

0

bBfp
0

#
,

Pmax

Pmin ⇡
Pmax + bBfp

0

P fp
0

exp

"
Pmax + bBfp

0

P fp
0

#
.

(S11)
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Finally, substituting in for the dynamical fixed point values (Eqs. (S1)), we arrive at

Bmax

Bmin ⇡

 
Bmax

Bfp
0

+
↵� µ

�

!
exp

" 
Bmax

Bfp
0

+
↵� µ

�

!#
,

Pmax

Pmin ⇡

 
Pmax

P fp
0

+
�

↵� µ

!
exp

" 
Pmax

P fp
0

+
�

↵� µ

!#
.

(S12)

For large ↵ (i.e. ↵ � �), the dynamic ratio of B is therefore dominated by e↵/� . Similarly, for small ↵ (i.e. ↵�µ ⌧ �),
the dynamic ratio of P is dominated by e�/(↵�µ).

To find the crossover between the two dynamic regimes (one where the dynamic ratio of B is large, and the other
where the dynamic ratio of P is large), we solve for

Bmax/Bmin

Pmax/Pmin = 1 (at crossover). (S13)

Starting from Eq. (S10), this can be approximated as

P fp
0

bBfp
0

⇡ exp

"
C

 
1

bBfp
0

�
1

P fp
0

!#
(at crossover). (S14)

While the precise value of C depends on the particular initial conditions chosen, it can be estimated by its value at the
fixed point, C fp = P fp

0 + bBfp
0 . This yields

P fp
0

bBfp
0

⇡ exp

"
P fp
0

bBfp
0

�
bBfp

0

P fp
0

#
(at crossover). (S15)

The equation x = exp
⇥
x� x�1

⇤
is solved by x = 1. Therefore, the crossover occurs at

P fp
0 ⇡ bBfp

0 (at crossover), (S16)

or, substituting in for the dynamical fixed point values (Eqs. (S1)),

↵� µ ⇡ � (at crossover). (S17)
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