Abstract
Respiratory viral infections pose a significant global public health challenge, partly due to the difficulty in rapidly and accurately distinguishing between viruses with similar symptoms at the point of care, hindering timely and appropriate treatment and limiting effective infection control and prevention efforts. Here, we developed a multiplexed, non-invasive saliva-based, reverse transcription loop-mediated isothermal amplification (RT-LAMP) test that enables the simultaneous detection of three of the most common respiratory infections, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza (Flu), and respiratory syncytial virus (RSV), in a single reaction via specific probes and monitored in real-time by a machine-learning-enabled compact analyzer. Our results demonstrate that the multiplexed assay can effectively detect three target RNAs with high accuracy. Further, testing with spiked saliva samples showed strong agreement with reverse transcription polymerase chain reaction (RT-PCR) assay, with area under the curve (AUC) values of 0.82, 0.93, and 0.96 for RSV, Influenza, and SARS-CoV-2, respectively. By enabling the rapid detection of respiratory infections from easily collected saliva samples at the point of care, the device presented here offers a practical and efficient tool for improving outcomes and helping prevent the spread of contagious diseases.
Competing Interest Statement
The authors have declared no competing interest.