Abstract
The gut microbiome’s pivotal role in health and disease is well-established. SARS-CoV-2 infection often causes gastrointestinal symptoms and is associated with changes of the microbiome in both human and animal studies. While hamsters serve as important animal models for coronavirus research, there exists a notable void in the functional characterization of their microbiomes with metaproteomics. In this study, we present a workflow for analyzing the hamster gut microbiome, including a metagenomics-derived hamster gut microbial protein database and a data-independent acquisition metaproteomics method. Using this workflow, we identified 32419 protein groups from the fecal microbiomes of young and old hamsters infected with SARS-CoV-2. We showed age-specific changes in the expressions of microbiome functions and host proteins associated with microbiomes, providing further functional insight into the dysbiosis and aberrant cross-talks between the microbiome and host in SARS-CoV-2 infection. Altogether this study established and demonstrated the capability of metaproteomics for the study of hamster microbiomes.
Competing Interest Statement
The authors have declared no competing interest.