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Abstract 

This preprint has been reviewed and recommended by Peer Community In 

Evolutionary Biology ( https://doi.org/10.24072/pci.evolbiol.100050 ) 

Background: Linkage among genes experiencing different selection pressures can make 

natural selection less efficient.Theory predicts that when local adaptation is driven by complex 

and non-covarying stresses, increased linkage is favoured for alleles with similar pleiotropic 

effects, with increased recombination favoured among alleles with contrasting pleiotropic 

effects. Here, we introduce a framework to test these predictions with a co-association network 

analysis, which clusters loci based on differing associations. We use this framework to study the 

genetic architecture of local adaptation to climate in lodgepole pine (Pinus contorta ), based on 

associations with environments.  

Results: We identified many clusters of candidate genes and SNPs associated with distinct 

environments (aspects of aridity, freezing, etc.), and discovered low recombination rates among 

some candidate genes in different clusters. Only a few genes contained SNPs with effects on 

more than one distinct aspect of climate. There was limited correspondence between 

co-association networks and gene regulatory networks. We further showed how associations 

with environmental principal components can lead to misinterpretation. Finally, simulations 

illustrated both benefits and caveats of co-association networks. 

Conclusions : Our results supported the prediction that different selection pressures favored the 

evolution of distinct groups of genes, each associating with a different aspect of climate. But our 

results went against the prediction that loci experiencing different sources of selection would 
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have high recombination among them. These results give new insight into evolutionary debates 

about the extent of modularity, pleiotropy, and linkage in the evolution of genetic architectures. 

Background 

Pleiotropy and linkage are fundamental aspects of genetic architecture [1]. Pleiotropy is when a 

gene has effects on multiple distinct traits. Pleiotropy may hinder the rate of adaptation by 

increasing the likelihood that genetic changes have a deleterious effect on at least one trait 

 [2, 3]. Similarly, linkage among genes experiencing different kinds of selection can facilitate or 

hinder adaptation [4–6]. Despite progress in understanding the underlying pleiotropic nature of 

phenotypes and the influence of pleiotropy on the rate of adaptation to specific conditions [7], 

we have an incomplete understanding of the extent and magnitude of linkage and pleiotropy in 

the local adaptation of natural populations to the landscapes and environments in which they 

are found. 

Here, we aim to characterize the genetic architecture of adaptation to the environment, including 

the number of separate components of the environment in which a gene affects fitness (a form 

of “selectional pleiotropy,” Table 1)[8]. Genetic architecture is an encompassing term used to 

describe the pattern of genetic features that build and control a trait , and includes statements 

about the number of genes or alleles involved, their arrangement on chromosomes, the 

distribution of their effects, and patterns of pleiotropy (Table 1). We can measure many 

parameters to characterize environments (e.g., temperature, latitude, precipitation), but the 

variables we define may not correspond to the environmental factors that matter for an 

organism’s fitness. A major hurdle in understanding how environments shape fitness is defining 
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the environment based on factors that drive selection and local adaptation, and not by the 

intrinsic attributes of the organism or by the environmental variables we happen to measure.  

In local adaptation to climate, an allele that has different effects on fitness at different extremes 

of an environmental variable (e.g., positive effects on fitness in cold environments and negative 

effects in warm environments, often called “antagonistic pleiotropy”, Table 1 [9]) will evolve to 

produce a clinal relationship between the allele frequency and that environmental factor [10–15]. 

While associations between allele frequencies and environmental factors have been well 

characterized across many taxa [16], whether genes affect fitness in multiple distinct aspects of 

the environment, which we call “environmental pleiotropy” (e.g., has effects on fitness in both 

cold and dry environments, Table 1), has not been well characterized  [17]. This is because of 

conceptual issues that arise from defining environments along the univariate axes that we 

measure. For example, “cold” and “dry” might be a single selective optimum (“cold-dry”) to which 

a gene adapts [7], but these two axes are typically analyzed separately. Moreover, climate 

variables such as temperature and precipitation are highly correlated across landscapes, and 

this correlation structure makes inferring pleiotropy from signals of selection to climate difficult. 

Indeed, in their study of climate adaptation in Arabidopsis, Hancock et al. [17] noticed that 

candidate loci showed signals of selection in multiple environmental variables, potentially 

indicating pleiotropic effects. However, they also found that a substantial proportion of this 

overlap was due to correlations among climate variables on the landscape, and as a result they 

were unable to fully describe pleiotropic effects. 

Because of the conceptual issues described above, certain aspects of the genetic architecture 

of adaptation to landscapes have not been well characterized, particularly the patterns of 

linkage among genes adapting to distinct environmental factors, and the degree of pleiotropic 
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effects of genes on fitness in distinct environments. These aspects of genetic architecture are 

important to characterize in order to test the theoretical predictions described below, and to 

inform the considerable debate about whether organisms have a modular organization of gene 

effects on phenotypes or fitness components, versus universal effects of genes on all 

phenotypes or fitness components (Figure 1A, compare left to right column) [18–24]. 

Modular genetic architectures are characterized by extensive pleiotropic effects among 

elements within a module, and a suppression of pleiotropic effects between different modules 

[25]. Note that modularity in this study refers to similarity in the effects of loci on fitness, and not 

necessarily to the physical location of loci on chromosomes or to participation in the same gene 

regulatory network. Modular genetic architectures are predicted to be favored when genomes 

face complex spatial and temporal environments [26] or when multiple traits are under a 

combination of directional and stabilizing selection (because modularity allows adaptation to 

take place in one trait without undoing the adaptation achieved by another trait) [25, 27]. 

Adaptation to climate on a landscape fits these criteria because environmental variation among 

populations is complex - with multiple abiotic and biotic challenges occurring at different spatial 

scales - and traits are thought to be under stabilizing selection within populations but directional 

selection among populations [28]. 

Clusters of physically linked loci subject to the same selective environment, as well as a lack of 

physical linkage among loci subject to different selection pressures, are expected based on 

theory. When mutations are subject to the same selection pressure, recombination can bring 

variants with similar effects together and allow evolution to proceed faster [29]. Clusters of 

adaptive loci can also arise through genomic rearrangements that bring existing mutations 

together [30], or because new causal mutations linked to adaptive alleles have an increased 
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establishment probability [31]. Similarly, clusters of locally adaptive loci are expected to evolve 

in regions of low recombination, such as inversions, because of the reduced gene flow these 

regions experience [32, 33]. In general, these linked clusters of adaptive loci are favored over 

evolutionary time because low recombination rates increase the rate at which they are inherited 

together. Conversely, selection will also act to disfavour linkage and increase recombination 

rates between genes adapting to different selection pressures [34–36]. Thus, genes adapting to 

different selection pressures would be unlikely to be physically linked or to have low 

recombination rates between them. In practice, issues can arise in inference because physical 

linkage will cause correlated responses to selection in neutral loci flanking a causal locus. Large 

regions of the genome can share similar patterns of association to a given environmental factor, 

such that many loci within a given candidate region are probably not causally responding to 

selection. Conversely, if linked genes are associated with completely different aspects of the 

selective environment, this is unlikely to arise by chance. 

In summary, current analytical techniques have given limited insight into the genetic 

architectures of adaptation to environmental variation across natural landscapes. Characterizing 

the different aspects of the environment that act on genomes is difficult because measured 

variables are univariate and may not be representative of selection from the perspective of the 

organism, and because of spatial correlations among environmental variables. Even when many 

variables are summarized with ordination such as principal components, the axes that explain 

the most variation in physical environment don’t necessarily correspond to the axes that cause 

selection because the components are orthogonal [37]. Furthermore, the statistical methods 

widely used for inferring adaptation to climate are also univariate in the sense that they test for 

significant correlations between the frequency of a single allele and a single environmental 

variable [e.g., 38, 39, 40]. While some multivariate regression methods like redundancy analysis 
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have been used to understand how multiple environmental factors shape genetic structure [41, 

42], they still rely on ordination and have not been used to identify distinct evolutionary modules 

of loci.  

Here, we aim fill this gap by presenting a framework for characterizing the genetic architecture 

of adaptation to the environment, through the joint inference of modules of loci that associate 

with distinct environmental factors that we call “co-association modules” (Table 1, Figure 1), as 

well as the distinct factors of the environment to which they associate. Using this framework, we 

can characterize some aspects of genetic architecture, including modularity and linkage, that 

have not been well studied in the adaptation of genomes to environments.  

This framework is illustrated in Figure 1 for four hypothetical genes adapted to two distinct 

aspects of climate (freezing and aridity). In this figure we compare the patterns expected for (i) a 

modular architecture (left column, where pleiotropic fitness effects of a gene are limited to one 

particular climatic factor) to (ii) a highly environmentally pleiotropic architecture (right column, 

where genes have pleiotropic effects on adaptation to distinct climatic factors). Candidate SNPs 

are first identified by the significance of the univariate associations between allele frequency 

and the measured environmental variables, evaluated against what would be expected by 

neutrality. Then, hierarchical clustering of candidate-SNP allele associations with environments 

is used to identify co-association modules (Figure 1B) [43–45]. These modules can be 

visualized with a co-association network analysis, which identifies groups of loci that may covary 

with one environmental variable but covary in different ways with another, revealing patterns 

that are not evident through univariate analysis (Figure 1C). By defining the distinct aspects of 

the selectional environment (Table 1) for each module through their environmental associations, 

we can infer pleiotropic effects of genes through the associations their SNPs have with distinct 
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Figure 1. Conceptual framework for evaluating the modularity and pleiotropy of genetic architec-
tures adapting to the environment. In this example, each gene (identified by numbers) contains two
causal SNPs (identified by letters) where mutations a↵ect fitness in potentially di↵erent aspects of
the environment. The two aspects of the environment that a↵ect fitness are aridity and freezing. A)
The true underlying genetic architecture adapting to multiple aspects of climate. The left column
represents a modular genetic architecture in which any pleiotropic e↵ects of genes are limited to a
particular aspect of the environment. The right column represents a non-modular architecture, in
which genes have pleiotropic e↵ects on multiple aspects of the environment. Universal pleiotropy
occurs when a gene has e↵ects on all the multiple distinct aspects of the environment. Genes in this
example are unlinked in the genome, but linkage among genes is an important aspect of the envi-
ronmental response architecture. B) Hierarchical clustering is used to identify the “co-association
modules,” which jointly describe the groups of loci that adapt to a distinct aspects of climate as well
as the distinct aspects of climate to which they adapt. In the left column, the “aridity module” is
a group of SNPs within two unlinked genes adapting to aridity, and SNPs within these genes show
associations with both temperature and climate-moisture deficit. In the right column, note how
the aridity module is composed of SNPs from all 4 unlinked genes. C) Co-association networks are
used to visualize the results of the hierarchical clustering with regards to the environment, and con-
nections are based on similarity in SNPs in their associations with environments. In both columns,
all SNPs within a module (network) all have similar associations with multiple environmental vari-
ables. D) Pleiotropy barplots are used to visualize the results of the hierarchical clustering with
regards to the genetic architecture, represented by the proportion of SNPs in each candidate gene
that a↵ects di↵erent aspects of the environment (as defined by the co-association module).
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selective environmental factors (Figure 1D). In this approach, the genetic effects of loci on 

different traits under selection are unknown, and we assume that each aspect of the multivariate 

environment selects for a trait or suite of traits that can be inferred by connecting candidate loci 

directly to the environmental factors that select for particular allelic combinations.  

We apply this new approach to characterize the genetic architecture of local adaptation to 

climate in lodgepole pine (Pinus contorta ) using a previously published exome capture dataset 

[46–48] from trees that inhabit a wide range of environments across their range, including 

freezing temperatures, precipitation, and aridity [49–52]. Lodgepole pine is a coniferous species 

inhabiting a wide range of environments in northwestern North America and exhibits isolation by 

distance population structure across the range [46]. Previous work based on reciprocal 

transplants and common garden experiments has shown extensive local adaptation [46, 53, 54]. 

We recently used this dataset to study convergent adaptation to freezing between lodgepole 

pine and the interior spruce complex (Picea glauca  x Picea engelmannii ) [46–48]. However, the 

comparative approach was limited to discovering parallel patterns between species, and did not 

examine selective factors unique to one species. As in most other systems, the genomic 

architecture in pine underlying local adaptation to the multivariate environment has not been 

well characterized, and our reanalysis yields several new biological insights overlooked by the 

comparative approach.  

We evaluated the benefits and caveats of this new framework by comparing it with other 

multivariate approaches (based on principal components) and by evaluating it with simulated 

data. The evaluation with simulations yielded several important insights, including the 

importance of using strict criteria to exclude loci with false positive associations with 

environments. Thus, a key starting point for inferring co-association modules is a good set of 
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candidate SNPs for adaptation. We developed this candidate set by first identifying top 

candidate genes for local adaptation (from a previously published set of genes that contained 

more outliers for genotype-environment associations and genotype-phenotype associations 

than expected by chance, [46]). We then identified top candidate SNPs within these top 

candidate genes as those whose allele frequencies were associated with at least one 

environmental variable above that expected by neutrality (using a criterion that excluded false 

positives in the simulated data described below). To this set of top candidate SNPs, we applied 

the framework outlined in Figure 1 to characterize environmental modularity and linkage of the 

genetic architecture. The power of our dataset comes from including a large number of 

populations inhabiting diverse environments (>250), the accurate characterization of climate for 

each individual with 22 environmental variables, a high-quality exome capture dataset 

representing more than 500,000 single-nucleotide polymorphisms (SNPs) in ~29,000 genes 

[46–48], a mapping population that allows us to study recombination rates among genes, and 

an outgroup species that allowed us to determine the derived allele for most candidate SNPs. 

When such data is available, we find that this framework is useful for characterizing the 

environmental modularity and linkage relationships among candidate genes for local adaptation 

to multivariate environments. 

Results 

Top candidate genes and top candidates SNPs 

The study of environmental pleiotropy and modularity is relevant only to loci under selection. In 

this study we identified a SNP as a top candidate based on whether (i) it was located within a 

top-candidate gene, and (ii) its allele frequency was associated with at least one environmental 

variable above and beyond what may be expected for neutrality. Our “top candidate” approach 
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identified a total of 117 candidate genes out of a total of 29,920 genes. These contigs contained 

801 top-candidate SNPs (out of 585,270 exome SNPs) that were strongly associated with at 

least one environmental variable and were likely either causal or tightly linked to a causal locus. 

This set of top candidate SNPs was enriched for XTX outliers (Supplemental Figure 1;  XTX is an 

analog of FST that measures differentiation in allele frequencies across populations). To 

elucidate patterns of multivariate association, we applied the framework described in Figure 1 to 

these 801 top candidate SNPs. 

Co-association modules  

Hierarchical clustering and co-association network analysis of top candidate SNPs revealed a 

large number of co-association modules, each of which contains SNPs from one or more genes. 

Each co-association module is represented by one or more top candidate SNPs (represented by 

nodes) that are connected by edges. The edges are drawn between two SNPs if they have 

similar associations with the environment below a distance threshold. The distance threshold 

was determined by simulation as a number that enriched connections among selected loci 

adapting to the same environmental variable, and also decreased the number of connections to 

false positive loci (see Results: Simulated datasets).  

For the purposes of illustration, we classified SNPs into 4 main groups, each with several 

co-association modules, according to the kinds of environmental variables they were most 

strongly associated with: Aridity, Freezing, Geography, and an assorted group we bin as “Multi” 

(Figure 2A, B). Note that while we could have chosen a different number of groups, this would 

not have changed the underlying clustering of the SNPs revealed by co-association networks 

that is relevant to modularity (Figure 2B-F). This division of data into groups was necessary to 

produce coherent visual network plots and to make data analyses more computationally efficient 
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Figure 2. A) Correlations among environments measured by Spearman’s ⇢. Abbreviations of the
environmental variables can be found in Table 2. B) Hierarchical clustering of associations between
allele frequencies (of SNPs in columns) and environments (in rows) measured by Spearman’s ⇢.
C-F) Each co-association network represents a distinct co-association module, with color schemes
according to the four major groups in the data. Each node is a SNP and is labeled with a number
according to its exome contig, and a color according to its module - with the exceptions that
modules containing a single SNP all give the same color within a major group. Numbers next to
each module indicate the number of distinct genes involved (with the exception of the Geography
group, where only modules with 5 or more genes are labeled). G) The pleiotropy barplot, where each
bar corresponds to a contig, and the colors represent the proportion of SNPs in each co-association
module. Note that contig IDs are ordered by their co-association module, and the color of contig-
IDs along the x-axis is determined by the co-association module that the majority of SNPs in that
contig cluster with. Contigs previously identified as undergoing convergent evolution with spruce
by Yeaman et al. 2016 are indicated with “*”. Abbreviations: “Temp”: temperature, “Precip”:
precipitation, “freq”: frequency.
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(we found when there were more than ~20,000 edges in the data, computation and plotting of 

the network were not feasible with the package). Note that SNPs in different groups are more 

dissimilar to SNPs in other groups than to those in the same group (based on the threshold we 

used to determine edges) and would not be connected by edges in a co-association module. 

Interestingly, this clustering by association signatures does not closely parallel the correlation 

structure among environmental variables themselves. For example, continentality (TD), 

degree-days below 0 (DD_0), and latitude (LAT) are all relatively strongly correlated (> 0.5), but 

the “Freezing” SNPs are associated with continentality and degree-days below 0, but not 

latitude (Figure 2A, 2B).  

The co-association modules are shown in Figures 2C-F. Each connected network of SNPs can 

be considered a group of loci that shows associations with a distinct environmental factor.  The 

“Multi” group stands for multiple environments because these SNPs showed associations with 

19 to 21 of the 22 environmental variables. This group consisted of 60 top candidate SNPs 

across just 3 genes, and undirected graph networks revealed 2 co-association modules within 

this group (Figure 2C, Supplementary Figure 2). The “Aridity” group consisted of 282 SNPs 

across 28 genes and showed associations with climate moisture deficit, annual heat:moisture 

index, mean summer precipitation, and temperature variables excluding those that were 

frost-related (Figure 2B). All these SNPs were very similar in their patterns of association and 

grouped into a single co-association module (Figure 2D, Supplementary Figure 3). The 

“Freezing” group consisted of 176 SNPs across 21 genes and showed associations with 

freezing variables including number of degree-days below 0 oC, mean coldest month 

temperature, and variables related to frost occurrence (Figure 2B). SNPs from eight of the 

genes in this group formed a single module (genes #35-42), with the remaining SNPs mainly 

clustering by gene (Figure 2E,Supplementary Figure 4). The final group, “Geography,” consisted 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/202481doi: bioRxiv preprint 

https://doi.org/10.1101/202481
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

of 282 SNPs across 28 genes that showed consistent associations with the geographical 

variables elevation and longitude, but variable associations with other climate variables (Figure 

2B). This group consisted of several co-association modules containing 1 to 9 genes (Figure 2F, 

Supplementary Figure 6). Network analysis using population-structure-corrected associations 

between allele frequency and the environmental variables resulted in broadly similar patterns, 

although the magnitude of the correlations was reduced (Supplemental Figure 6).  

The pleiotropy barplot is visualized in Figure 2G, where each gene is listed along the x-axis, the 

bar color indicates the co-association module, and the bar height indicates the number of SNPs 

clustering with that module. If each co-association module associates with a distinct aspect of 

the multivariate environment, then genes whose SNPs associate with different co-association 

modules (e.g., genes with different colors in their bars in Figure 2G) might be considered to be 

environmentally pleiotropic. However, conceptual issues remain in inferring the extent of 

pleiotropy, because co-association modules within the Geography group, for instance, will be 

more similar to each other in their associations with environments than between a module in the 

Geography group and a module in the Multi group. For this reason, we are only inferring that our 

results are evidence of environmental pleiotropy when genes have SNPs in at least 2 of the 4 

major groups in the data. For instance, gene #1, for which the majority of SNPs cluster with the 

Multi group, also has 8 SNPs that cluster with the Freezing group (although they are not located 

in co-association modules with any genes defined by Freezing).  In the Aridity group, gene #11 

has three SNPs that also cluster with the Geography group (although they are not located in 

co-association modules with any genes defined by Geography). In the Freezing group, some 

genes located within the same co-association module (#35-40) also have SNPs that cluster with 

another module in the Geography group (with genes #75-76; these are not physically linked to 

genes #35-37, see below). Whether or not these are “true” instances of environmental 
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pleiotropy remains to be determined by experiments. For the most part, however, the large 

majority of SNPs located within genes are in the same co-association module, or in modules 

located within one of the four main groups, so environmental pleiotropy at the gene-level 

appears to be generally quite limited. 

Statistical and physical linkage disequilibrium 

To determine if grouping of SNPs into co-association modules corresponded to associations 

driven by statistical associations among genes measured by linkage disequilibrium (LD), we 

calculated mean LD among all SNPs in the top candidate genes (as the correlation in allele 

frequencies).  We found that the co-association modules captured patterns of LD among the 

genes through their common associations with environmental variables (Supplementary Figure 

S7). There was higher than average LD within the co-association modules of the Multi, Aridity, 

and Freezing groups, and very low LD between the Aridity group and the other groups 

(Supplementary Figure S7). The LD among the other three groups (Multi, Freezing, and 

Geography) was small, but higher with each other than with Aridity. Thus, the co-association 

clustering corresponded to what we would expect based on LD among genes, with the 

important additional benefit of linking LD clusters to likely environmental drivers of selection. 

The high LD observed within the four main climate modules could arise via selection by the 

same factor of the multivariate environment, or via physical linkage on the chromosome, or 

both. We used a mapping population to disentangle these two hypotheses, by calculating 

recombination rates among the top candidate genes (see Methods: Recombination rates). Of 

the 117 top candidate genes, 66 had SNPs that were represented in our mapping population. 

The recombination data revealed that all the genes in the Aridity group have strong LD and are 

physically linked (Figure 3). Within the other three groups, we found physical proximity for only a 
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few genes, typically within the same co-association module (but note that our mapping analysis 

does not have high power to infer recombination rate when loci are physically unlinked; see 

Methods). For example,  a few co-association modules in the Geography group (comprised of 

genes #53-54, #60-63, or #75-76) had very low recombination rates among them. Of the three 

genes forming the largest co-association module in the Freezing Group that was represented in 

our mapping panel (#35-37), two were physically linked. 

Strikingly, low recombination rates were estimated between some genes belonging to different 

co-association modules across the four main groups, even though there was little LD among 

SNPs in these genes (Figure 3). This included a block of loci with low recombination comprised 

of genes from all 4 groups: 8 genes from the Aridity co-association module, 1 gene from the 

large module in the Multi group, 2 genes from different co-association modules in the Freezing 

group, and 7 genes from different co-association modules in the Geography group (upper 

diagonal of Figure 3, see Supplementary Figure S8 for a reorganization of the recombination 

data and more intuitive visualization).  

Comparison to conclusions based on principal components of environments 

We compared the results from the co-association network analysis to associations with principal 

components (PC) of the environmental variables. Briefly, all environmental variables were input 

into a PC analysis , and associations between allele frequencies and PC axes were analyzed. 

We used the same criteria (log 10 BF > 2 in bayenv2) to determine if a locus was a significant 

outlier and compared (i) overlap with top candidate SNPs based on outliers from univariate 

associations with environments, and (ii) interpretation of the selective environment based on 

loadings of environments to PC axes. The first three PC axes explained 44% (PC1), 22% (PC2), 

and 15% (PC3) of the variance in environments (80% total). Loadings of environment variables 
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Figure 3. Comparison of linkage disequilibrium (lower diagonal) and recombination rates (upper
diagonal) for exome contigs. Only contigs with SNPs in the mapping panel are shown. Rows and
column labels correspond to Figure 2G. Darker areas represent either high physical linkage (low
recombination) or high linkage disequilibrium.
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onto PC axes are shown in Supplementary Figure S9. A large proportion of top candidate SNPs 

in our study would not have been found if we had first done a PCA on the environments and 

then looked for outliers along PC axes: overall, 80% of the geography SNPs, 75% of the 

Freezing SNPs, 20% of the Aridity SNPs, and 10% of the Multi SNPs were not outliers along the 

first 10 PC axes and would have been missed.  

Next, we evaluated whether interpretation of selective environments based on PCs was 

consistent with that based on associations with individual environmental factors. Some of the 

temperature and frost variables (MAT: mean annual temperature, EMT: extreme minimum 

temperature, DD0: degree days below 0C, DD5: degree days above 5C, bFFP: begin frost-free 

period, FFP: frost free period, eFFP: end frost free period, labels in Figure 2A) had the highest 

loadings for PC1 (Supplementary Figure S9). Almost all of the SNPs in the Multi group (90%) 

and 19% of SNPs in the Freezing group were outliers along this axis (Supplementary Figure 10, 

note green outliers along x-axis from Multi group; less than 2% of candidate SNPs in the other 

groups were outliers). For PC1, interpretation of the selective environment (e.g., MAT, DD0, 

FFP, eFFP, DD5) is somewhat consistent with the co-association network analysis (both Multi 

SNPs and Freezing SNPs show associations with all these variables, Figure 2B). However, the 

Multi SNPs and Freezing SNPs had strong associations with other variables (e.g., Multi SNPs 

showed strong associations with Latitude and Freezing SNPs showed strong associations with 

longitude, Figure 2B) that did not load strongly onto this axis, and would have been missed in an 

interpretation based on associations with principal components.  

Many precipitation and aridity variables loaded strongly onto PC2, including mean annual 

precipitation, annual heat:moisture index, climate moisture deficit, and precipitation as snow 

(Supplementary Figure 9). However, few top candidate SNPs were outliers along the PC2 axis: 
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only 13% of Freezing SNPs, 10% of Aridity SNPs, and less than 3% of Multi or Geography 

SNPs were outliers (Supplementary Figure 10A, note lack of outliers on y-axis).  

For PC3, latitude, elevation, and two frost variables (beginning frost-free period and frost-free 

period) had the highest loadings (Supplementary Figure 9). The majority (78%) of the Aridity 

SNPs were outliers with PC3 (Supplementary Figure 10B, note outliers as orange dots on 

y-axis). Based on the PC association, this would lead one to conclude that the Aridity SNPs 

show associations with latitude, elevation, and frost-free period. While the Aridity SNPs do have 

strong associations with latitude (5th row in Figure 2B), they show very weak associations with 

the beginning of frost-free period, elevation, and frost-free period length (3rd, 4th, and last row 

in Figure 2B, respectively). Thus, interpretation of the environmental drivers of selection based 

on associations with PC3 would have been very different from the univariate associations.  

Interpretation of multivariate allele associations 

While the network visualization gave insight into patterns of LD among loci, it does not give 

insight into patterns of allele frequency change on the landscape, relative to the ancestral state. 

As illustrated above, principal components would not be useful for this latter visualization. 

Instead, we accomplished this by plotting the association of a derived allele with one 

environmental variable against the association of that allele with a second environmental 

variable. Note that when the two environmental variables themselves are correlated on the 

landscape, an allele with a larger association in one environment will also have a larger 

association with a second environment, regardless of whether or not selection is shaping those 

associations.  We can visualize (i) the expected genome-wide covariance (given 

correlations between environmental variables; Fig 1A left panel) using shading of quadrants and 

(ii) the observed genome-wide covariance using a 95% prediction ellipse (Figure 4). Since 
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Figure 4. Overview of galaxy biplots. The association between allele frequency and one variable
is plotted against the association between allele frequency and a second variable. The Spearmans
? correlation between the two variables (mean annual temperature or MAT and mean annual
precipitation or MAP in this example) is shown in the lower right corner. When the two variables
are correlated, genome-wide covariance is expected to occur in the direction of their association
(shown with quadrant shading in light grey). The observed genome-wide distribution of allelic
e↵ects is plotted in dark grey and the 95% prediction ellipse is plotted as a black line. Because
derived alleles were coded as 1 and ancestral alleles were coded as 0, the location of any particular
SNP in bivariate space represents the type of environment that the derived allele is found in higher
frequency, whereas the location of the ancestral allele would be a reflection through the origin (note
only derived alleles are plotted).
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alleles were coded according to their putative ancestral state in loblolly pine (Pinus taeda ), the 

location of any particular SNP in the plot represents the bivariate environment in which the 

derived allele is found in higher frequency than the ancestral allele (Figure 4). Visualizing the 

data in this way allows us to understand the underlying correlation structure of the data, as well 

as to develop testable hypotheses about the true selective environment and the fitness of the 

derived allele relative to the ancestral allele.  

We overlaid the top candidate SNPs, colored according to their grouping in the co-association 

network analysis, on top of this genome-wide pattern (for the 668 of 801 top candidates for 

which the derived allele could be determined). We call these plots “galaxy biplots” because of 

the characteristic patterns we observed when visualizing data this way (Figure 5). Galaxy biplots 

revealed that SNPs in the Aridity group showed associations with hot/dry versus cold/wet 

environments (red points in Figure 5A), while SNPs in the Multi and Freezing groups showed 

patterns of associations with hot/wet versus cold/dry environments (blue and green dots in 

Figure 5A). These outlier patterns became visually stronger for some SNPs and environments 

after correcting associations for population structure (compare Figure 5A to Figure 5B, 

structure-corrected allele frequencies calculated with Bayenv2, see Methods). Most SNPs in the 

Freezing group showed associations with elevation but not latitude (compare height of blue 

points on y-axis of Figure 5C to Figure 5E). Conversely, the large co-association module in the 

Multi group (gene #1, dark green points) showed associations with latitude but not elevation, 

while the second co-association module in the Multi group (genes #2-3, light green points) 

showed associations with both latitude and elevation (compare height of points on y-axis of 

Figure 5C to Figure 5E). Note how the structure correction polarized these patterns somewhat 

without changing interpretation, suggesting that the structure-corrected allelic associations 
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Figure 5. Galaxy biplots for di↵erent environmental variables for regular (left column) and
structure-corrected (right column) associations. Top candidate SNPs are highlighted against the
genome-wide background. The internal color of each point corresponds to its co-association mod-
ule (as shown in Figure 2 C-F). Top row: mean annual temperature (MAT) vs. mean annual
precipitation (MAP), middle row: MAT and Elevation, bottom row: MAT and latitude (LAT).
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become more extreme when their pattern of allele frequency contrasted the background 

population structure (compare left column of Figure 5 to right column of Figure 5). 

Some modules were particularly defined by the fact that almost all the derived alleles changed 

frequency in the same direction (e.g., sweep-like signatures). For instance, for the 

co-association module in the Multi group defined by genes #2-3, 14 of the 16 derived SNPs 

were found in higher frequencies at colder temperatures, higher elevations, and higher latitudes. 

Contrast this with a group of SNPs from an co-association module in the Freezing group defined 

by gene #32, in which 14 of 15 derived SNPs were found in higher frequencies in warmer 

temperatures and lower elevations, but showed no associations with latitude. These may be 

candidates for genotypes that have risen in frequency to adapt to particular environmental 

conditions on the landscape.  

Conversely, other modules showed different combinations of derived alleles that arose in 

frequency at opposite values of environmental variables. For instance, derived alleles in the 

Aridity co-association module were found in higher frequency in either warm, dry environments 

(88 of 155 SNPs) or in cold, moist environments (67 of 155 SNPs). Similarly, for the Multi 

co-association module defined by gene #1, derived alleles were found in higher frequency in 

either cold, dry environments (15 of 37 SNPs) or in warm, moist environments (22 of 37 SNPs). 

These may be candidates for genes acted on by antagonistic pleiotropy within a locus (Table 1), 

in which one genotype is selected for at one extreme of the environment and another genotype 

is selected for at the other extreme of the environment. Unfortunately, we were unable to fully 

characterize the relative abundance of sweep-like vs. antagonistically pleiotropic patterns 

across all top candidate genes due to (i) the low number of candidate SNPs for most genes, and 
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(ii) for many SNPs the derived allele could not be determined (because there was a missing 

SNP or other missing data in the ancestral species). 

We also visualized the patterns of allele frequency on the landscape for two representative 

SNPs, chosen because they had the highest number of connections in their co-association 

module (and were more likely to be true positives, see  Results: Simulated datasets). 

Geographic and climatic patterns are illustrated with maps for two such SNPs: (i) a SNP in the 

Multi co-association module defined by gene #1 is shown in Figure 6A (with significant 

associations with latitude and mean annual temperature), and (ii) a SNP in the Aridity 

co-association module (Figure 6B, gene #8 from Figure 2, with significant associations with 

annual heat:moisture index and latitude). These maps illustrate the complex environments that 

may be selecting for particular combinations of genotypes despite potentially high gene flow in 

this widespread species.  

Candidate gene annotations 

Although many of the candidate genes were not annotated, as is typical for conifers, the genes 

underlying adaptation to these environmental gradients had diverse putative functions. The top 

candidate SNPs were found in 3’ and 5’ untranslated regions and open reading frames in higher 

proportions than all exome SNPs (Supplemental Figure S11). A gene ontology (GO) analysis 

using previously assigned gene annotations [46, 55] found that a single molecular function, 

solute:cation antiporter activity, was over-represented across all top candidate genes 

(Supplemental Table S1). In the Aridity and Geography groups, annotated genes included 

sodium or potassium ion antiporters (one in Aridity, a KEA4 homolog, and two in Geography, 

NHX8 and SOS1 homologs), suggestive of a role in drought, salt or freezing tolerance [56]. 

Genes putatively involved in auxin biosynthesis were also identified in the Aridity (YUCCA 3) 
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A) “Multi” cluster (SNP from contig #1) A) “Aridity” cluster (SNP from contig #8)

Mean
Annual
Temperature

Annual
Heat:Moisture
Index

Figure 6. Pie charts representing the frequency of derived candidate alleles across the landscape.
Allele frequency pie charts are overlain on top of an environment that the SNP shows significant
associations with. The mean environment for each population is shown by the color of the outline
around the pie chart. A) Allele frequency pattern for a SNP from contig 1 in the Multi cluster from
Figure 2. The derived allele had negative associations with temperature but positive associations
with latitude. B) Allele frequency pattern for a SNP from contig 8 in the Aridity cluster. The
derived allele had negative associations with annual:heat moisture index (and other measures of
aridity) and positive associations with latitude. SNPs were chosen as those with the highest degree
in their co-association module.
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and Geography (Anthranilate synthase component) groups (Supplemental Table S2), 

suggestive of a role in plant growth. In the Freezing and Geography groups, several flowering 

time genes were identified [57] including a homolog of CONSTANS [58] in the Freezing group 

and a homolog of FY, which affects FCA mRNA processing, in the Geography group [58] (Supp 

Table 2). In addition, several putative drought/stress response genes were identified, such as 

DREB transcription factor [59] and an RCD1-like gene (Supplemental Table 2). RCD-1 is 

implicated in hormonal signaling and in the regulation of several stress-responsive genes in 

Arabidopsis thaliana  [57]. In the Multi group, the only gene that was annotated functions in 

acclimation of photosynthesis to the environment in A. thaliana  [60]. 

Of the 47 candidate genes identified by Yeaman et al. 2016 as undergoing convergent evolution 

for adaptation to low temperatures in lodgepole pine and the interior spruce hybrid complex 

(Picea glauca, P. engelmannii, and their hybrids), 10 were retained with our stringent criteria for 

top candidates. All of these genes grouped into the Freezing and Geography groups (shown by 

“*” in Figure 2G): the two groups that had many SNPs with significant associations with 

elevation. This is consistent with the pattern of local adaptation in the interior spruce hybrid 

zone, whereby Engelmann spruce is adapted to higher elevations and white spruce is adapted 

to lower elevations [61]. 

Comparison of co-expression clusters to co-association modules 

To further explore if co-association modules have similar gene functions, we examined their 

gene expression patterns in response to climate treatments using previously published RNAseq 

data of 10,714 differentially expressed genes that formed 8 distinct co-expression clusters [55]. 

Of the 108 top candidate genes, 48 (44%) were also differentially expressed among treatments 

in response to factorial combinations of temperature (cold, mild, or hot), moisture (wet vs. dry), 
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and/or day length (short vs. long day length). We found limited correspondence between 

co-association modules and co-expression clusters. Most of the top-candidate genes that were 

differentially expressed mapped to 2 of the 10 co-expression clusters previously characterized 

by [55] (Figure 7, blue circles are the P2 co-expression cluster and green triangles are the P7 

co-expression cluster previously described by [55]). Genes in the P2 co-expression cluster had 

functions associated with the regulation of transcription and their expression was strongly 

influenced by all treatments, while genes in the P7 co-expression cluster had functions relating 

to metabolism, photosynthesis, and response to stimulus [55]. Genes from the closely linked 

Aridity group mapped to 4 distinct co-expression clusters, contigs from the Freezing group 

mapped to 3 distinct co-expression clusters, and genes from the Geography group mapped to 3 

distinct co-expression clusters. 

We used a Fisher exact test to determine if any co-expression cluster was over-represented in 

any of the the four major co-association groups shown in Figure 2. We found that the Freezing 

group was over-represented in the P2 co-regulated gene expression cluster (P < 0.05) with 

seven (58%) of the Freezing genes found within the P2 expression cluster, revealing 

coordinated expression in response to climatic conditions. Homologs of four of the seven genes 

were present in A. thaliana , and three of these genes were transcription factors involved in 

abiotic stress response (DREB transcription factor), flowering time (CONSTANS, 

pseudoresponse regulator) or the circadian clock (pseudo-response regulator 9). No other 

significant over-representation of gene expression class was identified for the four association 

groups or for all adaptation candidate genes. 
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Figure 7. Co-association modules mapped to co-expression clusters determined by climate treat-
ments. Contig ID, color, and order shown on the bottom correspond to co-association modules
plotted in Figure 2. Co-expression clusters from [55] are shown at the top.
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Simulated datasets 

We used individual-based simulations to examine potential limitations of the co-association 

network analysis by comparing the connectedness of co-association networks arising from false 

positive neutral loci vs. a combination of false positive neutral loci and true positive loci that had 

experienced selection to an unmeasured environmental factor. Specifically, we used simulations 

with random sampling designs from three replicates across three demographic histories: (i) 

isolation by distance at equilibrium (IBD), and non-equilibrium range expansion from a (ii) single 

refuge (1R) or from (iii) two refugia (2R). These landscape simulations were similar to lodgepole 

pine in the sense that they simulated large effective population sizes and resulted in similar FST 

across the landscape as that observed in pine ([62, 63], FST  in simulations ~ 0.05, vs. FST in pine 

~ 0.016 [46]). To explore how the allele frequencies that evolved in these simulations might yield 

spurious patterns under the co-association network analysis, we overlaid the 22 environmental 

variables used in the lodgepole pine dataset onto the landscape genomic simulations [62, 63]. 

To simulate selection to an unmeasured environmental factor, a small proportion of SNPs (1%) 

were subjected to computer-generated spatially varying selection along a weak latitudinal cline 

[62, 63]. We assumed that 22 environmental variables were measured, but not the “true” 

selective environment; our analysis thus represents the ability of co-association networks to 

correctly cluster selected loci even when the true selective environment was unmeasured, but a 

number of other environmental variables were measured (correlations between the selective 

environment and the other variables ranged from 0 to 0.2). Note that the simulations differ from 

the empirical data in at least two ways: (i) there is only one selective environment (so we can 

evaluate whether a single selective environment could result in multiple co-association modules 

in the data given the correlation structure of observed environments), and (ii) loci were unlinked.  
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The P-value and Bayes factor criteria for choosing top candidate SNPs in the empirical data 

produced no false positives with the simulated datasets (Supplemental Figure 12 right column), 

although using these criteria also reduced the proportion of true positives. Therefore, we used 

less stringent criteria to analyze the simulations so that we could also better understand 

patterns created by unlinked, false positive neutral loci (Supplemental Figure 12 left column).  

We found that loci under selection by the same environmental factor generally formed a single 

tightly connected co-association module even though they were unlinked, and that the degree of 

connectedness of selected loci was greater than among neutral loci (Figure 8). Thus, a single 

co-association module typically resulted from adaptation to the single selective environment in 

the simulations. This occurred because the distance threshold used to define connections in the 

co-association modules was chosen as one that enriched for connections among selected loci 

with non-random associations in allele frequencies due to selection by a common environmental 

factor (Supplementary Figure 13). 

The propensity of neutral loci to form tightly-clustered co-association networks increased with 

the complexity of demographic history (compare Figure 8 IBD in left column to 2R in right 

column). For example, the false positive neutral loci from the two refugia (2R) model formed 

tightly connected networks, despite the fact that all simulated loci were unlinked. This occurred 

because of non-random associations in allele frequency due to a shared demographic history. 

In some cases, selected loci formed separate or semi-separate modules according to their 

strengths of selection, but the underlying patterns of association were the same (e.g. Figure 8A, 

Supplementary Figure 14). 
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Figure 8. Comparison of co-association networks resulting from simulated data for 3 de- mogra-
phies. A) Isolation by distance (IBD), B) range expansion from a single refuge (1R), and C) range
expansion from two refugia (2R). All SNPs were simulated unlinked and 1% of SNPs were simulated
under selection to an unmeasured weak latitudinal cline. Boxplots of degree of connectedness of a
SNP as a function of its strength of selection, across all replicate simulations (top row). Examples
of networks formed by datasets that were neutral-only (middle row) or neutral+selected (bottom
row) outlier loci.
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Discussion 

Co-association networks provide a valuable framework for interpreting the genetic architecture 

of local adaptation to the environment in lodgepole pine. Our most interesting result was the 

discovery of low recombination rates among genes putatively adapting to different and distinct 

aspects of climate, which was unexpected because selection is predicted to increase 

recombination between loci acted on by different sources of selection as discussed below. If the 

loci we studied were true causal loci, then different sources of selection were strong enough to 

reduce LD among physically linked  loci in the genome, resulting in modular effects of loci on 

fitness in the environment. While the top candidate SNPs from most genes had associations 

with only a single environmental factor, for some genes we discovered evidence of 

environmental pleiotropy, i.e., candidate SNPs associated with multiple distinct aspects of 

climate. Within co-association modules, we observed a combination of local sweep-like 

signatures (in which derived alleles at a locus were all found in a particular climate, e.g., cold 

environments) and antagonistically pleiotropic patterns underlying adaptation to climate (in 

which some derived alleles at a locus were found at one environmental extreme and others 

found at the opposite extreme), although we could not evaluate the relative importance of these 

patterns. Finally, we observed that the modularity of candidate genes in their transcriptionally 

plastic responses to climate factors did not correspond to the modularity of these genes in their 

patterns of association with climate, as evidenced through comparing co-association networks 

with co-expression networks. These results give insight into evolutionary debates about the 

extent of modularity and pleiotropy in the evolution of genetic architecture [18–24].  
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Genetic architecture of adaptation: pleiotropy and modularity 

Most of the top candidate genes in our analysis do not exhibit universal pleiotropy to distinct 

aspects of climate as defined by the expected pattern outlined in Figure 1B. Our results are 

more consistent with the the Hypothesis of Modular Pleiotropy [19], in which loci may have 

extensive effects within  a distinct aspect of the environment (as defined by the variables that 

associate with each co-association module), but few pleiotropic effects among  distinct aspects 

of the environment. These results are in line with theoretical predictions that modular 

architectures should be favored when there are many sources of selection in complex 

environments [26]. But note also that if many pleiotropic effects are weak, the stringent 

statistical thresholds used in our study to reduce false positives may also reduce the extent to 

which pleiotropy is inferred [20, 21]. Therefore in our study, any pleiotropic effects of genes on 

fitness detected in multiple aspects of climate are likely to be large effects, and we refrain to 

making any claims as to the extent of environmental pleiotropy across the entire genome. 

The extent of pleiotropy within  individual co-association modules is hard to quantify, as for any 

given module we observed associations between genes and several environmental variables. 

Associations between a SNP and multiple environmental variables may or may not be 

interpreted as extensive environmental pleiotropic effects, depending on whether univariate 

environmental variables are considered distinct climatic factors or collectively represent a single 

multivariate optimum. In many cases, these patterns are certainly affected by correlations 

among the environmental variables themselves.  

Our results also highlight conceptual issues with the definition of and interpretation of pleiotropic 

effects on distinct aspects of fitness from real data: namely, what constitutes a “distinct aspect” 

(be it among traits, components of fitness, or aspects of the environment)? In this study we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/202481doi: bioRxiv preprint 

https://paperpile.com/c/vNqLuE/k0Rn
https://paperpile.com/c/vNqLuE/hmua
https://paperpile.com/c/vNqLuE/BRvk+FI10
https://doi.org/10.1101/202481
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

defined the selective environment through the perspective of those environmental variables we 

tested for associations with SNPs, using a threshold that produced reasonable results in 

simulation. But even with this definition, some co-association modules are more similar in their 

multivariate environmental “niche” than others. For instance, genes within the Geography group 

could be interpreted to have extensive pleiotropic effects if the patterns of associations of each 

individual module were taken to be “distinct,” or they may be considered to have less extensive 

pleiotropic effects if their patterns of associations were too similar to be considered “distinct.” 

While the framework we present here is a step toward understanding and visualizing this 

hierarchical nature of “distinct aspects” of environmental factors, a more formal framework is 

needed to quantify the distinctness of pleiotropic effects.  

Genetic architecture of adaptation: linkage 

We also observed physical linkage among genes that were associated with very distinct aspects 

of climate. This was somewhat unexpected from a theoretical perspective: while selection 

pressures due to genome organization may be weak, if anything, selection would be expected 

to disfavour linkage and increase recombination between genes adapting to selection pressures 

with different spatial patterns of variation [34–36]. Interestingly, while the linkage map suggests 

that these loci are sometimes located relatively close together on a single chromosome, this 

does not seem to be sufficient physical linkage to also cause a noticeable increase in LD. In 

other words, it is possible that the amount of physical linkage sometimes observed between 

genes in different co-association modules is not strong enough to constrain adaptation to these 

differing gradients. Genetic maps and reference genomes are not yet well developed for the 

large genomes of conifers; improved genetic maps or assembled genomes will be required to 

explore these questions in greater depth. If this finding is robust and not compromised by false 
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positives, physical linkage among genes adapting to different climatic factors could either 

facilitate or hinder a rapid evolutionary response as the multivariate environment changes [4, 5]. 

Within co-association modules, we observed varying patterns of physical linkage among genes. 

The Aridity group, in particular, consisted of several tightly linked genes that may have arisen for 

a number of different reasons. Clusters of physically linked genes such as this may act as a 

single large-effect QTL [64] and may have evolved due to competition among alleles or genomic 

rearrangements [30, although these are rare in conifers], increased establishment probability 

due to linked adaptive alleles [4], or divergence within inversions [32]. Alternatively, if the Aridity 

region was one of low recombination, a single causal variant could create the appearance of 

linked selection [65], a widespread false positive signal may have arisen due to genomic 

variation such as background selection and increased drift [66–68], or a widespread false signal 

may have arisen due to a demographic process such as allele surfing [69, 70]. 

Genetic architecture of adaptation: modularity of transcriptional plasticity vs. fitness 

We also compared co-expression networks to co-association networks.  Genes that showed 

similar responses in expression in lodgepole pine seedlings in response to experimental climatic 

treatments form a co-expression network. Since co-expression networks have been successful 

at identifying genes that respond the same way to environmental stimuli [71], it might be 

reasonable to expect that if these genes were adapting to climate they would also show similar 

patterns of associations with climate variables. However, differential expression analyses only 

identify genes with plastic transcriptional responses to climate. Plasticity is not a prerequisite for 

adaptation and may be an alternative strategy to adaptation. This is illustrated by our result that 

only half of our top candidate contigs for adaptation to climate were differentially expressed in 

response to climate conditions. 
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Interestingly, loci located within the same co-association module (groups of loci that are 

putatively favored or linked to loci putatively favored by natural selection) could be found in 

different co-expression clusters. For example, we observed that loci from the tightly linked 

Aridity module had many distinct expression patterns in response to climate treatments. 

Conversely, candidate genes that were associated with different aspects of the multivariate 

environment (because they were located in different co-association modules) could nonetheless 

be co-expressed in response to specific conditions. These observations support the speculation 

that the developmental/functional modularity of plasticity may not correspond to the modularity 

of the genotype to fitness map; however, the power of the analysis could be low due to stringent 

statistical cutoffs and these patterns warrant further investigation. 

Physiological adaptation of lodgepole pine to climate 

It is challenging to disentangle the physiological effects and importance of freezing versus 

drought in the local adaptation of conifers to climate. We found distinct groups of candidate 

genes along an axis of warm/wet to cold/dry (co-association modules in the Freezing and Multi 

groups), and another distinct group along an axis of cold/wet to warm/dry (the Aridity 

co-association module). Selection by drought conditions in winter may occur through extensive 

physiological remodeling that allows cells to survive intercellular freezing by desiccating 

protoplasts - but also results in drought stress at the cellular level [55]. Another type of winter 

drought injury in lodgepole pine - red belt syndrome - is caused by warm, often windy events in 

winter, when foliage desiccates but the ground is too cold for roots to be able to supply water 

above ground [72]. This may contrast with drought selection in summer, when available soil 

water is lowest and aridity highest. The physiological and cellular mechanisms of drought and 
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freezing response have similarities but also potentially important differences that could be 

responsible for the patterns we have observed. 

Our results provide a framework for developing hypotheses that will help to disentangle 

selective environments and provide genotypes for assisted gene flow in reforestation [73]. While 

climate change is expected to increase average temperatures across this region, some areas 

are experiencing more precipitation than historic levels and others experiencing less [74]. Tree 

mortality rates are increasing across North America due to increased drought and vapour 

pressure deficit for tree species including lodgepole pine, and associated increased vulnerability 

to damaging insects, but growth rates are also increasing with warming temperatures and 

increased carbon dioxide [75, 76]. Hot, dry valleys in southern BC are projected to have novel 

climates emerge that have no existing analogues in North America [77]. The considerable 

standing adaptive variation we observe here involving many genes could facilitate adaptation to 

new temperature and moisture regimes, or could hinder adaptation if novel climates are at odds 

with the physical linkage among alleles adapted to different climate stressors.  

Limitations of associations with principal components 

For these data, testing associations of genes with PC-based climate variables would have led to 

a very limited interpretation of the environmental drivers of selection because the PC ordination 

is not biologically informed as to what factors are driving divergent selection [37]. First, many 

putative candidates in the Freezing and Geography groups would have been missed. Second, 

strong associations between the Multi SNPs and environmental variables that did not load 

strongly onto PC1, such as latitude, would have also been missed. Finally, many Aridity SNPs 

were outliers in PC3, which was strongly correlated with variables that the Aridity SNPs did not 

have any significant associations with. This occurred because no single variable loaded strongly 
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onto PC3 (the maximum loading of any single variable was 0.38) and many variables had 

moderate loadings, such that no single environmental variable explained the majority of the 

variance (the maximum variance explained by any one variable was 15%). Thus, associations 

with higher PC axes become increasingly difficult to interpret when the axis itself explains less 

variance of the multivariate environment and the environmental factors loading onto that axis 

explain similar amounts of variance in that axis. While principal components will capture the 

environmental factors that covary the most, this may have nothing to do with the combinations 

that drive divergent selection and local adaptation. This needlessly adds a layer of complexity to 

an analysis that may not reveal anything biologically important. In contrast, co-association 

networks highlight those combinations of environments that are biologically important for those 

genes likely involved in local adaptation. 

Benefits and caveats of co-association networks 

Co-association networks provide an intuitive and visual framework for understanding patterns of 

associations of genes and SNPs across many potentially correlated environmental variables. By 

parsing loci into different groups based on their associations with multiple variables, this 

framework offers a more informative approach than grouping loci according to their outlier status 

based on associations with single environmental variables. While in this study we have used 

them to infer groups of loci that adapt to distinct aspects of the multivariate environment, 

co-association networks could be widely applied to a variety of situations, including 

genotype-phenotype associations. They offer the benefit of jointly identifying modules of loci and 

the groups of environmental variables that the modules are associated with. While the field may 

still have some disagreement about how modularity and pleiotropy should be defined, 
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measured, and interpreted [19–21, 23, 24], co-association networks at least provide a 

quantitative framework to define and visualize modularity.  

Co-association networks differ from the application of bipartite network theory for estimating the 

degree of classical pleiotropic effects of genes on traits [3]. Bipartite networks are two-level 

networks where the genes form one type of nodes and the traits form the second type of nodes, 

then a connection is drawn from a gene to a trait if there is a significant association [3]. The 

degree of pleiotropy of a locus is then inferred by the number of traits that gene is connected to. 

With the bipartite network approach, trait nodes are defined by those traits measured, and not 

necessarily the multivariate effects from the perspective of the gene (e.g., a gene that affects 

organism size will have effects on height, weight and several other variables - if all these traits 

are analyzed, this gene would be inferred to have large pleiotropic effects). Even if highly 

correlated traits are removed, simulations have shown that even mild correlations in mutational 

effects can bias estimates of pleiotropy from bipartite networks [20, 21]. The advantage of 

co-association networks is their ability to identify combinations of variables (be they traits or 

environments) that associate with genetic (or SNP) modules. Correlated variables that measure 

essentially the same environment or phenotype will simply cluster together in a module, which 

can facilitate interpretation. On the other hand, correlated variables that measure different 

aspects of the environment or phenotype may cluster into different modules (as we observed in 

this study). The observed combinations of associations can then be used to develop and test 

hypotheses as to whether the genotype-environment combination represents a single 

multivariate environment that the gene is adapting to (in the case of allele associations with 

environment or fitness) or a single multivariate trait that the gene affects (in the case of allele 

associations with phenotypes). 
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While co-association networks hold promise for elucidating the modularity and pleiotropy of the 

genotype-phenotype-fitness map, some caveats should be noted. First, correlations among 

variables will make it difficult to infer the exact conditions that select for or the exact traits that 

associate with particular allelic combinations. Results from this framework can make it easier, 

however, to generate hypotheses that can be tested with future experiments. Second, the 

analysis of simulated data shows that investigators should consider demographic history and 

choose candidates with caution for data analysis to exclude false positives, as we have 

attempted here. Co-association networks can arise among unlinked neutral loci by chance, and 

it is almost certain that some proportion of the “top candidate SNPs” in this study are false 

positives due to linkage with causal SNPs or due to demographic history. The simulated data 

also showed, however, that causal SNPs tend to have a higher degree of connection in their 

co-association network than neutral loci, and this might help to prioritize SNPs for follow up 

experiments, SNP arrays, and genome editing. Third, it may be difficult to draw conclusions 

about the level of modularity of the genetic architecture. The number of modules may be 

sensitive to the statistical thresholds used to identify top candidate SNPs [20, 21] as well as the 

distance threshold used to identify modules. With our data, the number of co-associations 

modules and the number of SNPs per module were not very sensitive to increasing this 

threshold by 0.05, but our results were sensitive to decreasing the threshold 0.05 (a stricter 

threshold resulted in smaller modules of SNPs with extremely similar associations, and a large 

number of “modules” comprised of a single SNP unconnected to other SNPs, even SNPs in the 

same gene) (results not shown). While inferred modules composed of a single SNP could be 

interpreted as unique, our simulations also show that neutral loci are more likely to be 

unconnected in co-association networks. Many alleles of small effect may be just below 

statistical detection thresholds, and whether or not these alleles are included could profoundly 
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change inference as to the extent of pleiotropy [20, 21]. This presents a conundrum common to 

most population genomic approaches for detecting selection, because lowering statistical 

thresholds will almost certainly increase the number of false positives, while only using very 

stringent statistical thresholds may decrease the probability of observing pleiotropy if many 

pleiotropic effects are weak [20].  Thus, while co-association networks are useful for identifying 

SNP modules associated with correlated variables, further work is necessary to expand this 

framework to quantitatively measure pleiotropic effects in genomes.  

Conclusions 

In this study we discovered physical linkage among loci putatively adapting to different aspects 

of the climate. These results give rare insight into both the ecological pressures that favor the 

evolution of modules by natural selection [19] and into the organization of genetic architecture 

itself. As climate changes, the evolutionary response will be determined by the extent of 

physical linkage among these loci, in combination with the strength of selection and phenotypic 

optima across environmental gradients, the scale and pattern of environmental variation, and 

the details of migration and demographic fluctuations across the landscape. While theory has 

made strides to provide a framework for predicting the genetic architecture of local adaptation 

under divergence with gene flow to a single environment [4, 30, 31, 78–82], as well as the 

evolution of correlated traits under different directions and/or strengths of selection when those 

traits have a common genetic basis [35, 36], how genetic architectures evolve on complex 

heterogeneous landscapes has not been clearly elucidated. Furthermore, it has been difficult to 

test theory because the field still lacks frameworks for evaluating empirical observations of 

adaptation in many dimensions. Here, we have attempted to develop an initial framework for 

understanding adaptation to several complex environments with different spatial patterns, which 
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may also be useful for understanding the genetic basis of multivariate phenotypes from 

genome-wide association studies. This framework lays the foundation for future studies to study 

modularity across the genotype-phenotype-fitness continuum. 

Methods 

Sampling and climate 

This study uses the same dataset analyzed by Yeaman et al. [46], but with a different focus as 

explained in the introduction. Briefly, we obtained seeds from 281 sampling locations of 

lodgepole pine from reforestation collections for natural populations, and these locations were 

selected to represent the full range of climatic and ecological conditions within the species 

range in British Columbia and Alberta based on ecosystem delineations. Seeds were grown in a 

common garden and 2-4 individuals were sampled from each sampling location. The 

environment for each sampling location was was characterized by estimating climate normals 

for 1961-1990 from geographic coordinates using the software package ClimateWNA [83]. The 

program extracts and downscales the moderate spatial resolution generated by PRISM [84] to 

scale-free and calculates many climate variables for specific locations based on latitude, 

longitude and elevation. The downscaling is achieved through a combination of bilinear 

interpolation and dynamic local elevational adjustment. We obtained 19 climatic and 3 

geographical variables (latitude, longitude, and elevation). Geographic variables may correlate 

with some unmeasured environmental variables that present selective pressure to populations 

(e.g., latitude correlates with day length).  Many of these variables were correlated with each 

other on the landscape (Figure 2A). 
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Sequencing, bioinformatics, and annotation 

The methods for this section are identical to those reported in [46]. Briefly, DNA from frozen 

needle tissue was purified using a Macherey-Nagel Nucleospin 96 Plant II Core kit automated 

on an Eppendorf EpMotion 5075 liquid handling platform. One microgram of DNA from each 

individual tree was made into a barcoded library with a 350 bp insert size using the BioO 

NEXTflex Pre-Capture Combo kit. Six individually barcoded libraries were pooled together in 

equal amounts before sequence capture. The capture was performed using custom Nimblegen 

SeqCap probes [46 for more details, see 47] and the resulting captured fragments were 

amplified using the protocol and reagents from the NEXTflex kit. All sample preparation steps 

followed the recommended protocols provided. After capture, each pool of six libraries was 

combined with another completed capture pool and the 12 individually barcoded samples were 

then sequenced, 100 base pair paired-end, on one lane of an Illumina HiSeq 2500 (at the McGill 

University and Genome Quebec Innovation Centre). 

Sequenced reads were filtered and aligned to the loblolly pine genome [85] using bwa mem [86] 

and variants were called using GATK Unified Genotyper [87], with steps included for removal of 

PCR duplicates, realignment around indels, and base quality score recalibration [46, 87]. SNPs 

calls were filtered to eliminate variants that did not meet the following cutoffs: quality score >= 

20, map quality score >= 45, FisherStrand score <= 33, HaplotypeScore <= 7, 

MQRankSumTest <= -12.5, ReadPosRankSum >-8, and allele balance < 2.2, minor allele 

frequency > 5%, and genotyped successfully in >10% of individuals. Ancestral alleles were 

coded as a 0 and derived alleles coded as a 1 for data analysis. 

We used the annotations developed for pine in [46]. Briefly, we performed a BLASTX search 

against the TAIR 10 protein database and identified the top blast hit for each transcript contig 
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(e-value cut-off was 10 -6). We also performed a BLASTX against the nr database screened for 

green plants and used Blast2GO [88] to assign GO terms and enzyme codes [46 for details, see 

55]. We also assigned GO terms to each contig based on the GO A. thaliana  mappings and 

removed redundant GO terms. To identify if genes with particular molecular function and 

biological processes were over-represented in top candidate genes, we performed a GO 

enrichment analysis using topGO [89]. All GO terms associated with at least two candidate 

genes were analyzed for significant over-representation within each group and in all candidate 

genes (FDR 5%).  

Top Candidate SNPs 

First, top candidate genes were obtained from [46]. For this study, genes with unusually strong 

signatures of association from multiple association tests (uncorrected genotype-phenotype and 

genotype-environment correlations, for details see [46]) were identified as those with more 

outlier SNPs than expected by random with a probability of P < 10 -9, which is a very restrictive 

cutoff (note that due to non-independence among SNPs in the same contig, this P-value is an 

index, and not an exact probability). Thus, the subsequent analysis is limited to loci that we 

have the highest confidence are associated with adaptation as evidenced by a large number of 

significant SNPs (not necessarily the loci with the largest effect sizes).  

For this study, we identified top candidate SNPs within the set of top candidate genes. These 

“top candidate SNPs” had genetic-environment associations with (i) P-values lower than the 

Bonferroni cutoff for the uncorrected Spearman’s ρ (~10 -8 = 0.05/(number of SNPs times the 

number of environmental variables) and (ii) log 10(BF) > 2 for the structure-corrected Spearman’s 

ρ (Bayenv2, for details see below).  The resulting set of candidate SNPs reject the null 

hypothesis of no association with the environment with high confidence.  In subsequent 
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analyses we interpret the results both before and after correction for population structure, to 

ensure that structure correction does not change our overall conclusions. Note that because 

candidate SNPs are limited to the top candidate genes in order to reduce false positives in the 

analysis, these restrictive cutoffs may miss many true positives. 

For uncorrected associations between allele frequencies and environments, we calculated the 

non-parametric rank correlation Spearman’s ρ between allele frequency for each SNP and each 

environmental variable. For structure-corrected associations between allele frequencies and 

environments, we used the program Bayenv2 [39]. Bayenv2 is implemented in two steps. In the 

first step the variance-covariance matrix is calculated from allelic data. As detailed in [46]set of 

non-coding SNPs to calculated the variance-covariance matrix from the final run of the MCMC 

after 100,000 iterations, with the final matrix averaged over 3 MCMC runs. In the second step, 

the variance-covariance matrix is used to control for evolutionary history in the calculation of test 

statistics for each SNP.  For each SNP, Bayenv2 outputs a Bayes factor (a value that measures 

the strength of evidence in favor of a linear relationship between allele frequencies and the 

environment after population structure is controlled for) and Spearman’s ρ (the non-parametric 

correlation between allele frequencies and environment variables after population structure is 

controlled for). Previous authors have found that the stability of Bayes factors is sensitive to the 

number of iterations in the MCMC [90].  We ran 3 replicate chains of the MCMC with 50,000 

iterations, which we found produced stable results.  Bayes factors and structure-corrected 

Spearman’s ρ were averaged over these 35 replicate chains and these values were used for 

analysis.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/202481doi: bioRxiv preprint 

https://paperpile.com/c/vNqLuE/1IaM
https://paperpile.com/c/vNqLuE/UhqG
https://paperpile.com/c/vNqLuE/c4Bo
https://doi.org/10.1101/202481
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

Co-association networks 

We first organized the associations into a matrix with SNPs in columns, environments in rows, 

and the specific SNP-environment association in each cell. These data were used to calculate 

pairwise Euclidean distances between SNPs based on their associations, and this distance 

matrix was used to cluster SNP loci with Ward’s hierarchical clustering using the hclust package 

in R. As described in the results, this resulted in 4 main groups in the data. For each of these 

main groups, we used undirected graph networks to visualize submodules of SNPs. Nodes 

(SNPs) were connected by edges if they had a pairwise Euclidean distance less than 0.1 from 

the distance matrix described above. We found that the results were not very sensitive to this 

distance threshold. Co-association networks were visualized using the igraph package in R v 

1.0.1 [91]. 

Linkage disequilibrium 

Linkage disequilibrium was calculated among pairwise combinations of SNPs within genes 

(genes). Mean values of Pearson’s correlation coefficient squared (r2) were estimated across all 

SNPs annotated to each pair of individual genes, excluding SNPs genotyped in fewer than 250 

individuals (to minimize the contribution of small sample sizes to the calculation of gene-level 

means).  

Recombination rates 

An Affymetrix SNP array was used to genotype 95 full-sib offspring from a single cross of two 

parents. Individuals with genotype posterior probabilities of > 0.001 were filtered out. This array 

yielded data for 13,544 SNPs with mapping-informative genotypes. We used the package 

“onemap” in R with default settings to estimate recombination rates among pairs of loci, 

retaining all estimates with LOD scores > 3 [92]. This dataset contained 2760 pairs of SNPs that 
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were found together on the same genomic contig, separated by a maximum distance of 13k 

base pairs. Of these 7,617,600 possible pairs, 521 were found to have unrealistically high 

inferred rates of recombination (r > 0.001), and are likely errors. These errors probably occurred 

as a result of the combined effect of undetected errors in genotype calling, unresolved paralogy 

in the reference genome that complicates mapping, and differences between the reference 

loblolly genome that was used for SNP design and the lodgepole pine genomes. As a result, 

recombination rates that were low (r < 0.001) were expected to be relatively accurate, but we do 

not draw any inferences about high recombination estimates among loci. 

Associations with principal components of environments 

To compare inference from co-association networks to another multivariate approach, we 

conducted a principal components analysis of environments using the function prcomp() in R. 

Then, we used Bayenv2 to test associations with PC axes as described above and used BF > 2 

as criteria for significance of a SNP on a PC axis. Note that this criterion is less conservative 

than that used to identify candidate SNPs for the network analysis (because it did not require 

the additional criteria of a significant Bonferroni-corrected P-value), so it should result in greater 

overlap between PC candidate SNPs and top candidate SNPs based on univariate 

associations. 

Enrichment of co-expressed genes 

The co-expression data used in this study was previously published by [55]. To determine if 

adaptation cluster members had similar gene functions, we examined their gene expression 

patterns in response to seven growth chamber climate treatments using previously published 

RNAseq data [55]. Expression data was collected on 44 seedlings from a single sampling 

location, raised under common conditions, and then exposed to growth chamber environments 
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that varied in their temperature, moisture and photoperiod regimes. We used a Fisher’s exact 

test to determine if genes with a significant climate treatment effect were over-represented in 

each of the 4 major groups and across all adaptation candidates relative to the other sequenced 

and expressed genes. In addition, Yeaman et al 2014 used weighted gene co-expression 

network analysis (WGCNA) to identify eight clusters of co-regulated genes among the seven 

climate treatments. We used a Fisher’s exact test to determine if these previously identified 

expression clusters were over-represented in the any of the 4 major groups relative to the other 

sequenced and expressed genes. 

Galaxy biplots 

To give insight into how the species has evolved to inhabit multivariate environments relative to 

the ancestral state, we visualized the magnitude and direction of associations between the 

derived allele frequency and environmental variables. Allelic correlations with any pair of 

environmental variables can be visualized by plotting the value of the non-parametric rank 

correlation Spearman’s ρ of the focal allele with variable 1 against the value with variable 2. 

Spearman’s ρ can be calculated with or without correction for population structure. Note also 

that the specific location of any particular allele in a galaxy biplot depends on the way alleles are 

coded. SNP data were coded as 0, 1, or 2 copies of the loblolly reference allele. If the reference 

allele has positive Spearman’s ρ with temperature and precipitation, then the alternate allele has 

a negative Spearman’s ρ with temperature and precipitation. For this reason, the alternate allele 

at a SNP should be interpreted as a reflection through the origin (such that Quadrants 1 and 3 

are symmetrical and Quadrants 2 and 4 are symmetrical if the reference allele is randomly 

chosen).  
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A prediction ellipse was used to visualize the genome-wide pattern of covariance in allelic 

effects on a galaxy biplot. For two variables, the 2 x 2 variance-covariance matrix of 

, where f is the allele frequency and Ex is the environmental variable, 

has a geometric interpretation that can be used to visualize covariance in allelic effects with 

ellipses. The covariance matrix defines both the spread (variance) and the orientation 

(covariance) of the ellipse, while the expected values or averages of each variable (E[E1] and 

E[E2]) represent the centroid or location of the ellipse in multivariate space. The geometry of the 

two-dimensional (1 - α) x 100% prediction ellipse on the multivariate normal distribution can then 

be approximated by: 

, 

where l j = {1, 2} represents the lengths of the major and minor axes on the ellipse, respectively, λ j  

represents the eigenvalues of the covariance matrix, and χ2df=2,α represents the value of the χ2 

distribution for the desired α  value [93–95]. In the results, we plot the 95% prediction ellipse (α  = 

0.05) corresponding to the volume within which 95% of points should fall assuming the data is 

multivariate normal, using the function ellipsoidPoints()  in the R package cluster . This 

approach will work when there is a large number of unlinked SNPs in the set being visualized; if 

used on a candidate set with a large number of linked SNPs and/or a small candidate set with 

non-random assignment of alleles (i.e., allele assigned according to a reference), the 

assumptions of this visualization approach will be violated. 

Visualization of allele frequencies on the landscape 

ESRI ArcGIS v10.2.2 was used to visualize candidate SNP frequencies across the landscape. 

Representative SNPs having the most edges within each sub-network were chosen and plotted 
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against climatic variables representative of those co-association modules. Mean allele 

frequencies were calculated for each sampled population and plotted using ESRI ArcGIS 

v10.2.2. Climate data and 1 km resolution rasters were obtained using ClimateWNA v5.40 [83] 

and shaded with colour gradients scaled to the range of climates across the sampling locations. 

The climates for each sampling location were also plotted, as some sampling locations were at 

especially high or low elevations relative to their surrounding landscapes. For clarity, only 

sampling locations containing at least two sampled individuals were plotted. 

Simulations 

The simulations used in this study are identical a subset of those previously published by [62, 

63]. Briefly, the simulator uses forward-in-time recurrence equations to model the evolution of 

independent haploid SNPs on a quasi-continuous square landscape. We modelled three 

demographic histories that resulted in the same overall neutral FST for each demography, but 

demographic history determined the distribution of FST’s around that mean. Isolation by distance 

(IBD) had the lowest variance, followed by demographic expansion from a single refuge (1R), 

and demographic expansion from two refugia 2R had the highest variance. The landscape size 

was 360 x 360 demes and migration was determined by a discretized version of a Gaussian 

dispersal kernel. Carrying capacity per deme differed slightly for each scenario to give the same 

overall neutral FST = 0.05. IBD was run until equilibrium at 10,000 generations, but 1R and 2R 

were only run for 1,000 generations in order to mimic the the expansion of lodgepole pine since 

the last glacial maximum [96]. All selected loci adapted to computer generated landscape with a 

weak north-south cline and spatial heterogeneity at smaller spatial scales with varying strengths 

of selection from weak (s = 0.001) to strong (s = 0.1). See [62, 63] for more details. 
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The simulations were then expanded in the following way: for each of the 22 environmental 

variables for lodgepole pine populations, we used interpolation to estimate the value of the 

variable at the simulated locations. This strategy preserved the correlation structure among the 

22 environmental variables. For each of the 22 variables, we calculated the uncorrected rank 

correlation (Spearman’s ρ) between allele frequency and environment. The 23rd 

computer-generated environment was not included in analysis, as it was meant to represent the 

hypothetical situation that there is a single unmeasured (and unknown) environmental variable 

that is the driver of selection.  The 23rd environment was correlated from 0-0.2 with the other 22 

variables. 

We compared two thresholds for determining which loci were retained for co-association 

network analysis, keeping loci with either: (i) a P-value lower than the Bonferroni correction 

(0.05/(# environments * # simulated loci)) and (ii) a log-10 Bayes Factor greater than 2 (for at 

least one of the environmental variables). Using both criteria is more stringent and both were 

used in the lodgepole pine analysis. In the simulations, however, we found that using both 

criteria resulted in no false positives in the outlier list (see Results); therefore we used only the 

first of these two criteria so that we could understand how false positives may affect 

interpretation of the co-association network analysis. For a given set of outliers (e.g., only false 

positives or false positives and true positives), hierarchical clustering and undirected graph 

networks were built in the same manner as described for the lodgepole pine data.  

List of abbreviations 

● LD: Linkage disequilibrium 

● PC: Principal components 

● SNP: single nucleotide polymorphism 
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Tables 

Table 1. Overview of terminology used in the literature regarding pleiotropy and modularity. 

Term References Meaning 

Genetic 
architecture 

[1] Genetic architecture refers to the pattern of genetic effects 
that build and control a facet of the organism (character, 
trait, or fitness). A description of genetic 
architecture includes statements about gene and allele 
number, the distribution of allelic and mutation effects, 
patterns of pleiotropy, and recombination rates among 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/202481doi: bioRxiv preprint 

http://paperpile.com/b/vNqLuE/DKgI
http://paperpile.com/b/vNqLuE/DKgI
http://paperpile.com/b/vNqLuE/vVBR
http://paperpile.com/b/vNqLuE/vVBR
http://paperpile.com/b/vNqLuE/iZUG
http://paperpile.com/b/vNqLuE/iZUG
http://paperpile.com/b/vNqLuE/m1ss
http://paperpile.com/b/vNqLuE/m1ss
http://paperpile.com/b/vNqLuE/Vpkc
http://paperpile.com/b/vNqLuE/Vpkc
http://paperpile.com/b/vNqLuE/1ih5
https://bioconductor.riken.jp/packages/3.2/bioc/vignettes/topGO/inst/doc/topGO.pdf.
http://paperpile.com/b/vNqLuE/1ih5
http://paperpile.com/b/vNqLuE/1ih5
http://paperpile.com/b/vNqLuE/c4Bo
http://paperpile.com/b/vNqLuE/c4Bo
http://paperpile.com/b/vNqLuE/yXK5
http://paperpile.com/b/vNqLuE/yXK5
http://paperpile.com/b/vNqLuE/5EFO
http://paperpile.com/b/vNqLuE/5EFO
http://paperpile.com/b/vNqLuE/u7x6
http://paperpile.com/b/vNqLuE/u7x6
http://paperpile.com/b/vNqLuE/OzFa
http://paperpile.com/b/vNqLuE/OzFa
http://paperpile.com/b/vNqLuE/H3oc
http://paperpile.com/b/vNqLuE/H3oc
http://paperpile.com/b/vNqLuE/bYgs
https://paperpile.com/c/vNqLuE/2ocb
https://doi.org/10.1101/202481
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

causal loci on chromosomes. 

Selectional 
pleiotropy 

[8] The number of separate components of fitness a mutation 
effects. Traits are defined by the action of selection and 
not by the intrinsic attributes of the organism. 

Antagonistic 
pleiotropy at a 
single locus 

[9] In the context of this study, an allele exhibits antagonistic 
pleiotropy if it has different effects on fitness at different 
extremes of an environmental variable (e.g., positive 
effects on fitness in cold environments and negative 
effects in warm environments), which results in an 
association between the allele frequency and the 
environmental variable 

Environmental 
pleiotropy 

This study Genes affect fitness in multiple distinct aspects of the 
multivariate environment, where each aspect is defined by 
the action of selection 

Modularity or 
modular genetic 
architecture 

[25] A modular unit is a complex of elements (characters or 
genes) that: 1) collectively serve a similar functional role, 
2) are tightly integrated by strong pleiotropic effects of 
genetic variation, and 3) are relatively independent from 
other such units. Pleiotropic effects may be on traits or on 
fitness, and are limited to elements within a module, with a 
suppression of pleiotropic effects between different 
modules (Figure 1A, left column). Genes within a module 
may or may not be physically linked. 

Co-association 
network analysis 

This study An application of network theory used to identify modules 
of loci that are similar in their associations across many 
variables. 

Co-association 
module 

This study A group of SNPs that show associations with a distinct 
environmental factor. These modules can be thought of as 
“variational” modules [sensu 19], which are composed of 
features that vary together and are relatively independent 
of other such sets of features. In practice, co-association 
modules are inferred by their similarity in associations with 
multiple environmental variables. 

Selective 
environmental 
factors 

This study The specific aspect of the multivariate environment to 
which a SNP adapts on a geographic landscape. In 
practice, these are inferred by the environmental variables 
that associate with candidate SNPs within co-association 
modules. 
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Table 2. Environmental variables measured for each sampling location, ordered by their 

abbreviations shown in Figure 2 A and B. 

Abbreviation Definition Category 

MSP May to September precipitation 
(mm) 

Aridity 

LONG Longitude Geography 

bFPP Day of the year frost-free period 
begins 

Freezing 

ELEVATION Elevation Geography 

LAT Latitude Geography 

TD Temperature difference 
(MWMT-MCMT) (°C) 

Freezing or Aridity 

DD_0 Degree-days below 0°C Freezing 

PAS Precipitation as snow (mm) Aridity or Freezing 

MAP Mean annual precipitation (mm) Aridity 

CMD Hargreaves climate-moisture 
deficit 

Aridity 

SHM Summer heat-moisture index 
((MWMT)/(MSP/1000)) 

Aridity 

AHM Annual heat-moisture index 
(MAT+10)/(MAP/1000)) 

Aridity 

MWMT Mean warmest month 
temperature (°C) 

Aridity 

DD5 Degree-days above 5°C Aridity 

Eref Hargreaves reference 
evaporation 

Aridity 

EXT Extreme maximum temperature 
over 30 years (°C) 

Aridity 
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MCMT Mean coldest month temperature 
(°C) 

Freezing 

EMT Extreme minimum temperature 
over 30 years (°C) 

Freezing 

MAT Mean annual temperature (°C) Aridity or Freezing 

eFFP Day of the year frost-free period 
ends 

Freezing 

NFFD Number of days without frost Freezing 

FFP Frost-free period (bFFP-eFFP) Freezing 
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Figure Legends 

Figure 1. Conceptual framework for evaluating the modularity and pleiotropy of genetic 

architectures adapting to the environment. 

In this example, each gene (identified by numbers) contains two causal SNPs (identified by 

letters) where mutations affect fitness in potentially different aspects of the environment. The 

two aspects of the environment that affect fitness are aridity and freezing. A) The true 

underlying genetic architecture adapting to multiple aspects of climate. The left column 

represents a modular genetic architecture in which any pleiotropic effects of genes are limited to 

a particular aspect of the environment. The right column represents a non-modular architecture, 

in which genes have pleiotropic effects on multiple aspects of the environment. Universal 

pleiotropy occurs when a gene has effects on all the multiple distinct aspects of the 

environment. Genes in this example are unlinked in the genome, but linkage among genes is an 

important aspect of the environmental response architecture. B) Hierarchical clustering is used 

to identify the “co-association modules,” which jointly describe the groups of loci that adapt to a 

distinct aspects of climate as well as the distinct aspects of climate to which they adapt.  In the 

left column, the “aridity module” is a group of SNPs within two unlinked genes adapting to 

aridity, and SNPs within these genes show associations with both temperature and 

climate-moisture deficit. In the right column, note how the aridity module is composed of SNPs 

from all 4 unlinked genes. C) Co-association networks are used to visualize the results of the 

hierarchical clustering with regards to the environment, and connections are based on similarity 

in SNPs in their associations with environments. In both columns, all SNPs within a module 

(network) all have similar associations with multiple environmental variables. D) Pleiotropy 

barplots are used to visualize the results of the hierarchical clustering with regards to the 
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genetic architecture, represented by the proportion of SNPs in each candidate gene that affects 

different aspects of the environment (as defined by the co-association module). 

Figure 2. Co-association modules for Pinus contorta .  

A) Correlations among environments measured by Spearman's ⍴. Abbreviations of the 

environmental variables can be found in Table 2. B) Hierarchical clustering of associations 

between allele frequencies (of SNPs in columns) and environments (in rows) measured by 

Spearman's ⍴. C-F) Each co-association network represents a distinct co-association module, 

with color schemes according to the four major groups in the data. Each node is a SNP and is 

labeled with a number according to its exome contig, and a color according to its module - with 

the exceptions that modules containing a single SNP all give the same color within a major 

group. Numbers next to each module indicate the number of distinct genes involved (with the 

exception of the Geography group, where only modules with 5 or more genes are labeled). G) 

The pleiotropy barplot, where each bar corresponds to a contig, and the colors represent the 

proportion of SNPs in each co-association module. Note that contig IDs are ordered by their 

co-association module, and the color of contig-IDs along the x-axis is determined by the 

co-association module that the majority of SNPs in that contig cluster with.  Contigs previously 

identified as undergoing convergent evolution with spruce by Yeaman et al. 2016 are indicated 

with “*''. Abbreviations: “Temp": temperature, “Precip": precipitation, “freq": frequency. 

Figure 3. Comparison of linkage disequilibrium (lower diagonal) and recombination rates 

(upper diagonal) for exome contigs.  
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Only contigs with SNPs in the mapping panel are shown. Rows and column labels correspond 

to Figure 2G. Darker areas represent either high physical linkage (low recombination) or high 

linkage disequilibrium.  

Figure 4. Overview of galaxy biplots.  

The association between allele frequency and one variable is plotted against the association 

between allele frequency and a second variable. The Spearman’s ρ correlation between the two 

variables (mean annual temperature or MAT and mean annual precipitation or MAP in this 

example) is shown in the lower right corner. When the two variables are correlated, 

genome-wide covariance is expected to occur in the direction of their association (shown with 

quadrant shading in light grey). The observed genome-wide distribution of allelic effects is 

plotted in dark grey and the 95% prediction ellipse is plotted as a black line. Because derived 

alleles were coded as 1 and ancestral alleles were coded as 0, the location of any particular 

SNP in bivariate space represents the type of environment that the derived allele is found in 

higher frequency, whereas the location of the ancestral allele would be a reflection through the 

origin (note only derived alleles are plotted). 

Figure 5. Galaxy biplots for different environmental variables for regular (left column) and 

structure-corrected (right column) associations.  

Top candidate SNPs are highlighted against the genome-wide background. The internal color of 

each point corresponds to its co-association module (as shown in Figure 2 C-F). Top row: mean 

annual temperature (MAT) vs. mean annual precipitation (MAP), middle row: MAT and 

Elevation, bottom row: MAT and latitude (LAT). 
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Figure 6. Pie charts representing the frequency of derived candidate alleles across the 

landscape. 

Allele frequency pie charts are overlain on top of an environment that the SNP shows significant 

associations with. The mean environment for each population is shown by the color of the 

outline around the pie chart. A) Allele frequency pattern for a SNP from contig 1 in the Multi 

cluster from Figure 2. The derived allele had negative associations with temperature but positive 

associations with latitude. B) Allele frequency pattern for a SNP from contig 8 in the Aridity 

cluster. The derived allele had negative associations with annual:heat moisture index (and other 

measures of aridity) and positive associations with latitude. SNPs were chosen as those with 

the highest degree in their co-association module. 

Figure 7. Co-association modules mapped to co-expression clusters determined by 

climate treatments.  

Contig ID, color, and order shown on the bottom correspond to co-association modules plotted 

in Figure 2. Co-expression clusters from [55] are shown at the top. 

Figure 8. Comparison of co-association networks resulting from simulated data for 3 de- 

mographies. 

 A) Isolation by distance (IBD), B) range expansion from a single refuge (1R), and C) range 

expansion from two refugia (2R). All SNPs were simulated unlinked and 1% of SNPs were 

simulated under selection to an unmeasured weak latitudinal cline. Boxplots of degree of 

connectedness of a SNP as a function of its strength of selection, across all replicate 

simulations (top row). Examples of networks formed by datasets that were neutral-only (middle 

row) or neutral+selected (bottom row) outlier loci. 
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Supplementary Tables 

Table S1. Results from GO analysis for all top candidate genes and for each group.  

The top 5 processes are shown for each category. “P” represents the P-value from parent-child 

Fisher test, while "fdr" represents significance after correction for false discovery rate. 

Table S2. Top candidate genes and their annotations.  

For each gene the following information is indicated: the co-association module ID 

(“group_subMod”), the number of outlier SNPs in each of the four major groups (“Multi”, 

“Aridity”, “Freezing”, or “Geography”), the Gene ID used in the main paper (“NewContigIDMod”), 

the color used for plotting (“module_col”), whether or not its homolog shows convergent signals 

of adaptation with spruce (“is.covergent”), TAIR ID (“tair”), putative gene function 

(“Annotations”), whether or not the gene was differentially expressed (“diffExp”), and the 

co-expression cluster (“coexCluster”). 
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Supplementary Figures 

Figure S1. Histogram of XTX estimated from Bayenv2 for all SNPs (top) and for top candidate 

SNPs (bottom). 

Figure S2. Undirected graph network for the Multi group (enlarged version of Figure 2C). 

Figure S3. Undirected graph network for the Aridity group (enlarged version of Figure 2D). 

Figure S4. Undirected graph network for the Freezing group (enlarged version of Figure 2E). 

Figure S5. Undirected graph network for the Geography group (enlarged version of Figure 2F). 

Figure S6. Heatmap of structure-corrected allele associations with the environment, analogous 

to Figure 2B in the main paper. Note that although the pattern is very similar, the magnitude of 

allele correlations is smaller in the structure-corrected data. 

Figure S7. Linkage disequilibrium heatmap. Mean correlation among allele frequencies between 

top candidate genes. Genes are ordered the same as Figure 2G in the main paper. 

Figure S8. Recombination heatmap, clustered by recombination rates. The same data as is 

shown in Figure 3, except re-clustered by recombination rates to more easily see the patterns of 

physical linkage. 

Figure S9. Loadings of environments onto PC axes. The length and direction of each vector 

represents the scaled loading of that environmental variable onto the PC axis. The color of each 

vector represents the mean proportion of variance explained by that environment in the two 

axes plotted. 
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Figure S10. Outliers on PC axes. The distribution of log-10 Bayes Factors for the association 

between a SNP and a PC axis. Each point is a SNP colored according to its co-association 

module in Figure 2C-F. Vertical and horizontal lines represent criteria for significance, and the 

black ovals represent the 95% prediction ellipse. Note that candidate SNPs all had BF > 2 with 

at least one univariate environmental variable. 

Figure S11. SNP annotations and genomic features. Proportion of exome SNPs falling into 

various categories for genomic features compared to in the top candidate list. 3primeFLANK: 3’ 

flanking region; 3primeUTR: 3’ untranslated region; 5primeFLANK: 5’ flanking region; 

5primeUTR: 5’ untranslated region; non-tcontig: not located in a transcriptomic contig 

(intergenic); nonsyn: non-synonymous substitution; unk-adj: unknown adjacent region; 

unk-flank: unknown flanking region; UNKNOWN-ORF: unknown open reading frame. 

Figure S12. Error rates from the simulations given a less stringent criteria (Bonferroni, left) and a 

more stringent criteria (Bonferroni and Bayes Factors from bayenv2, right). The less stringent 

criteria was used for the simulations because it had some false positives (A), while the more 

stringent criteria was used for the empirical data because it didn’t have any false positives (B). 

The three demographies are isolation by distance (IBD), range expansion from one refuge (1R), 

and range expansion from two refugia (2R). While using the more stringent criteria resulted in 

no false positives, it also reduced the number of true positives (compare C and D), with the most 

severe reduction under isolation by distance. 

Figure S13. Pairwise distances among loci as a function of selection for simulated data. 

Evaluation of 0.1 as a distance threshold for creating an co-association module. The three 

demographies are isolation by distance (IBD), range expansion from one refuge (1R), and range 

expansion from two refugia (2R). For the simulated data, top candidates were chosen as 
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described in the methods. Multivariate euclidean distance was calculated among the loci based 

on their associations with environments, and the proportion of pairwise distances above the 

distance threshold of 0.1 (used for the empirical data) was calculated for each type of 

comparison. We evaluated four types of pairwise comparisions: neutral loci with each other 

("Neut-Neut"), neutral loci with selected loci ("Neut-Sel"), all selected loci with each other 

("Sel-Sel"), and only loci under strong selection with each other (s > 0.1, "strongSel-strongSel"). 

A higher proportion of pairwise distances above the threshold indicates that these loci would be 

more connected to each other in the co-association network. 

Figure S14. More examples of networks from simulations. The simulated datasets were nested 

within randomly generated selective environments, such that different demographic histories 

were simulated on the same environmental landscape. For this randomly generated 

environment, loci simulated under stronger selection had a propensity to cluster differently than 

loci simulated under weaker selection.  To be clear, they still show the same patterns of 

associations, but the absolute value of the associations was just larger for the loci under strong 

selection and this caused the creation of a second cluster. 
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