










Methods 

Sequence data. S2-PepAnalyst leverages an extensive dataset of experimentally validated 

plant signalling pepLdes, augmenLng the training data used by SignalP 6.0. This dataset 

includes a diverse range of plant species such as Arabidopsis thaliana, tomato, avocado (Hass 

and Gwen varieLes), and mango [20-23]. These species were chosen due to their varied 

significance in global food security and agricultural sustainability. For broader analysis, s2-

PepAnalyst incorporates the Cleavage Site score (CS) from SignalP 6.0 as a pre-training step. 

StarLng with one or mulLple amino acid sequences of interest, derived, for instance, from 

some RNAseq studies, we pretrained the selected proteome to have only two classes: 

signalling or non-signalling pepLdes. From this resulLng dataset, we chose short sequence 

amino acids ranging from 2 to 200 for our analysis in accordance with the observed literature 

of signal pepLde recogniLon. 

 

Modelling. S2-pepAnalyst uses two different pretrained protein language models to encode 

amino acid sequences. In this study, we uLlised Tasks Assessing Protein Embeddings (TAPE) 

[24], a semi-supervised learning task in protein biology, which generates a shaped tensor that 

is subsequently averaged to produce a vector representaLon of length 768. AddiLonally, we 

used EvoluLonary Scale Modelling (ESM-2) [25], which provides an averaged vector of length 

1280. Each vector was padded and reshaped to create images of sizes 28x28 and 36x36, 

respecLvely. These images were then used to capture topological informaLon via GeoTop, an 

applicaLon of Topological Data Analysis (TDA) and Lipschitz-Killing Curvatures (LKCs)  for 

feature extracLon, which we embedded into the images for accuracy assessment [26-29].  

 

In brief, for any two values 𝑠 and 𝑡 ∈ ℝ, where 𝑠 ≤ 𝑡, the relaLonship 

𝑋!(𝑥) ⊆ 𝑋"(𝑥) holds. This indicates an expanding family of binary images parameterised by 

𝑡. This family is referred to as the “superlevel sets filtraLon” of 𝑋. The subset inherits its 

topological structure, allowing us to compute the homology groups (𝐻#) of 𝑋!(𝑥). 

 

Through a series of trial-and-error experiments, we established a set of thresholds denoted 

as 𝑇, consisLng of 200 equidistant points spanning from the minimum to the maximum values 

of the images and their corresponding excursion sets. From these, we compute three scaled 
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geometrical features: area (𝒜/), perimeter (𝒫1 ), and Euler characterisLc (ℰ/), with 𝐿𝐾𝐶6 = $%&
'! ,	 

where 𝑚	is the image of size. 

 

Deep learning integraCon. LeNet-5 [30], a convoluLonal neural network (CNN) architecture, 

was then employed. This architecture was embedded in a reinforcement learning algorithm 

to capture the diverse informaLon stored in the various LeNet models (Fig. 1d). The first model 

has an input dimension of 32x32, while the second model has an input dimension of 41x41. 

For the reinforcement learning secLon, the input dimension is 41x41, with the strategy aiming 

to capture all the informaLon provided by each embedding model and enhance the learning 

process.   

 

Given 𝑠! as the state at Lme step 𝑠! (e.g., the current semanLc representaLon of the protein 

r=TAPE(q)), 𝑎! as the acLon (a includes the decision to classify a sequence as a signal pepLde 

or not, and further classificaLon into specific families) taken at Lme step 𝑡 (modificaLons to 

the representaLon), 𝑟! as the reward received ader taking acLon 𝑎! in state 𝑠!., and 𝜋(𝑎|𝑠) as 

the policy, which represents the probability of taking acLon 𝑎 given state 𝑠, the goal is to 

maximise the expected cumulaLve reward ℛ : 

 

ℛ(𝜋) = 𝔼 BC 𝛾!
(

!)*
𝑟!E,	 

 

where 𝑇 is the total number of Lme steps and 0 ≤ 𝛾 ≤ 1	is the count factor. The expectaLon 

	𝔼	+ indicates that the rewards are averaged over the probability distribuLon of states and 

acLons as dictated by the policy 𝜋. 

 

For opLmising semanLc representaLons of proteins using DNA-BERT, the reward funcLon 𝑟! 

should capture the desired abributes of the representaLon. The tailored reward funcLon 𝑟! 

is: 

 

𝑟! 	= 	α ∙ Accuracy(𝑠!) 	+ 	𝛽 ∙ 𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑠!) + 𝛿 ∙ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠!), 
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where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠!) measures performance on protein funcLon predicLon, 

𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑠!) evaluates how well the representaLon aligns with known biological facts,  

on structural moLfs (specific arrangements of AAs forming disLnct three-dimensional 

structures), and 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠!) assesses the overall quality of the representaLon (e.g., 

coherence and robustness). α, 𝛽, 𝑎𝑛𝑑 𝛿 are weights that balance the contribuLons of these 

components. 

 

The agent's policy 𝜋(𝑎|𝑠),	which maps states to acLons, is opLmised using reinforcement 

Policy Gradients [31]. The objecLve is to find the policy that maximises the expected 

cumulaLve reward ℛ(𝜋): 

 

𝜋∗ = 𝑎𝑟𝑔	𝑚𝑎𝑥+	ℛ(𝜋) 

 

Family classificaCon. For smoother classificaLon for the families in Arabidopsis, we calculated 

the persistence diagram of dimension 1 for the Arabidopsis dataset (𝐻.), followed by 

compuLng the Wasserstein distance among all elements in the dataset [32, 33]. This process 

resulted in the classificaLon of SSP candidates, enabling the clustering of different families 

and observaLon of their connecLons.  

 

The p-Wasserstein distance between two persistence diagrams 𝐷. and 𝐷/ is the infimum over 

all bijecLons 𝛾: 𝐷. ∪	∆→ 𝐷/ ∪ ∆ of 

( C ‖𝑥 − 𝛾(𝑥)‖0
1

2∈4"∪∆

	)./1 

 

Where ∥ −	∥0 is defined for (𝑥, 𝑦) ∈ ℝ/ by max{|𝑥|, |𝑦|}. 

 

Thus, if such a distance is null, this is akin to using BLAST but invariant to changes of scale [19]. 

Since protein sequences from different species may have undergone evoluLonary changes in 

length, this facilitates the study of homologous proteins (i.e., Arabidopsis) and evoluLonary 

relaLonships. AddiLonally, proteins oden contain funcLonal domains that are conserved in 

structure but may vary in size. Scale invariance helps in detecLng these domains accurately, 

regardless of their length, leading to beber funcLonal annotaLon of proteins. 
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Training. We employed TAPE, ESM, and Geotop for embedding and feature extracLon. IniLally, 

diagrams from Geotop embeddings were selected and transformed [34], then concatenated 

with the original embeddings to form a 1024-dimensional feature set. 

 

The dataset was divided into training (80%) and tesLng (20%) subsets. Each set was 

standardised separately, and the data was reshaped to suit a convoluLonal neural network 

(CNN), including an addiLonal dimension for compaLbility. This helps to evaluate the model 

on unseen data and idenLfy and miLgate issues such as over-fizng, where the model 

becomes overly specialised to the training data and fails to generalise well. 

 

We assessed training label distribuLon for class balance and verified preprocessing accuracy 

through sample visualisaLon. The CNN model, featuring several convoluLonal layers, average 

pooling layers, and dense layers, was trained with 18,433 to 116,737 parameters for Solanum 

lycopersicum, as an example among the chosen proteomes. Training involved 50 epochs, with 

loss and accuracy tracked for both training and validaLon sets using StochasLc Gradient 

descent (with momentum) SGD and Root Mean Squared PropagaLon RMSprop opLmisers 

from Keras [35].  

 

EvaluaCon and benchmarking. As a baseline for our evaluaLon, we curated a dataset 

comprising 18 sequences, focusing on those that are new or difficult to predict, with the 

assistance of domain experts. Using this dataset (i.e., 4 non SSPs and 14 SSPs) of 8 different 

proteomes and various SSPs families, we conducted tesLng with SignalP 6.0 and S2-pepAnalyst 

(Fig. 2a).  

 

Every step was meLculously taken to ensure that the training and validaLon datasets 

accurately represented the broader spectrum of plant proteomes, thus enhancing the 

generalisability of our model. 

 

Following this iniLal evaluaLon, we further tested our model on two addiLonal datasets 

comprising 779 and 1,177 sequences from 46 different species. The first dataset comprised 

779 known SSPs, while the second contained 779 SSPs and 398 known non-SSPs [19]. These 
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tests further validated the superior performance of S2-pepAnalyst in accurately predicLng 

small signal pepLdes across a diverse range of species (Fig. 2b). 

 

To evaluate the performance of the models, we primarily focused on classificaLon accuracy. A 

probability threshold of 0.5 from the CNN's final output layer was used to disLnguish SSPs 

from non-SSPs. In addiLon to accuracy, we uLlised precision, recall, MCC-binary [36], and the 

F1 score as supplementary metrics (see Fig. 2c). We employed validaLon loss to implement 

early stopping, improve model generalisaLon, and opLmise hyperparameters. ValidaLon loss 

is calculated by feeding a subset of the total dataset (not used for training) through the trained 

model and compuLng the loss on this dataset. The binary cross-entropy loss funcLon used is 

as follows: 

 

𝐿	 = 	− .
8
∑(𝑦 × 𝑙𝑜𝑔(𝑦m) + (1 − 𝑦) × 𝑙𝑜𝑔(1 − 𝑦m)), 

 

where 𝑁 represents the total number of samples in the validaLon dataset, y denotes the true 

label (i.e., 𝓅(𝑦|𝑟)), and 𝑦m (i.e.,	𝓅(𝑦|𝑟!)) signifies the predicted probability of the posiLve class.  

 

Hence, the total validaLon loss is the average of all sample losses: 

 

𝑉𝑎𝑙9:"" =
.
8
∑(𝐿). 

 

Model complexity, scalability, and computaConal Cme cost. The computaLonal complexity 

of our S2-PepAnalyst model can be analysed by considering the number of parameters and 

operaLons in the CNN layers. The total number of parameters in a convoluLonal neural 

network is a significant factor influencing its computaLonal requirements. 

 

In each convoluLonal layer, the number of parameters is determined by the size of the filters 

and the number of filters. For a convoluLonal layer with 𝓀 filters, each of size 𝒻 × 𝒻, applied 

to an input of size 𝓂	 × 	𝓂, the number of parameters is 𝓀 × 𝒻/. If there are 𝓃 such layers, 

the total number of parameters is given by Total	parameters	 = 	𝓃	 × 	𝓀	 × 𝒻/. 
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The overall complexity for the convoluLonal operaLons in one layer is: 

𝒪(	𝓃	 × 	𝓂	 × 	𝓀	 × 𝒻/), 

 

 

where 𝓃 represents the number of sequences, 𝓂 the average sequence length, 𝓀 the number 

of convoluLonal filters, 𝒻 filter size, and ℓ number of layers. Considering ℓ layers, the total 

complexity becomes:   

𝒪(	𝓃	 × 	𝓂	 × 	𝓀	 × 𝒻/ × 	ℓ). 

 

For example, considering the architecture of LeNet-5, which has a total of 22 filters (6 in the 

first convoluLonal layer and 16 in the second convoluLonal layer), and 𝒻 = 32, and	ℓ = 2,	  

the complexity for processing 10 sequences, each with a typically average length of 80, is: 

 

𝒪(10	 × 80 × 	22	 × 32/	 × 	2) 	= 	𝒪(36,044,800).	 

 

During inference, the model's efficiency is maintained through opLmised convoluLon 

operaLons, enabling rapid predicLons even for larger datasets. Although the computaLonal 

Lme cost is higher during the iniLal training phase due to extensive parameter tuning and 

hyperparameter opLmisaLon, this is alleviated using GPU acceleraLon, which brings the Lme 

to pracLcal levels for real-world applicaLons. For instance, the inference Lme for a single 

sample, defined as the Lme taken to train a single batch to convergence and perform 

inference, took 0.63 seconds. PredicLng and determining the family of pepLde sequences 

predicted as SSP took 15.7 seconds (Supplementary Fig. 2). 

 

Overall, S2-PepAnalyst offers a balanced trade-off between accuracy and computaLonal 

efficiency, making it suitable for high-throughput small signalling pepLde predicLon tasks.  

 

Data availability  

The sequence data used for training and tesLng S2-pepAnalyst can be downloaded from 

hbps://github.com/MorillaLab/s2-PEPANALYST/data. The invesLgated reference proteomes 

are available from TAIR, Phytozome, avobase, and mangodb at hbps://www.arabidopsis.org/, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.606319doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606319
http://creativecommons.org/licenses/by-nc/4.0/


hbps://phytozome-next.jgi.doe.gov, hbps://www.avocado.uma.es/, and 

hbps://www.mangobase.org/.  

 

Code availability  

S2-pepAnalyst is freely available as a web tool at hbp://www.s2-pepanalyst.uma.es. Users can 

upload pepLde sequences for predicLon and access detailed results through the user-friendly 

interface. The model source code in Keras 2.15, PyTorch 2.2.1, and Transformer 4.38.2 is 

available at hbps://github.com/MorillaLab/s2-PEPANALYST/.  
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Figure legends 

 

Figure 1. Architecture of S2-PepAnalyst learning proteins as images and refining LM semanCc 

by RL. (a) SchemaLc of the encoding process for generaLng opLmal semanLc protein 

representaLons [34] using Reinforcement Learning (RL). Each pepLde sequence is encoded, 

averaged, and transformed into a high-dimensional vector [39]. (b) Scaber plot comparing 

encoded SSPs with the Arabidopsis database, highlighLng disLnct clustering paberns that 

indicate similariLes and differences in the protein representaLons. Non-SSPs are highlighted 

in blue and SSP predicLons in yellow. (c) Workflow diagram illustraLng the progression from 

pepLde sequence input to machine learning-based predicLon. The process involves encoding 

the sequence with a prior pre-training using its cleavage site, generaLng an opLmal semanLc 

representaLon, image learning, and applying convoluLonal neural networks (CNNs) and 

computer vision GeoTop algorithm for final predicLon and family classificaLon: the upper 

figure depicts post-translaLonally modified pepLdes, showing possible hydroxylaLon and 
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glycosylaLon of Proline and sulphaLon of Tyrosine. The lower figure shows cysteine-rich 

pepLdes with di-sulphide bridges forming between cysteine residues.  

 

Figure 2. S2-PepAnalyst strongly predicts and classifies SSPs in plants. (a) Baseline and 

generalised comparaLve analysis of S2-PepAnalyst and SignalP 6.0 for SSP predicLon accuracy. 

S2-PepAnalyst demonstrates higher sensiLvity and specificity across various plant proteomes, 

(b) The top classificaLon matrix corresponds to SignalP 6.0, while the middle and bobom 

matrices represent S2-PepAnalyst's performance on datasets comprising 18 and 1,177 

sequences, respecLvely. S2-PepAnalyst exhibits a lower false-negaLve rate, indicaLng 

enhanced predicLve accuracy. (c) ComparaLve analysis of MCC, accuracy, precision, and F1 

score between S2-PepAnalyst and SignalP 6.0. S2-PepAnalyst consistently achieves higher 

metrics, with precision approaching 99%, underscoring its robustness and reliability. 

 

Figure S1. Training and validaCon accuracy on average across epochs and proteomes. This 

plot illustrates the accuracy of the S2-PepAnalyst model during training and validaLon phases 

over 30 epochs and the 5 analysed proteomes. The blue line represents the accuracy on the 

training dataset, while the orange line indicates the accuracy on the validaLon dataset. The 

model shows a steady increase in accuracy, achieving over 98.1% accuracy for both training 

and validaLon data, demonstraLng robust performance and effecLve learning. 

 

Figure S2. Memory usage during model execuCon. This graph displays the memory 

consumpLon of the S2-PepAnalyst model over Lme, measured in MiB. The analysis reveals a 

stable memory usage pabern with a peak around 9 MiB, indicaLng the model's efficiency and 

scalability. The consistent memory usage throughout the process highlights the model's 

suitability for real-world applicaLons with limited computaLonal resources. 
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Figure 1. Architecture of S2-PepAnalyst learning proteins as images and refining LM semanCc 

by RL. (a) SchemaLc of the encoding process for generaLng opLmal semanLc protein 

representaLons [34] using Reinforcement Learning (RL). Each pepLde sequence is encoded, 

averaged, and transformed into a high-dimensional vector [39]. (b) Scaber plot comparing 

encoded SSPs with the Arabidopsis database, highlighLng disLnct clustering paberns that 

indicate similariLes and differences in the protein representaLons. Non-SSPs are highlighted 

in blue and SSP predicLons in yellow. (c) Workflow diagram illustraLng the progression from 

pepLde sequence input to machine learning-based predicLon. The process involves encoding 

the sequence with a prior pre-training using its cleavage site, generaLng an opLmal semanLc 

representaLon, image learning, and applying convoluLonal neural networks (CNNs) and 

computer vision GeoTop algorithm for final predicLon and family classificaLon: the upper 

figure depicts post-translaLonally modified pepLdes, showing possible hydroxylaLon and 

glycosylaLon of Proline and sulphaLon of Tyrosine. The lower figure shows cysteine-rich 

pepLdes with di-sulphide bridges forming between cysteine residues.  
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Figure 2. S2-PepAnalyst strongly predicts and classifies SSPs in plants. (a) Baseline and 

generalised comparaLve analysis of S2-PepAnalyst and SignalP 6.0 for SSP predicLon accuracy. 

S2-PepAnalyst demonstrates higher sensiLvity and specificity across various plant proteomes, 

(b) The top classificaLon matrix corresponds to SignalP 6.0, while the middle and bobom 

matrices represent S2-PepAnalyst's performance on datasets comprising 18 and 1,177 

sequences, respecLvely. S2-PepAnalyst exhibits a lower false-negaLve rate, indicaLng 

enhanced predicLve accuracy. (c) ComparaLve analysis of MCC, accuracy, precision, and F1 

score between S2-PepAnalyst and SignalP 6.0. S2-PepAnalyst consistently achieves higher 

metrics, with precision approaching 99%, underscoring its robustness and reliability. 
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Figure S1. Training and validaCon accuracy on average across epochs and proteomes. This 

plot illustrates the accuracy of the S2-PepAnalyst model during training and validaLon phases 

over 30 epochs and the 5 analysed proteomes. The blue line represents the accuracy on the 

training dataset, while the orange line indicates the accuracy on the validaLon dataset. The 

model shows a steady increase in accuracy, achieving over 98.1% accuracy for both training 

and validaLon data, demonstraLng robust performance and effecLve learning. 

 
Figure S2. Memory usage during model execuCon. This graph displays the memory 

consumpLon of the S2-PepAnalyst model over Lme, measured in MiB. The analysis reveals a 

stable memory usage pabern with a peak around 9 MiB, indicaLng the model's efficiency and 

scalability. The consistent memory usage throughout the process highlights the model's 

suitability for real-world applicaLons with limited computaLonal resources. 
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