Abstract
The relationship of the brain’s intrinsic neural timescales (INTs) during the resting state with event-related activity in response to external stimuli remains poorly understood. Here, we bridge this gap by combining computational modeling with magnetoencephalography (MEG) data to investigate the relation of intrinsic neuronal timescales (INT) with task-related activity, e.g., event-related fields (ERFs). Using the Jansen-Rit model, we first show that intracolumnar (and thus intra-regional) excitatory and inhibitory connections (rather than inter-regional feedback, feedforward and lateral connections between the columns of different regions) strongly influence both resting state INTs and task-related ERFs. Secondly, our results demonstrate a positive relationship between the magnitude of event-related fields (mERFs) and INTs, observed in both model simulations and empirical MEG data collected during an emotional face recognition task. Thirdly, modeling shows that the positive relationship of mERF and INT depends on intracolumnar connections through observing that the correlation between them disappears for fixed values of intracolumnar connections. Together, these findings highlight the importance of intracolumnar connections as a shared biological mechanism underlying both the resting-state’s INTs and the task-state’s event-related activity including their interplay.
Competing Interest Statement
The authors have declared no competing interest.