New Results
What the Average Really Means: Dissociating Effect Size and Effect Prevalence using p-curve Mixtures
View ORCID ProfileJohn P. Veillette, View ORCID ProfileHoward C. Nusbaum
doi: https://doi.org/10.1101/2024.07.31.606048
John P. Veillette
1Department of Psychology, University of Chicago
Howard C. Nusbaum
1Department of Psychology, University of Chicago
Article usage
Posted August 01, 2024.
What the Average Really Means: Dissociating Effect Size and Effect Prevalence using p-curve Mixtures
John P. Veillette, Howard C. Nusbaum
bioRxiv 2024.07.31.606048; doi: https://doi.org/10.1101/2024.07.31.606048
Subject Area
Subject Areas
- Biochemistry (12717)
- Bioengineering (9589)
- Bioinformatics (31095)
- Biophysics (15997)
- Cancer Biology (13085)
- Cell Biology (18725)
- Clinical Trials (138)
- Developmental Biology (10131)
- Ecology (15114)
- Epidemiology (2067)
- Evolutionary Biology (19311)
- Genetics (12825)
- Genomics (17687)
- Immunology (12821)
- Microbiology (30029)
- Molecular Biology (12523)
- Neuroscience (65409)
- Paleontology (484)
- Pathology (2023)
- Pharmacology and Toxicology (3494)
- Physiology (5415)
- Plant Biology (11220)
- Synthetic Biology (3098)
- Systems Biology (7734)
- Zoology (1743)