Abstract
Manipulating gene expression in mammalian cells is critical for cell engineering applications. Here we explore the potential of transcription factor (TF) recognition element arrays as DNA tools for modifying free TF levels in cells and thereby controlling gene expression. We first demonstrate proof-of-concept, showing that Tet TF-binding recognition element (RE) arrays of different lengths can tune gene expression and alter gene circuit performance in a predictable manner. We then open-up the approach to interface with any TF with a known binding site by developing a new method called Cloning Troublesome Repeats in Loops (CTRL) that can assemble plasmids with up to 256 repeats of any RE sequence. Transfection of RE array plasmids assembled by CTRL into mammalian cells show potential to modify host cell gene regulation at longer array sizes by sequestration of the TF of interest. RE array plasmids built using CTRL were demonstrated to target both synthetic and native mammalian TFs, illustrating the ability to use these tools to modulate genetic circuits and instruct cell fate. Together this work advances our ability to assemble repetitive DNA arrays and showcases the use of TF-binding RE arrays as a method for manipulating mammalian gene expression, thus expanding the possibilities for mammalian cell engineering.
Competing Interest Statement
The authors have declared no competing interest.