Abstract
Thyroid cancer progression from curable well-differentiated thyroid carcinoma to highly lethal anaplastic thyroid carcinoma is distinguished by tumor cell de-differentiation and recruitment of a robust stromal infiltrate. Combining an integrated thyroid cancer single-cell sequencing atlas with spatial transcriptomics and bulk RNA-sequencing, we define stromal cell subpopulations and tumor-stromal cross-talk occurring across the histologic and mutational spectrum of thyroid cancer. We identify distinct inflammatory and myofibroblastic cancer-associated fibroblast (iCAF and myCAF) populations and perivascular-like populations. The myCAF population is only found in malignant samples and is associated with tumor cell invasion, BRAFV600E mutation, lymph node metastasis, and disease progression. Tumor-adjacent myCAFs abut invasive tumor cells with a partial epithelial-to-mesenchymal phenotype. Tumor-distant iCAFs infiltrate inflammatory autoimmune thyroid lesions and anaplastic tumors. In summary, our study provides an integrated atlas of thyroid cancer fibroblast subtypes and spatial characterization at sites of tumor invasion and de-differentiation, defining the stromal reorganization central to disease progression.
Competing Interest Statement
E.L. is a co-founder of StemSynergy Therapeutics, a company that seeks to develop inhibitors of major signaling pathways (including the Wnt pathway) for the treatment of cancer. E.M.J. reports other support from Abmeta, other support from Adventris, personal fees from Achilles, personal fees from DragonFly, personal fees from Parker Institute, personal fees from Surge, grants from Lustgarten, grants from Genentech, personal fees from Mestag, personal fees from Medical Home Group, grants from BMS, and grants from Break Through Cancer outside the submitted work.