Abstract
Effective treatment strategies to alleviate heart failure that develops as a consequence of myocardial infarction (MI) remain an unmet need in cardiovascular medicine. In this study, we uncovered that exosomes produced by human THP-1 macrophages cultured with the cytokine IL-4 (THP1-IL4-exo), reverse cardiac functional decline in mice that develop MI as a consequence of diet-induced occlusive coronary atherosclerosis. Therapeutic benefits of THP1-IL4-exo stem from their ability to reprogram circulating Ly-6Chi monocytes into an M2-like phenotype and suppress Type 1 Interferon signaling in myeloid cells within the bone marrow, the circulation, and cardiac tissue. Collectively, these benefits suppress myelopoiesis, myeloid cell recruitment to cardiac tissue, and preserve populations of resident cardiac macrophages that together mitigate cardiac inflammation, adverse ventricular remodeling, and heart failure. Our findings introduce THP1-IL4-exo, one form of M2-macrophage exosomes, as novel therapeutics to preserve cardiac function subsequent to MI.
Competing Interest Statement
The authors have declared no competing interest.