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Data processing 

In this study, data preprocessing was performed to enable efficient analysis of long-term ECG data by 
reducing its size. Instead of directly inputting raw data obtained from biometric monitors into the model, 
we conducted feature extraction of the ECG signals. Specifically, we utilized an ECG waveform feature 
extraction library, NeuroKit2, to automatically classify the ECG waveforms and identify the key 
waveform components of the ECGs, such as the P wave, Q wave, R wave, S wave, and the time points 
and voltage values of the baseline peaks. 

The rationale behind this preprocessing was that simple downsampling might risk losing crucial 
information relevant to inferring uterine contractions, and thus, meaningful data reduction was necessary. 
Furthermore, as shown in Figure 1, distinguishing between contraction and non-contraction periods in 
uterine contraction waveforms is challenging. Therefore, we created annotated data that reflected expert 
opinions from obstetricians. 

To facilitate the annotation process, we developed software that makes it easier to distinguish between 
contraction and non-contraction periods. This software displays the uterine contraction waveform on the 
screen, allowing physicians to click on the start and end points of the contraction periods, which records 
the time, while adjusting the y-coordinates of non-contraction periods to align with the baseline. We 
compared two types of data: one that used the annotated data as ground truth labels for training and the 
other using the original unannotated data, to evaluate the performance. 

 

 

 

 

 
Figure 1: Annotated Diagram of Uterine Contractions During Contraction and Non-Contraction Periods 
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Development of AI model optimized Long-term series 
 
In this study, we constructed a sequence-to-sequence Long Short-Term Memory (LSTM) model (Figure 
2) to predict one time-series data (uterine contractions) from another time-series data (ECG). To handle 
long-term time-series data, we propose a novel approach that overcomes the limitations of conventional 
LSTM models. This is an unprecedented approach to this specific dataset, and we referred to time-series 
prediction models such as ECG atrial fibrillation (AF) detection and fetal heart rate prediction using 
LSTM (28)(29)(30)(31). 
 
There are two main reasons why we chose LSTM for this study. First, LSTM is well-suited for processing 
large datasets. Uterine contractions involve long-term variations, requiring extensive data for analysis. 
Models using attention mechanisms scale computational complexity quadratically with respect to input 
length, whereas LSTM scales linearly, making it easier to design the model. Additionally, Transformer 
models have more parameters than LSTMs. While models with a large number of parameters have higher 
representational power, they also carry a higher risk of overfitting. Since this is a technical exploratory 
study with a limited amount of data, we opted for LSTM, which operates with relatively fewer parameters 
to avoid the risk of reduced generalization performance. 
 
Second, uterine contractions are often described as periodic events, where a previous contraction may 
influence subsequent contractions. LSTM’s memory cell architecture is well-suited for capturing this type 
of temporal relationship in time-series data. Based on these considerations, we determined that LSTM 
was the optimal model for this task. 
 
Traditional LSTMs are known to face issues such as vanishing gradients and memory constraints when 
learning long-term dependencies. To address these challenges, we implemented techniques to truncate 
backpropagation at specific points and divided the measurement data into smaller mini-batches for model 
training (32). The enhanced LSTM was able to retain long-term information while preserving the intrinsic 
characteristics of the hidden states and memory cells. This allowed for consistent information to be 
utilized across time, thus improving the efficiency of the learning process. 
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Figure 2:The constructed LSTM model 

Loss Function 
 
The model was evaluated using Pearson correlation coefficient. Pearson correlation coefficient can assess 
the correlation between two datasets and is calculated independently of the scale of the data, making it a 
suitable metric for capturing the trends between the two datasets. 

The non-stress test (NST), which is used as the ground truth label, is measured by attaching sensors to the 
surface of the abdomen. Factors such as abdominal fat thickness, abdominal shape, and changes in body 
position can affect the sensitivity of the measurements. Due to these factors, the waveform height 
obtained from the NST does not necessarily reflect the intrauterine pressure accurately(33). Considering 
that the NST waveforms capture the overall pattern of uterine contractions rather than precise intrauterine 
pressure, we concluded that evaluating the model using Pearson correlation coefficient was appropriate. 

 

Pearson correlation coefficient is sometimes used for evaluating biometric waveform data. Typically, it is 
calculated over predefined intervals and is often applied to evaluate waveforms obtained from ECGs and 
PPG sensors (34)(35). It is known that Pearson correlation coefficient tends to fluctuate based on the 
sample size of the data. When the sample size is large, noise within the data tends to average out, 
resulting in a higher correlation coefficient that reflects the overall trend. Conversely, when the sample 
size is small, noise has a relatively larger influence, potentially lowering the correlation coefficient. 
Taking these factors into consideration, we carefully examined the optimal sample size for this study. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.29.615726doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.29.615726


8 

Clinically, non-stress tests are typically measured and evaluated over a 20-40 minute period. On the other 
hand, in medical practice, labor contractions are defined as painful uterine contractions occurring at 10-
minute intervals. Based on this definition, we determined that an evaluation window of 10-20 minutes 
would be necessary for an effective assessment of uterine contractions in this study. Particularly, 
evaluations of less than 20 minutes are more susceptible to the influence of noise in the data. In this 
challenging context, we carefully explored appropriate models for evaluation. 

Since the data length was not consistent across subjects, we employed mini-batch processing to 
standardize the input size and address this issue. Specifically, in this study, we set the mini-batch length 
to approximately 15 minutes for the evaluation. 

Results 

Descriptive Statistics of Study Participants 
 

Table 1: Descriptive statistics of the participants' data for both training and validation sets. 

 

 
Biometric data was collected from subjects who met the eligibility criteria and consented to 
participate in this study, and the data was then divided into training and evaluation datasets for 
analysis. For data that was recorded for more than 25 minutes, segmentation was performed, and 
the data was distributed between the training and evaluation datasets. Ultimately, as shown in 
this table 1, data from 57 subjects were analyzed, with the training dataset having an average age 
of 32.2, gestational weeks of 31.4, and an average measurement time of 22.8, and the evaluation 
dataset having an average age of 31.4, gestational weeks of 39.1, and an average measurement 
time of 12.4. The split of training:validation is 7:3. 
Data that was deemed difficult to analyze due to reasons such as ECG noise caused by maternal 
body movement and poor display of uterine contraction waveform due to improper monitor 
attachment was excluded from the analysis.  
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Compare models 
 
 

Table 2: Comparison of Multiple Models 
 

 
 
 
 
As shown in Table 2, multiple models were examined. First, we explored loss functions by evaluating 
model A and model C. The models were trained using either MSE or Pearson correlation coefficient in a 
predefined mini-batch size. Next, the models were trained using the annotated data, where the uterine 
contraction waveforms—the ground truth labels—had been annotated as described earlier. 

 
 
 

  ・・・(1) 
 
 
 

 
          ・・・(2) 

 
 
Equations 1 and 2 show the formula for calculating the PCC (Pearson correlation coefficient) within the 
mini-batch intervals of the patient data, divided by the total number of data points. In this study, we refer 
to this as MPCC (Mean Pearson correlation coefficient) and use it to evaluate and train the models. 
Specifically, the data for each subject was divided into 5000-sample segments, and Pearson correlation 
coefficient was calculated for each segment. 
 
From the comparison of models A and C, we found that the MPCC value was higher by 0.39 points for 
the model using the Pearson correlation coefficient, indicating better accuracy. Additionally, the 
comparison of models B and C, where model B used data annotated by physicians, showed that the model 
trained with the original unannotated data as ground truth (model C) achieved a higher MPCC value and 
better accuracy. 
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To verify whether the use of physician-annotated data for the ground truth labels was beneficial, we 
compared models B and C. The results indicated that model C, which used the original data, demonstrated 
better accuracy. 
 
Figure 3 provides an example visualizing the output of the best-performing model over a 30-minute 
measurement period. The top row represents the predicted data inferred from single-lead ECG, the middle 
row shows the ground truth data from the non-stress test, and the bottom row displays the original single-
lead ECG. The MPCC between the ground truth labels and the predicted waveforms in this figure is 0.76. 
Figure 4 presents multiple visualizations of the evaluation data alongside their corresponding MPCC 
values. 
 
 
 
 
 
 
 

 
 

Figure 3: A figure visualizing the evaluation data using the best model. 
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Fig. 4: A figure visualizing multiple evaluation data along with the MPCC. 
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Discussion 

Medical perspective 
We have constructed, for the first time globally, a trained algorithm that accurately infers uterine contraction 
waveforms from maternal ECGs. Today, ECGs are biological signals that can be easily acquired using wearable 
devices. Accurate evaluation of uterine contractions outside clinical environments is expected to contribute to the 
prevention of precipitous labor and, in the future, to the early identification of patients at high risk of preterm birth. 
On the other hand, the appropriateness of methods for monitoring pregnancy status outside hospital settings (home 
monitoring) is currently considered to be at the investigational stage (36), and proactive recommendations have 
been avoided due to the possibility of leading to unnecessary medical consultations (37). However, the cited articles 
(38)(39) that form the basis of these statements were both published in the 20th century and assume that the 
interpretation of uterine contractions outside hospital settings is entirely entrusted to mothers with little medical 
knowledge. Given the remarkable improvements in the inference accuracy of artificial intelligence in recent years, 
we believe it is necessary to reconsider the utility of home monitoring. 
 
We believe that AI-driven home monitoring will usher in a new era. This is because, in the medical field, there are 
already numerous cases where AI understands mapping relationships that surpass human cognitive limits and 
provides valuable information (23)(24)(25)(26)(40). Of course, the approach presented in this study alone is 
insufficient. For instance, in the prevention of preterm birth, combining our method with conventional treatment 
protocols for threatened preterm labor could improve pre-test probabilities, reduce unnecessary treatments, and 
enable effective interventions for high-risk patients. 
It is widely known that action potentials occur in association with uterine contractions (41). Techniques to extract 
these action potentials from the maternal abdomen have been applied as electrohysterograms (or electromyograms) 
(42)(41). Furthermore, there are known methods for effectively extracting and analyzing uterine contraction–
derived action potentials obtained via electrohysterograms (EHG) using deep learning (43). However, 
electrohysterograms (or electromyograms) assume acquisition from the maternal abdomen, and to our knowledge, 
there have been no previous cases where action potentials associated with uterine contractions are measured from 
action potentials obtainable from the arm (i.e.,ECGs), as in our current study. Given that the electrical circuit 
characteristics of the human body have been known for a long time (44), we considered it highly possible that the 
electrical activity originating from uterine contractions, detectable from the maternal abdomen, could also be 
acquired from the arm. 
 
In addition to the electrical signals associated with maternal cardiac contractions detected in ECGs (45), various 
noises and artifacts such as patient movements, baseline oscillations, electromyographic electrical activity, and 
electrode movement are also known to be present (46). Detecting uterine contractions from ECGs affected by these 
noises is considered beyond the limits of human cognition. However, we have demonstrated that the remarkable 
advancements in deep learning in recent years can overcome this problem. 
In this study, we have shown that it is possible to effectively infer uterine contraction waveforms from the complex 
electrical signals included in ECGs obtained from the maternal arm using deep learning. Moreover, several studies 
have observed that electrohysterography (EHG) shows better results compared to cardiotocography using strain 
sensors commonly employed in daily clinical practice (47)(41). This suggests that our approach may potentially 
provide more accurate information about uterine contractions than conventional cardiotocography in the future.  
 
The cardiotocogram (CTG), used as a conventional external pressure gauge, is an indirect indicator that graphs the 
shifts in resistance values from strain gauges built into the monitor. It is difficult to define a clear correlation 
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between the amplitude of the waveform and intrauterine pressure—the absolute indicator of uterine contractions —
which supports our approach. Since this study analyzes the electrical signals derived from uterine contractions on 
maternal ECGs using deep learning, it becomes possible to evaluate uterine contractions more directly compared to 
conventional methods. This suggests the possibility of new interpretations regarding uterine contractions that were 
difficult to achieve with traditional methods. 
Although the patients targeted in this study did not include those with preterm births (less than 37 weeks of 
gestation), uterine contractions are considered one of the evaluation indicators for preterm birth risk (2). Therefore, 
as a future prospect, similar verification in earlier gestational weeks holds the potential to contribute to the 
assessment of preterm birth risk. 

Technical perspective 
We evaluated models using both MSE and Pearson correlation coefficient as loss functions. The model 
with higher accuracy was the one using Pearson correlation coefficient, suggesting that for this study, it is 
preferable to use Pearson correlation coefficient as the loss function. For waveform data such as uterine 
contractions, where the height and interval of the waveforms vary between individuals, Pearson 
correlation coefficient was found to be the most suitable evaluation metric for this model. 
 
Additionally, in medical data, the measurement duration often varies between samples, and we found that 
the mini-batch evaluation using Pearson correlation coefficient that we employed was effective in such 
cases. There was a bias in the average measurement time between the training and evaluation datasets, 
due to the limited number of measurement samples and insufficient data volume. By splitting the 
measurement data and evaluating with fixed mini-batches, we were able to ensure unbiased evaluation 
across all the data, and we confirmed that differences in measurement duration did not affect accuracy. 
 
During the preprocessing stage, expert annotations were applied to the ground truth uterine contraction 
data to differentiate between contraction and non-contraction periods, as these distinctions were difficult 
to make. However, the validation results showed that the model using the original, unannotated data 
achieved higher accuracy. We believe the reason for the reduced accuracy when using the annotated data 
is that the model might have detected waveform features of uterine contractions that are undetectable by 
humans. When these were compared to the ground truth labels, the evaluation accuracy worsened. 
 
Based on these findings, we concluded that using the original data leads to better accuracy, as there are 
subtle contractions and waveform features that are difficult even for physicians to accurately identify, and 
annotations of such features may suffer from reproducibility issues. Therefore, using the original data, 
rather than annotated data, results in improved accuracy. 
 
We are also in the process of validating a model that incorporates patient metadata. Although it is 
generally considered challenging to integrate metadata, which lacks temporal information, into time-
series models such as LSTMs, recent research has explored ways to incorporate metadata into deep 
learning models (27)(48)(49). We believe that with an increase in sample size, this integration can be 
realized in the future. 

In clinical research, in addition to uterine contraction waveforms, we also collect data such as gestational 
age, weight, BMI, and estimated fetal weight. These factors are known to influence the shape of the ECGs 
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(50), with obesity affecting ECG morphology, the height of the uterine fundus changing with gestational 
age, and consequent changes in the diaphragm (51). Additionally, variations in maternal circulatory blood 
flow due to gestational age (52) have been observed. By fusing these factors into the model and 
considering their effects on the ECGs, we expect to improve the model's inference accuracy. 

In the preprocessing stage, we extracted the peaks of the P-wave, Q-wave, R-wave, S-wave, and baseline 
wave from the input ECG data before feeding them into the model. This method allowed us to capture the 
essential characteristics of the ECG while excluding unnecessary components. During the validation 
phase, we observed that excluding some of these waveform peaks did not significantly affect the 
prediction accuracy. This suggests the potential to identify which ECG waveform features are influenced 
by uterine contractions through further validation. By clarifying the relationship between these features, it 
is likely that a more lightweight model can be developed. 

The constructed model achieved an MPCC of 0.53 across the evaluation dataset. This value generally 
indicates that there is a correlation between the true label and the predicted waveform. The LSTM, which 
includes a hidden state for short-term memory and a cell state for long-term memory, appears to have 
functioned effectively. These findings suggest that the characteristics of uterine contraction data may be 
well-suited for waveform estimation models using LSTM. 

In this study, we developed an LSTM model, and while a certain degree of correlation was observed in 
the model's predictions, several challenges remain in achieving higher accuracy. LSTM models have 
difficulty retaining information over extremely long sequences, and when it comes to accurately capturing 
the periodicity of uterine contractions, the model may reach the limits of its memory retention 
capabilities. 
 
As we accumulate more data in the future, we plan to explore models with multi-layer structures and self-
attention mechanisms, such as Transformer, which generally have more parameters than LSTM. Models 
that utilize attention mechanisms, such as Transformer, have the potential to model dependencies between 
all data points and accurately capture important information from distant past events. By applying the 
insights gained from this study, we believe that we can resolve issues related to optimal preprocessing for 
large datasets and ultimately achieve higher accuracy. 
 
In particular, pre-training using models based on the Transformer architecture, such as BERT, which is 
widely used in large language models (LLMs), may contribute to generating outputs closer to uterine 
contraction waveforms and predicting future contractions. 
 
However, as noted in the cited literature(53), newer models like XLSTM have been proposed for time-
series data. Given the characteristics of periodic time-series data, models based on LSTM may still 
provide more effective learning compared to attention mechanisms in this research context. 
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Limitation 
Firstly, the sample size of this study was limited to only 57 cases, which raises concerns about the 
potential risk of overfitting due to the specific characteristics of the population. Although increasing the 
number of cases in future research could mitigate this issue, in the present study, we addressed the sample 
size limitation by applying mini-batch learning to the time-series data analysis for each individual and 
creating datasets based on window lengths. This approach allowed us to generate multiple datasets from 
the same subjects, thereby enhancing the effective sample size. 

Additionally, there is a possibility that electrical signals originating from maternal muscles other than the 
uterine smooth muscles (e.g., rectus abdominis or biceps brachii) associated with uterine contractions 
were captured in this study. Future work should aim to clearly distinguish these signals and further 
investigate the transparency of the AI model to ensure accurate interpretation of uterine contractions. 

In clinical practice, awareness of uterine contractions does not always accompany the contractions, and a 
certain number of pregnant women do not experience conscious sensations of uterine contractions. In 
such cases, complex electrical signals likely arise from both uterine muscle-derived electrical activity and 
unconscious maternal muscle-generated electrical signals. The ability of our study to effectively detect 
uterine contractions through deep learning from these complex electrical signals is therefore highly 
significant. 

Furthermore, another medical aspect related to the elucidation of the deep learning black box is the 
possibility that the AI may be interpreting biological information other than the complex electrical signals 
associated with uterine contractions. For example, maternal heart rate is known to change during uterine 
contractions(54), raising concerns that the algorithm might be capturing merely changes in heart rate 
rather than the electrical signals themselves. To address this concern, we removed the temporal 
information of the ECGs during the data preprocessing stage and analyzed the data by treating the time 
intervals between baseline and PQRST waveforms as fixed intervals. Specifically, we incorporated the 
ECG waveform information at equal intervals for each LSTM time step. This processing allowed the 
model to exclude explicit temporal information for each heartbeat, effectively eliminating time-related 
data from the input. We believe that this approach likely eliminates the possibility that uterine 
contractions are being inferred solely based on heart rate changes. However, it is also probable that 
incorporating temporal information could enhance the model's accuracy, and thus we intend to investigate 
this in future studies. 
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Conclusion 
This is the world's first trial to detect uterine contractions from maternal ECGs using deep learning 
algorithms. In this pioneering study, we revealed a mapping relationship between the electrical activity 
associated with uterine contractions and signals obtainable from maternal ECGs. We successfully 
developed a deep learning algorithm capable of accurately inferring uterine contraction waveforms from 
maternal ECGs. Our proposed sequence-to-sequence (seq2seq) LSTM model overcomes the limitations of 
conventional LSTM models in handling long-term time series data such as ECGs and uterine 
contractions. Although we focused on patients beyond 37 weeks of gestation—differing from those at risk 
of preterm labor—our findings have the potential to apply to patients before 37 weeks, considering the 
continuous physiological changes throughout pregnancy. Given that ECGs can be easily obtained using 
wearable devices, this approach suggests the potential to provide healthcare professionals with objective 
and accurate information on uterine contractions, a crucial indicator of preterm labor, even in resource-
limited settings outside hospital environments. 
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