Abstract
Alzheimer’s disease (AD) is characterized by cognitive decline and memory loss due to the abnormal accumulation of amyloid-beta (Aβ) plaques and tau tangles in the brain; its onset and progression also depend on genetic factors such as the apolipoprotein E (APOE) genotype. Understanding how these factors affect the brain’s neural pathways is important for early diagnostics and interventions. Tractometry is an advanced technique for 3D quantitative assessment of white matter tracts, localizing microstructural abnormalities in diseased populations in vivo. In this work, we applied BUAN (Bundle Analytics) tractometry to 3D diffusion MRI data from 730 participants in ADNI3 (phase 3 of the Alzheimer’s Disease Neuroimaging Initiative; age range: 55-95 years, 349M/381F, 214 with mild cognitive impairment, 69 with AD, and 447 cognitively healthy controls). Using along-tract statistical analysis, we assessed the localized impact of amyloid, tau, and APOE genetic variants on the brain’s neural pathways. BUAN quantifies microstructural properties of white matter tracts, supporting along-tract statistical analyses that identify factors associated with brain microstructure. We visualize the 3D profile of white matter tract associations with tau and amyloid burden in Alzheimer’s disease; strong associations near the cortex may support models of disease propagation along neural pathways. Relative to the neutral genotype, APOE ɛ3/ɛ3, carriers of the AD-risk conferring APOE ɛ4 genotype show microstructural abnormalities, while carriers of the protective ɛ2 genotype also show subtle differences. Of all the microstructural metrics, mean diffusivity (MD) generally shows the strongest associations with AD pathology, followed by axial diffusivity (AxD) and radial diffusivity (RD), while fractional anisotropy (FA) is typically the least sensitive metric. Along-tract microstructural metrics are sensitive to tau and amyloid accumulation, showing the potential of diffusion MRI to track AD pathology and map its impact on neural pathways.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data, but most of them did not participate in the analysis or writing of this report. A complete listing of ADNI investigators may be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
This version of the manuscript has been revised to update add ADNI {and for the Alzheimer's Disease Neuroimaging Initiative*) consortium as co-author