Abstract
Climate change may introduce conditions beyond species’ tolerances; to survive, species must avoid these extremes. Phenological shifts are one strategy, as species move their activity or life history events in time to avoid extreme conditions. Species may also shift in space, moving their ranges poleward to escape extremes. However, whether species are more likely to exhibit one or both strategies, and whether this can be predicted based on a species’ functional traits, is unknown. Using a powerful macroecological dataset of European and North American odonate observations, we assessed range and phenology shifts between two time periods (1980-2002 and 2008-2018) to measure the strength and direction of the association between responses. Species with the greatest poleward range shifts also showed the largest phenological shifts toward earlier annual activity periods, with half of all species shifting in both space and time. This response was consistent across continents, despite highly divergent land use and biogeographical histories in these regions. Surprisingly, species’ range and phenology shifts were not related to functional traits; rather, southern species shifted their range limits more strongly, while increasing temperature variability hindered range shifts. By reducing risk through phenological shifts, the resulting larger populations may be more likely to disperse and expand species’ ranges. While species shifting in both space and time may be more resilient to extreme conditions, we identified a small number of species (approximately 10%) that failed to shift at all; these species are likely to be particularly vulnerable to climate change, and should be prioritized for conservation intervention.
Competing Interest Statement
The authors have declared no competing interest.