Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder characterized by arteriovenous malformations (AVMs). Loss-of-function mutations in Activin receptor-like kinase 1 (ALK1) cause type 2 HHT and Alk1 knockout (KO) mice develop AVMs due to overactivation of VEGFR2/PI3K/AKT signaling pathways. However, the full spectrum of signaling alterations in Alk1 mutants remains unknown and means to combat AVM formation in patients are yet to be developed.
Methods Single-cell RNA sequencing of endothelial-specific Alk1 KO mouse retinas and controls identified a cluster of endothelial cells (ECs) that was unique to Alk1 mutants and that overexpressed fluid shear stress (FSS) signaling signatures including upregulation of the mechanosensitive ion channel PIEZO1. PIEZO1 overexpression was confirmed in human HHT lesions, and genetic and pharmacological PIEZO1 inhibition was tested in Alk1 KO mice, as well as downstream PIEZO1 signaling.
Results Pharmacological PIEZO1 inhibition, and genetic Piezo1 deletion in Alk1-deficient mice effectively mitigated AVM formation. Furthermore, we identified that elevated VEGFR2/AKT, ERK5-p62-KLF4, hypoxia and proliferation signaling were significantly reduced in Alk1-Piezo1 double ECKO mice.
Conclusions PIEZO1 overexpression and signaling is integral to HHT2, and PIEZO1 blockade reduces AVM formation and alleviates cellular and molecular hallmarks of ALK1-deficient cells. This finding provides new insights into the mechanistic underpinnings of ALK1-related vascular diseases and identifies potential therapeutic targets to prevent AVMs.
Competing Interest Statement
The authors have declared no competing interest.