Abstract
Many phenotypic traits are under stabilizing selection, which maintains a population’s mean phenotypic value near some optimum. The dynamics of traits and trait architectures under stabilizing selection have been extensively studied for single populations at steady state. However, natural populations are seldom at steady state and are often structured in some way. Admixture and introgression events may be common, including over human evolutionary history. Because stabilizing selection results in selection against the minor allele at a trait-affecting locus, alleles from the minor parental ancestry will be selected against after admixture. We show that the site-frequency spectrum can be used to model the genetic architecture of such traits, allowing for the study of trait architecture dynamics in complex multi-population settings. We use a simple deterministic two-locus model to predict the reduction of introgressed ancestry around trait-contributing loci. From this and individual-based simulations, we show that introgressed-ancestry deserts are enriched around such loci. When introgression between two diverged populations occurs in both directions, as has been inferred between humans and Neanderthals, the locations of introgressed-ancestry deserts will tend to be shared across populations. We argue that stabilizing selection for shared phenotypic optima may explain recent observations in which regions of depleted human-introgressed ancestry in the Neanderthal genome overlap with Neanderthal-ancestry deserts in humans.
Competing Interest Statement
The authors have declared no competing interest.