Abstract
DNA methylation is a crucial epigenetic mark the development of many insect species, being essential for fertility and the progression of development in a range of organisms. However, the mechanisms underpinning the role of DNA methylation in insect development remains elusive. Furthermore, the patterns of methylation in different species can be varied. Here we aim to profile methylation across metamorphosis in the insect DNA methylation model Nasonia vitripennis for the first time. We find DNA methylation is at the highest in the embryo, and at the lowest in the larva. We find that the gene expression levels of NvTet and NvDnmt enzymes compliment the observed methylation patterns. Performing differential methylation analysis we find enriched GO terms for developmentally specific processes and find sites with differential methylation are share homology with developmentally linked transcription factors. Additionally, we identify sites uniquely methylated in each developmental stage, many of which also share homology with developmentally linked transcription factors. In all, we find that methylation is variable in its global methylation levels and site specific methylation throughout Nasonia vitripennis development, but find no obvious link with gene expression.
Competing Interest Statement
The authors have declared no competing interest.