Summary
Plant cells experience a variety of mechanical stresses from both internal and external sources, including turgor pressure, mechanical strains arising from heterogeneous growth between neighboring cells, and environmental factors like touch from soil, rain, or wind [1,2]. These stresses serve as signals at the cell-, tissue- and organismal level to coordinate plant growth during development and stress responses [3]. In plants, the physical cell wall-plasma membrane-microtubule continuum is proposed to be integral in transducing mechanical signals from the exterior to intracellular components [4–6]. Cortical microtubules (CMTs) rapidly reorient in response to mechanical stress to align with the maximal tensile stress direction [7,8]. Several studies proposed that CMTs themselves may act as stress sensors; the precise mechanisms involved in the regulation of CMTs and the modes of sensing, however, are still not clearly understood. Here, we show that IQD2 and KLCR1 are enriched at CMTs in proximity to the plasma membrane. IQD2, which is a bona fide microtubule-associated protein, promotes microtubule localization of KLCR1. By combining cross-linking mass spectrometry (XL-MS) and computational modeling with structure-function studies, we present first experimental insights into the composition and structure of IQD2-KLCR1 complexes. Further, we demonstrate that the IQD2-KLCR1 module is a positive regulator of microtubule mechano-responses in pavement cells. Collectively, our work identifies the IQD2-KLCR1 module as novel regulator of mechanostress-mediated CMT reorientation and provides a framework for future mechanistic studies aimed at a functional dissection of mechanotransduction at the plasma membrane-CMT interface during growth and plant morphogenesis.
Highlights
IQD2 and KLCR1 localize to the plasma membrane-microtubule nexus
IQD2 is required for efficient microtubule targeting of KLCR1 in planta
IQD2 physically interacts with KLCR1 and microtubules
The IQD2-KLCR1 module promotes mechano-stress induced microtubule reorganization
Competing Interest Statement
The authors have declared no competing interest.