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Displacement Prediction. As the displacement of the brain
tissue can depend on the locations and the sizes of the lesion
cores, six stroke cases are selected from the 600 testing cases
to present the predicted brain tissue displacement fields.
Here, six cases with large deformation are chosen from six
different brains (quantitative evaluation of the geometrical
differences are summarised in Table 1), respectively, as this
helps illustrate the displacement fields with better clarity
(Fig.2). It is noted that the maximum errors in prediction
are well below 1 mm, with most of the errors not exceeding
0.5 mm across the computational domain. Notably, both the
patterns for large (Pred ux over 9 mm in the fourth brain
in column 4, row 4) and small deformation (Pred uz below 1
mm in the first brain in column 10, row 1) in the complex
brain anatomy are captured by the DNN accurately.

Geometry Prediction. The DNN can predict displacement
accurately and the calculated swollen brain geometries
show only slight differences when compared with the FE
ground truth (Fig.S2-S7). Most prediction errors in tissue-
background boundaries are minimal and appear as individual
islands (marked in red and green, where red is excessive and
green is deficient). This indicates that the errors do not
exceed 2 mm and they are acceptable errors that can be
caused by the 2 × 2 × 2mm3 voxelisation of brain geometries.
The accurate lesion-healthy tissue boundary prediction shows
that the lesion swollen volume can be captured by the DNN.

Furthermore, the white-grey matter boundary shows minimal
prediction errors, which indicates that the displacement of
white and grey matter is well captured. It is worth noting that
different mechanical properties are applied to the white and
grey matter, where the shear modulus value of white matter
is twice of grey matter. This demonstrates that the DNN can
learn tissue mechanical properties from simple grey-valued
imaging data.

Error Quantification. To present the prediction outcome of
the DNN, brain geometrical features and prediction errors of
displacement are summarised in Table 1. The errors in 600
test cases are categorised into six brain geometries, with each
group containing 100 cases. Although the brain geometrical
features vary (sagittal length, 122-132 mm; coronal length,
168-176 mm; axial length, 144-160 mm; brain volume, 1106.1-
1267.6 ml) in the testing cases, the prediction errors are not
significantly different between the 600 cases in the six brains.
Considering tissue displacements are governed by biophysical
laws and are not simple affine transformations of the baseline
displacements, these results demonstrate that the geometrical
features of the brain have been well learned and extrapolated
by the designed DNN.

The RMSE of displacement is found to be much lower than
0.1 mm. Meanwhile, the maximum errors in DNN-predicted
displacement are well below 1 mm whilst the spatial resolution
of the stroke brain geometry input has a spatial resolution

Fig. 2. The comparison of the DNN prediction results with the ground truth is illustrated, with all color bars represented in millimeters (mm). The first column is the snapshots of
the brain and lesion geometry from the same angle, with the brain segmented to show the stroke locations. Column 2 is the slice of the axial plane across the lesion centroid
location. The DNN predicted u x; u y ; u z are shown in columns (3, 6, 9). The FE generated ux; u y ; u z are shown in columns (4, 7, 10), and the errors in prediction are shown
in columns (5, 8, 11), respectively. The displacement fields predicted by the DNN are found to achieve nice matches with the FE-generated ground truth. For example, the
displacement in x direction majorly concentrates at the front of the ventricle surface in MCA, ACA region lesion (rows 4&6) whilst the displacement is the largest on the back of
the ventricle in PCA region lesion (rows 1&3). Lesions at different locations can lead to different patterns of displacement fields, and these features are well captured by the
DNN.
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Table 1. Error quantification in the 600 cases across the six brain geometries in the test dataset, with errors presented as mean ± SD

Brain Sagittal Coronal Axial Tissue ux uy uz

IDs Lengths Lengths Lengths Volumes Error Error Error
(mm) (mm) (mm) (ml) (mm) (mm) (mm)

24 126 172 160 1266.6 0.0373 ± 0.008 0.0352 ± 0.009 0.0552 ± 0.005
25 132 168 152 1253.0 0.0373 ± 0.008 0.0345 ± 0.010 0.0543 ± 0.005
26 122 168 148 1126.2 0.0374 ± 0.009 0.0360 ± 0.011 0.0539 ± 0.006
27 123 176 156 1243.3 0.0405 ± 0.008 0.0378 ± 0.010 0.0566 ± 0.005
28 124 168 144 1106.1 0.0370 ± 0.010 0.0358 ± 0.010 0.0532 ± 0.005
29 126 176 158 1267.6 0.0427 ± 0.010 0.0387 ± 0.010 0.0573 ± 0.005

of 2 mm (Fig.2). This shows that the designed DNN is
capable of learning tissue displacement with high accuracy
at a subvoxel level using brain imaging data. Importantly,
our transformer-based DNN outperforms previous models on
FE-based tissue displacement prediction, where the RMSE
of displacement prediction is of the order of magnitude of
1 mm (14, 18). Transformer has been the state-of-the-art
model in many fields, such as natural language processing
and image segmentation (19, 20). These results show that the
transformer can also be a powerful tool for learning complex
structural features and predicting brain deformation.

Stroke Outcome Prediction. Thus far, we have obtained a
DNN model for the prediction of brain swelling after stroke
by using stroke brain anatomy. In this section, we test the
capability of the model in generating MLS and brain swelling
volumes for an effective prediction of stroke outcomes. Here,
we use 60 stroke brain images from the ISLES 2024 open
source dataset (21, 22), in which stroke patients brain images,
masks of infarct and the modified Rankin Scale (mRS) after 90
days are provided. Of the 60 patients, 31 had poor functional
outcomes (mRS>2) and 9 died (mRS=6) after stroke. Due
to the low-resolution boundaries between the white and grey
matter on the brain images, it is challenging to extract the

exact boundaries of four subdomains. For simplicity, the
centroids and volumes of infarcts are extracted from the
dataset to generate lesions of similar locations and sizes in
the population-averaged brain (Fig.3) (16). Thereafter, the
stroke brain geometries are used by the DNN to infer MLS and
brain volume change for the prediction of disability (mRS>2)
and death (mRS=6), as shown in Fig.3.

The predicted MLS (1.38 ± 1.60 mm) agrees well with
previous clinical studies, where MLS is 0.0 (0.0 to 2.0) mm
in the good outcome group (mRS ≤2) and 2.1 (0.0 to 3.3)
mm in poor outcome group after 74.9 (50.5 to 99.6) hours
to stroke onset (9). It also agrees with the clinical data (23)
where the MLS is 1.6 (0.0 to 2.6) mm 3-5 days after stroke
onset. Furthermore, ventricle effacement (2.86 ± 3.81ml)
generated from the DNN agrees well with the data provided
in (9), where the change is around 1.61 (-0.62 to 4.69) ml
in the good outcome and 3.78 (0.34 to 7.39) ml in poor
outcome group. This indicates that the model can predict
the key imaging makers that are comparable to real brain
deformation after 3-5 days to stroke onset. Furthermore, the
AUC is around 0.7 for both MLS and brain swelling volume,
demonstrating a relevance between the predicted markers
and stroke outcomes. In the results, the AUC of disability
is 0.69 for MLS and 0.72 for swelling volume, whereas the

Fig. 3. In the ISLES 2024 dataset, 93 patients are initially included, and images with multiple infarcts or missing 90-day mRS are excluded from the analysis. A total of 60
images are selected, and the centroid and volumes of the infarct masks are extracted to create a comparable lesion in the population-average brain model. The computational
pipeline is used to obtain midline shift (MLS) and ventricle compression. The resulting predicted radiological markers achieve an AUC of around 0.7, indicating a reasonable
prediction of 90-day stroke outcomes.
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AUC of death is 0.69 for MLS and 0.67 for swelling volume.
The results match well with the AUC values from (9), where
the AUC of disability is 0.68 for MLS and 0.79 for swelling
volume and the AUC of death are 0.66 and 0.66, respectively.
Furthermore, the predicted MLS and volume thresholds for
disability are 1.6 mm and 3.29 ml, which is comparable to
the thresholds of 2.0 mm and 3.28 ml in (9). Meanwhile, the
thresholds for death are 1.9 mm and 1.34 ml, compared to
3.2 mm and 11.0 ml in (9).

It is noted that the prediction of disability shows a higher
AUC than death in the model, this is probably due to that
there are only 9 death cases in ISLES 2024. Generally,
the prediction shows a nice prediction of stroke outcome
with an AUC of around 0.7. This demonstrates that the
computational pipeline can be a useful tool in the early
prediction of imaging markers and can potentially broaden
the time window for clinical decisions after stroke onset.

Discussions

To the best of our knowledge, this is the first investigation
of brain swelling prediction based on learning stroke brain
anatomical features. Future application of the DNN tool to
predict patient-specific brain swelling will require multi-modal
imaging data such as angiography (24) and perfusion MRI (25)
for a more comprehensive analysis. Meanwhile, more imaging
data of tissue displacement will be needed to understand
post-stroke brain swelling. Over decades, significant progress
has been made in mapping tissue displacement in the field
of brain diseases (26–32). Whilst more patient-specific data
are necessary, clinical imaging data are rare and can suffer
high noises at the current stage. The computational pipeline
demonstrates a novel in silico experimentation to predict
brain swelling by learning anatomical features. As tissue
deformation in complex anatomical structures can occur in
various diseases, such as tumours and haemorrhages, we
believe that the proposed approach can inspire the broader
field of biomedical studies.

Perceivably, brain swelling is a biomechanical process solely
determined by tissue mechanics, lesion swollen volume and
boundary conditions. The proposed computational pipeline
provides a prediction tool for brain deformation based on
our up-to-date mechanical knowledge of the brain. Currently,
there is a lack of refined tissue mechanical properties in
various brain regions (17), and we thus only use white
and grey matter subdomains in the model. The major
differentiation in brain tissue mechanical properties has been
found between white and grey matter, and experimental
evidence shows less difference between other brain regions
(17). Therefore, further refinement of brain regions can
improve model accuracy but is not expected to significantly
affect the prediction outcomes.

There are three major limitations to this study. (1)
This study utilises affine transformation (16) to obtain the
brain geometries that agree with the clinical brain imaging,
and only the centroids and volumes from stroke clinical
images are used. This is due to the challenge of obtaining
exact subdomain boundaries in low-resolution clinical images.
More clinical imaging data can be used to further examine
how deformation can vary in different brains. (2) Fixed
boundary conditions are imposed on the gyrus, sulcus and
falx according to previous mathematical modelling studies

(12, 33). Ventricle compression and MLS are usually the signs
of malignant stroke, and it is hence reasonable to focus on the
ventricle effacement at this stage (8, 12). In clinical settings,
however, a swollen brain can also occupy sulci spaces, and a
more refined outer boundary condition should be investigated
using imaging and clinical data. (3) Although the ventricle
compression and MLS agree well with the clinical statistics
(Fig.3), the swollen volumes of the brain tissue can also
depend on various biomedical factors, such as collateral score,
treatment methods and age (34). Overall, malignant stroke
is a complex process, and a comprehensive patient-specific
prediction tool will require the joint endeavour of clinicians,
bioinformaticians, radiologists and computational biologists.

Supporting Information Appendix (SI). Supplemental File
includes part of the Results and details of the Methods.
The lesion mesh generation, mesh affine transformation, and
geometry prediction are in SI Appendix. The loss function is
visualised in Fig.S8. Model parameters are shown in Table.S1.

Materials and Methods

The governing equations of the poroelastic system are given as the
following:

cw
∂pw

∂t
= ∇ · (Kw · pw) + Scw [1]

cb
∂pa

∂t
= ∇ · (Ka · pa) − ωac · (pa − pc) [2]

cb
∂pc

∂t
= ∇ · (Kc · pc) + ωac · (pa − pc) − ωcv · (pc − pv) − Scw [3]

cb
∂pv

∂t
= ∇ · (Kv · pv) + ωcv · (pc − pv) [4]

G∇2u⃗ + (G + λ)∇ε = ∇pw [5]

where cw and cb are the storage factors of the interstitial
fluid and blood in the brain tissue. a, c, w, v denote the arteriole,
capillary, interstitial space and venule compartments, respectively.
The parameters pi and Ki are the pressure and permeability of
i compartment. Ka and Kv are permeability tensors that align
the blood flow direction with penetrating vessels whilst Kw and
Kc are isotropic. ωij denotes the fluid transfer between i and
j compartments. Meanwhile, ε is the dilatational strain and G
and λ are the Lamé constants. The term Scw represents the fluid
transport from the vasculature into the interstitial space. Scw can
increase by more than 100 times the normal value (35) in lesion
and Scw in healthy tissue is thus neglected. The leakage of fluid
into the interstitial space Scw is derived from modified Starling’s
principle and Donnan’s Effect (15, 36):

Scw =
{

2nb
Lp

Rc
(pc − pw − σΠc) if in lesion

0 if in healthy tissue
[6]

The derivation of Scw is shown in (12). Lp is the hydraulic
permeability of the capillary wall, Πc is the osmotic pressure for
the plasma components in the blood, σ is the reflection coefficient
of the original plasma composition, nb is the volume fraction of
blood vessels in a unit volume of brain tissue, and Rc denotes the
mean vessel radius. The simulations are run 6 time steps with each
time step 600 seconds. The final time is shorter than the clinical
development time scale as the disruption of BBB is a slow process
(12, 37, 38).

Similar to (12), the boundary conditions are: ppial
a = 90mmHg

and ∇(Ka · pvent
a ) · n⃗ = 0 for the arteriole compartment; ∇(Kc ·

pc) · n⃗ = 0 on both the ventricle and pial surfaces for the capillary
compartment; ppial

v = 15mmHg and ∇(Kv · pvent
v ) · n⃗ = 0 for the

venule compartment; ppial
v = 10mmHg and pvent

v = 10mmHg for
the interstitial space compartment; u⃗pial = 0 and σvent · n⃗ = 0
for tissue displacement.

ACKNOWLEDGMENTS. None.

Payne et al. PNAS — September 25, 2024 — vol. XXX — no. XX — 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.25.615002doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.615002
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

1. SJ Murphy, DJ Werring, Stroke: causes and clinical features. Medicine 48, 561–566 (2020).
2. PB Gorelick, The global burden of stroke: persistent and disabling. The Lancet Neurol. 18,

417–418 (2019).
3. Y Gu, et al., Cerebral edema after ischemic stroke: Pathophysiology and underlying

mechanisms. Front. neuroscience 16, 988283 (2022).
4. S Wu, et al., Early prediction of malignant brain edema after ischemic stroke: a systematic

review and meta-analysis. Stroke 49, 2918–2927 (2018).
5. PO Grände, B Romner, Osmotherapy in brain edema: a questionable therapy. J.

neurosurgical anesthesiology 24, 407–412 (2012).
6. J Miao, et al., Predictors of malignant cerebral edema in cerebral artery infarction: a

meta-analysis. J. neurological sciences 409, 116607 (2020).
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