Abstract
The advent of CRISPR-based technologies has enabled the rapid advancement of programmable gene manipulation in cells, tissues, and whole organisms. An emerging platform for targeted gene perturbation is epigenetic editing, the direct editing of chemical modifications on DNA and histones that ultimately results in repression or activation of the targeted gene. In contrast to CRISPR nucleases, epigenetic editors modulate gene expression without inducing DNA breaks or altering the genomic sequence of host cells. Recently, we developed the CRISPRoff epigenetic editing technology that simultaneously establishes DNA methylation and repressive histone modifications at targeted gene promoters. Transient expression of CRISPRoff and the accompanying single guide RNAs in mammalian cells results in transcriptional repression of targeted genes that is memorized heritably by cells through cell division and differentiation. Here, we describe our protocol for the delivery of CRISPRoff through plasmid DNA transfection, as well as the delivery of CRISPRoff mRNA, into transformed human cell lines and primary immune cells. We also provide guidance on evaluating target gene silencing and highlight key considerations when utilizing CRISPRoff for gene perturbations. Our protocols are broadly applicable to other CRISPR-based epigenetic editing technologies, as programmable genome manipulation tools continue to evolve rapidly.
Competing Interest Statement
J.K.N. is an inventor of patents related to the CRISPRoff technology, filed by the University of California.
Footnotes
We updated the suggested cell seeding density to obtain 60-70% confluency. We also fixed the incorrect references to the figures in the text.