ABSTRACT
Several emerging strategies to engineer artificial organs employ 3D printing to create vascular templates to provide nutrients and oxygen to immobilized cells. Significant challenges emerge when considering clinical implementation such as immune rejection of allogeneic cell sources, as well as achieving adequate perfusion and integration with endogenous vasculature. We propose a method by which cell-laden hydrogels are molded around ready-made polymeric vascular templates created via 3D printing to create human-scale artificial organs with internal vasculature. We applied this technique to create bioartificial pancreas systems with up to 9 internal flow channels via sacrificial carbohydrate glass 3D printing, porogen-loaded polycarbonate polyurethane dip-coating, followed by casting cell-laden hydrogels around the vascular templates. We optimized porogen size and concentration to maximise the porosity of our scaffolds without compromising mechanical properties, resulting in suture retention strength and compliance respectively matching commercial vascular grafts and native vessels. Bioreactor perfusion studies showed survival and maturation of stem cell derived pancreatic islets without significant differences to traditional suspension culture protocols. Insulin response dynamics were rapid in response to a glucose challenge at the perfusion inlet. Transplantation of the devices as iliac arteriovenous shunts in nondiabetic pigs confirmed safety and patency. These results show promise for the development of an implantable vascularized pancreas for the treatment of type 1 diabetes and demonstrate how bioartificial organs with engineered vascular geometries can be designed for translational applications.
Competing Interest Statement
At the time of submission: J.A.B., C.A.H., R.L.L., S.P., and B.M. are co-inventors on a patent on the technology described. J.A.B. and C.A.H. are respectively serving as CEO and CSO for CellTerix Biomedical Inc.; T.J.K. is serving as CSO for Fractyl Health Inc.