Abstract
Regulatory T cells (Tregs) actively engage in immune suppression to prevent autoimmune diseases but also inhibit anti-tumor immunity. Although Tregs express a TCR repertoire with relatively high affinities to self, they are normally quite stable and their inflammatory programs are intrinsically suppressed. We report here that diacylglycerol (DAG) kinases (DGK) ( and ( are crucial for homeostasis, suppression of proinflammatory programs, and stability of Tregs and for enforcing their dependence on CD28 costimulatory signal. Treg-specific deficiency of both DGK( and ( derails signaling, metabolic, and transcriptional programs in Tregs to cause dysregulated phenotypic and functional properties and to unleash conversion to pathogenic exTregs, especially exTreg-T follicular helper (Tfh) 2 cells, leading to uncontrolled effector T cell differentiation, deregulated germinal center (GC) B-cell responses and IgG1/IgE predominant antibodies/autoantibodies, and multiorgan autoimmune diseases. Our data not only illustrate the crucial roles of DGKs in Tregs to maintain self-tolerance but also unveil a Treg-to-self-reactive-pathogenic-exTreg-Tfh-cell program that is suppressed by DGKs and that could exert broad pathogenic roles in autoimmune diseases if unchecked.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
The authors have declared that no conflict of interest exists.