ABSTRACT
Motor skill learning is a complex and gradual process that involves the cortex and basal ganglia, both crucial for the acquisition and long-term retention of skills. The cerebellum, which rapidly learns to adjust the movement, connects to the motor cortex and the striatum via the ventral and intralaminar thalamus respectively. Here, we evaluated the contribution of cerebellar neurons projecting to these thalamic nuclei in a skilled locomotion task in mice. Using a targeted chemogenetic inhibition that preserves the motor abilities, we found that cerebellar nuclei neurons projecting to the intralaminar thalamus contribute to learning and expression, while cerebellar nuclei neurons projecting to the ventral thalamus contribute to offline consolidation. Asymptotic performance, however, required each type of neurons. Thus, our results show that cerebellar neurons belonging to two parallel cerebello-thalamic pathways play distinct, but complementary, roles functioning on different timescales and both necessary for motor skill learning.
Competing Interest Statement
The authors have declared no competing interest.