Summary
UapA is an extensively studied elevator-type purine transporter from the model fungus Aspergillus nidulans. Determination of a 3.6Å inward-facing crystal structure lacking the cytoplasmic N-and C-tails, molecular dynamics (MD), and functional studies have led to speculative models of its transport mechanism and determination of substrate specificity. Here, we report full-length cryo-EM structures of UapA in new inward-facing apo- and substrate-loaded conformations at 2.05-3.5 Å in detergent and lipid nanodiscs. The structures reveal in an unprecedented level of detail the role of water molecules and lipids in substrate binding, specificity, dimerization, and activity, rationalizing accumulated functional data. Unexpectedly, the N-tail is structured and interacts with both the core and scaffold domains. This finding, combined with mutational and functional studies and MD, points out how N-tail interactions couple proper subcellular trafficking and transport activity by wrapping UapA in a conformation necessary for ER-exit and but also critical for elevator-type conformational changes associated with substrate translocation once UapA has integrated into the plasma membrane. Our study provides detailed insights into important aspects of the elevator-type transport mechanism and opens novel issues on how the evolution of extended cytosolic tails in eukaryotic transporters, apparently needed for subcellular trafficking, might have been integrated into the transport mechanism.
Competing Interest Statement
The authors have declared no competing interest.