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Figure 4. Biosynthesis of mavacurane-type alkaloids pleiocarpamine and 16-epi-pleiocarpamine 

in C. roseus. (a) Proposed biosynthesis of mavacurane-type and strychnos-type alkaloids. (b) 

Metabolite profiling of mavacurane-type alkaloids in C. roseus roots and leaf alongside the MS2 

spectrum of authentic standards. (c) In vitro and in vivo activity of CrGO in producing 16-epi-

pleiocarpamine. CrGO catalyzes oxidation of 19E-gesissoschizine to akuammicine forming C2-C16 

bond. A minor product 16-epi-pleiocarpamine is observed forging the core mavacurane N1–C16 bond. 

(d) Silencing CrGO in C. roseus by VIGS leads to significant decrease of the mavacurane-type 

alkaloids. Bar graphs represents the values of the mean ± standard deviation (SD), p values present 

statistical analysis of two-tailed Student's t-test. Extracted ion chromatograms (EIC) are presented 

with MS2 spectra displaying the fragmentation of the parent [M+H]+ ion. 

 

We initially suspected that these low levels of 16-epi-pleocarpamine were simply an artifact 

of the in vitro enzymatic reaction. However, when we silenced CrGO in C. roseus using VIGS, a 

significant reduction in the levels of pleiocarpamine and 16-epi-pleocarpamine in C. roseus leaf was 

observed (Figure 4d, S9). Therefore, the minor product of this enzymatic reaction may play a 

physiologically significant role. Although it has been reported that 16-epi-pleocarpamine is the more 

thermostable epimer11, it is not clear why 16-epi-pleocarpamine predominates in the in vitro enzyme 

assay (Figure 4c) and why in the plant, the kinetic product pleocarpamine is predominantly observed 

(Figure 4b). We speculate that the conditions under which this cyclization takes place must impact 

the specificity of the subsequent deformylation. 

Here we report the discovery of two cytochrome P450 enzymes, CrRS (rhazimal synthase) 

and CrSBE (sarpagan bridge enzyme), from C. roseus. Although enzymes with these activities had 

been identified from other plant species, C. roseus was not reported to have alkaloids derived from the 

products of these enzymes. Subsequent analysis revealed the presence of a CrRS-derived alkaloid, but 

the function of CrSBE remains unknown. The sequences of these three enzymes could be compared to 

demonstrate which residues are responsible for the regioselectivity of the oxidation and cyclization of 

geissoschizine. Additionally, we show that CrGO (geissoschizine oxidase), in addition to catalyzing 

C16-C2 bond formation, also catalyzes the C16-N1 bond formation required for the formation of the 

mavacurane-type alkaloids pleiocarpamine and 16-epi-pleiocarpamine (Figure 1). Mavacurane-type 

alkaloids have received limited attention16,17 but are known to converted into a range of complex 

bisindole alkaloids5,18. Silencing of GO in C. roseus strongly suggests that, although pleiocarpamine 

and 16-epi-pleiocarpamine are only formed as minor products by GO, this enzyme may contribute to 

mavacurane biosynthesis in the C. roseus plant. This raises the intriguing possibility that the 

production of minor side products in enzyme reactions can play a significant role in shaping the 

evolution of metabolic diversity. 
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