








niiv: Fast Self-supervised Neural Implicit Isotropic Volume Reconstruction 5

Fig. 3. Fourier space separates incorrect from correctly reconstructed fre-
quencies. (a) In the spatial domain, reconstruction errors are randomly distributed for
the baseline and our reconstruction. (b) Visualizing errors in the Fourier domain (right
column) separates erroneous (bright) and correctly reconstructed frequencies (dark).
(c) By cropping the Fourier domain’s high frequencies, the PSNR is not perturbed by
frequencies corresponding to noise, yielding more informative PSNR values.

L = w1DISTS(Ixy
pred, I

xy
gt ) + w2 MAE(Ixy

pred, I
xy
gt ), (2)

where wi are the respective weights. We find w1 = 1 and w2 = 30 to consistently
achieve good results.

4 Evaluating Reconstructions with Noisy Ground Truth

Evaluating niiv brings challenges, as only noisy ground truth exists, leading
to uninformative PSNR values (Fig. 3a). Thus, a method that perfectly recon-
structs lateral slices is overfitting to the noise; this is especially problematic in
low-data regimes with powerful data-fitting models [12]. We wish to assess the
reconstruction of biological structures despite the noise. Prior research has ad-
dressed this problem by downscaling the data to diminish noise [9] at the cost of
sacrificing resolution. We propose calculating the PSNR in the Fourier domain
where it is easier to separate high-frequency components of signals [7] such as
noise (Fig. 3b), where we vary a cutoff frequency fcutoff (Fig. 3c) across a range
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of values to observe the quality across frequencies. For example, if a method
only achieves a greater PSNR than another at high fcutoff but not at low fcutoff,
then it is likely overfitting the noise. Given Parseval’s theorem [21] and the uni-
tary nature of the Fourier transform F , we can directly compute the PSNR in
the frequency domain (see derivation in supplement), sidestepping the inverse
transformation to the spatial domain.

PSNR(I, Ipred) = PSNR(FI,FIpred). (3)

We now incorporate the clipping operation in the Fourier domain, denoted by
a low-pass operator L that discards frequencies above fcutoff. Given the above
relationship, we receive

PSNR(F−1LFI,F−1LFIpred)) = PSNR(LFI, LFIpred). (4)

That is, we can transform both images into the Fourier domain, apply the clip-
ping operation via L, and then compute the PSNR directly in Fourier space.

5 Experiments

5.1 Data and Implementation Details

We demonstrate the effectiveness of our approach on the publicly available
FlyEM Hemibrain [22], FAFB [35] EM datasets and also ablate against LM
approaches like LICONN [28] (Fig 5b). While the Hemibrain contains the cen-
tral brain region of Drosophila melanogaster imaged at isotropic 8 × 8 × 8 nm
pixel resolution, we downsample the data to 8× anisotropy along the z -axis
through average pooling. FAFB shows the entire brain of a female adult fruit fly
at naturally 5× anisotropic 8× 8× 40 nm pixel resolution. We randomly sample
400 subvolumes (1283 pixels in the Hemibrain and 1303 pixels in FAFB) and
separate them into training (N = 350) and test datasets (N = 50). All metrics

Table 1. Quantitative comparison on the Hemibrain data. We report clipped
Fourier PSNR (CF PSNR) with fcutoff = 25, regular PSNR, and SSIM. We differ-
entiate between volume-specific pre-training time and inference time (Pre/Infer). We
consistently outperform baselines for 8× reconstruction of 1283 volumes. The highest
scores are highlighted in red, the second and third scores in orange and yellow, respec-
tively.

Hemibrain Data CF PSNR ↑ PSNR ↑ SSIM ↑ Time (Pre/Infer) ↓ VRAM (GB)
Nearest 23.16 20.42 0.50 – –
Bilinear 23.53 20.92 0.51 – –
SIREN [25] 19.55 18.24 0.34 (150s/0.003s) 3.9
Diffusion EM [12] 23.24 20.65 0.56 (-/264s) 3.9
Ours 24.91 21.56 0.56 (-/0.113s) 3.4
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Fig. 4. Qualitative comparison of simulated (a) and real (b) anisotropic data.
We achieve up to three orders of magnitude faster inference compared to diffusion base-
lines [12] and other neural implicit approaches like SIREN [25] while also reconstructing
smaller structures with higher fidelity (see arrows).

are reported on entire volumes rather than individual images. Our method is im-
plemented in PyTorch, and all experiments were performed on a single NVIDIA
RTX 3090 Ti GPU. All experiments use the EDSR [13] super-resolution encoder
without upsampling modules, 16 residual blocks, and 64-dimensional output fea-
tures. The MLP is 5 layers deep, each 256 neurons wide. We train our model
for 1500 epochs using the Adam optimizer and a learning rate of 5× 10−5. Note
that we train separate models for the Hemibrain, FAFB, and LICONN data.

5.2 Qualitative and Quantitative Comparison

To showcase our method’s suitability for interactive isotropic reconstruction, we
capped the GPU memory usage at 4 GB for all methods, reflecting a mid-tier
laptop’s typical capacity. Within this constraint, our approach significantly out-
performs the diffusion baseline, delivering inference speeds up to three orders
of magnitude faster (0.11 vs. 264 seconds) for an anisotropy reconstruction task
with anisotropy α = 8 on 1283 volumes (Hemibrain). The advantage is due to
Diffusion-EM’s slow iterative inference process and the need to enforce frame-
by-frame consistency for the probabilistic reconstruction process by conditioning
each slice inference on a latent code retrieved from the previous slice, prohibiting
batch processing. We also outperform the neural implicit SIREN [25] baseline
as it requires separate pretraining for each subvolume, leading to costly infer-
ence on unseen data (Table 1). Comparing reconstruction quality, in contrast
to the baselines, our model can reconstruct fine details (Fig. 4a) with slice-by-
slice consistency (see supplementary video) and sharper edges (Fig. 4b). While
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Fig. 5. Ablation studies. (a) While the unclipped PSNR in the Fourier domain shows
no significant difference between our approach and the baselines (∆0.6), the difference
becomes more evident for thresholds fcutoff ∈ [14, 40] (∆1.63). (b) We also test niiv on
recent expansion light microscopy data [28] with simulated 8× anisotropy. fcutoff = 25.

the diffusion results visually look sharp, small details are often reconstructed
incorrectly, explaining the lower metric scores. Diffusion EM also fails for vol-
ume sizes, not in {2i} (Fig. 4b). Also, SIREN reconstruction results look blurry,
making it unsuitable for isotropic reconstruction.

5.3 Ablation Studies

Fourier PSNR Threshold. We tested the effect of the Fourier clipping thresh-
old on the PSNR (Fig. 5a). If no clipping threshold is applied, the PSNR values
of our method and the baselines are low and close together due to the random
image noise in the ground truth data. However, the black box (Fig. 5a) indicates
a clipping window in Fourier space where image quality differences are more
accurately represented through the PSNR given noisy GT images.

Data Modality. We use a recent, near isotropic voxel-size (9.7 × 9.7 × 13
nm) expansion LM dataset [28] of a mammalian hippocampus and simulate 8×
anistropy using average pooling as a degradation model (Fig. 5b). Next, we
train on 350 randomly sampled volumes and reconstruct 50 unseen 1283 voxel
test volumes at isotropic voxel size. Fig. 5b shows input and GT images and also
compares our results with nearest- and bilinear interpolation. We find that niiv
produces sharper images compared to bilinear interpolation also for LM data.

6 Conclusions and Future Work

Interactive isotropic rendering of anisotropic data is useful for large-scale data
visual inspection tasks. To this end, we demonstrate that neural fields and
encoder-based superresolution representations are promising for fast and flex-
ible self-supervised volume reconstruction. We propose three avenues for future
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work. First, developing more accurate physics-based axial degradation models
(Sec. 3) to improve the simulation of anisotropic xy slices during training. Deng
et al. [4] take a first step in that direction. Second, integrating machine-learning
elements like our approach into low-power Web-based image-rendering tools such
as neuroglancer [15] or Viv [16] would rapidly deploy these advances. Third, fu-
ture work should investigate if latent image representations express higher-level
semantically-interpretable morphological features, as these could be useful in
downstream tasks like tissue classification (e.g., neuron typing).
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