New Results
What the Average Really Means: Dissociating Effect Size and Effect Prevalence using p-curve Mixtures
View ORCID ProfileJohn P. Veillette, View ORCID ProfileHoward C. Nusbaum
doi: https://doi.org/10.1101/2024.07.31.606048
John P. Veillette
1Department of Psychology, University of Chicago
Howard C. Nusbaum
1Department of Psychology, University of Chicago
Posted August 01, 2024.
What the Average Really Means: Dissociating Effect Size and Effect Prevalence using p-curve Mixtures
John P. Veillette, Howard C. Nusbaum
bioRxiv 2024.07.31.606048; doi: https://doi.org/10.1101/2024.07.31.606048
Subject Area
Subject Areas
- Biochemistry (12995)
- Bioengineering (9876)
- Bioinformatics (31644)
- Biophysics (16320)
- Cancer Biology (13395)
- Cell Biology (19076)
- Clinical Trials (138)
- Developmental Biology (10347)
- Ecology (15343)
- Epidemiology (2067)
- Evolutionary Biology (19599)
- Genetics (13002)
- Genomics (17977)
- Immunology (13091)
- Microbiology (30603)
- Molecular Biology (12773)
- Neuroscience (66840)
- Paleontology (490)
- Pathology (2065)
- Pharmacology and Toxicology (3556)
- Physiology (5547)
- Plant Biology (11435)
- Synthetic Biology (3187)
- Systems Biology (7846)
- Zoology (1775)