Abstract
Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth’s norm of reaction. Determining the identity of those mechanisms and the relative importance of each of them is one of the main challenges to understanding phenotypic plasticity. Quantitative proteomics combined with experimental studies allow for the identification of potential molecular contributors to a plastic response through quantification of expressed gene products. Here, we present the results of a quantitative proteomics analysis of mature upper first molars (M1s) in Mus musculus from a controlled feeding experiment. Pregnant and nursing mothers were fed either a low-dietary protein (10%) treatment diet or control (20%) diet. Expression of tooth-related proteins, immune system proteins, and actin-based myosin proteins were significantly altered in our low-dietary protein sample. The recovery of expression change in tooth development proteins was anticipated and consistent with previous proteomic studies. We also identified differential immune protein response along with systematic reduction in actin-based myosin protein expression, which are novel discoveries for tooth proteomics studies. We propose that studies which aim to elucidate specific mechanisms of molar phenotypic plasticity should prioritize investigations into the relationships between IGF regulation and tooth development and actin-based myosin expression and tooth development.
Research Highlights A low-protein diet during development results in significantly altered protein expression for major dental building proteins, immune system proteins, and actin-based myosin proteins within Mus musculus.
Competing Interest Statement
The authors have declared no competing interest.