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Abstract 
 
Background 
Although they form a unitary phenomenon, the relationship between extracranial M/EEG 
and transmembrane ion flows is understood only as a general principle rather than as a 
well-articulated and quantified causal chain. 
 
Method 
We present an integrated multiscale model, consisting of a neural simulation of thalamus 
and cortex during stage N2 sleep and a biophysical model projecting cortical current 
densities to M/EEG fields. Sleep spindles were generated through the interactions of local 
and distant network connections and intrinsic currents within thalamocortical circuits. 
32,652 cortical neurons were mapped onto the cortical surface reconstructed from 
subjects’ MRI, interconnected based on geodesic distances, and scaled-up to current 
dipole densities based on laminar recordings in humans. MRIs were used to generate a 
quasi-static electromagnetic model enabling simulated cortical activity to be projected to 
the M/EEG sensors.  
 
Results 
The simulated M/EEG spindles were similar in amplitude and topography to empirical 
examples in the same subjects. Simulated spindles with more core-dominant activity were 
more MEG weighted. 
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Comparison with Existing Methods 
Previous models lacked either spindle-generating thalamic neural dynamics or whole 
head biophysical modeling; the framework presented here is the first to simultaneously 
capture these disparate scales simultaneously. 
 
Conclusions 
This multiscale model provides a platform for the principled quantitative integration of 
existing information relevant to the generation of sleep spindles, and allows the 
implications of future findings to be explored. It provides a proof of principle for a 
methodological framework allowing large-scale integrative brain oscillations to be 
understood in terms of their underlying channels and synapses. 
 
Keywords 
MEG, EEG, Forward Model, Sleep, Spindle, Thalamus, Cortex, Human  
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1. Introduction  
Magnetoencephalography (MEG) and electroencephalography (EEG, together M/EEG), 
are complementary, non-invasive, instantaneous, and clinically essential, measures of 
human neural activity. M/EEG are measured as global brain activities, but are known to 
ultimately arise from channel currents, at a spatial scale ~8 orders of magnitude smaller 
(Cohen, 2017). The causal chain which leads to M/EEG can be divided into two linked 
domains: (1) the biophysical propagation of electromagnetic fields after summating and 
cancelling under anatomical constraints; and (2) the neurobiology of large networks of 
active neurons whose ionic currents generate these fields. Here we present an initial effort 
to traverse the spatial scales by integrating simulations of large networks of neurons with 
biophysical models of electromagnetic propagation, informed by non-invasive imaging 
and invasive recordings in humans, as well as decades of work in animal models. 

Ion movements through ligand- and voltage-gated transmembrane channels result in 
current flows which are influenced by the intrinsic channel properties of each neuron and 
the activity of the network. These currents flow through intracellular and extracellular 
spaces to form complete circuits, restricted by cellular membranes, and thus microscopic 
cellular anatomy (Einevoll et al., 2013). Currents cancel and summate locally with those 
of other neurons in the same cortical column, producing a net current which can be 
expressed as a multipole expansion (Nunez and Srinivasan, 2009). At a distance, the 
dipolar term predominates, and the local contribution is typically expressed as a current 
dipole moment. Before reaching the sensors, current dipole moments from different 
columns cancel and summate mesoscopically with other columns depending on their 
relative position and orientation in the highly folded cortical surface, and the covariance 
and phase synchrony of their magnitudes over time (Ahlfors et al., 2010a, 2010b; Irimia 
et al., 2012; Linden et al., 2011). Ultimately, the signal at each M/EEG sensor is the 
result of the complex cancellation and summation of microscopic synaptic and intrinsic 
currents from the many thousands or millions of neurons contributing to any single 
sensor’s leadfield.  

Transmembrane currents are the result of spontaneous or evoked neural activity, which 
can be modeled computationally with various degrees of realism, balancing accuracy at 
the individual cell level against the quantity of neurons that comprise the simulated 
network. In the current study, we focus on a model for stage 2 of non-rapid eye 
movement sleep (N2) which is characterized by spontaneous sleep spindles. Sleep 
spindles manifest in normal M/EEG as spontaneous bursts of 10-16 Hz activity lasting 
0.5-2 s and are thought to be important for memory consolidation (Andrillon et al., 2011; 
Bonjean et al., 2011; Contreras et al., 1996; Dehghani et al., 2011a; Diekelmann and 
Born, 2010; Sejnowski and Destexhe, 2000). A large number of studies in animal models 
have established the key elements in spindle generation: local circuit interactions between 
thalamocortical and thalamic reticular nucleus neurons, reinforcing intrinsic rhythmicity 
from successive activation of the hyperpolarization-activated cation current, Ih (Alain 
Destexhe et al., 1996; McCormick and Pape, 1990) and low-threshold Ca2+ current IT 
(Huguenard and McCormick, 1992; Huguenard and Prince, 1992). Secondarily, the 
corticothalamic projections play a role in synchronizing and terminating the spindle 
(Bonjean et al., 2011; Timofeev et al., 2001). 
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Although the initial circuitry and cellular properties generating spindles are thus in the 
thalamus, the transmembrane currents that produce the M/EEG are cortical. The 
thalamocortical projection connecting these structures is comprised of a focal projection 
to layer 4 (termed the ‘core’), and a distributed projection to upper layers (termed the 
‘matrix’) (Jones, 2002, 2001). We found previously that sleep spindles detected in MEG 
are more numerous and less synchronous than EEG spindles (Dehghani et al., 2011a, 
2010), and suggested that this may reflect a relatively greater sensitivity of EEG to the 
matrix and MEG to the core projections (Piantoni et al., 2016). Consistent data has been 
obtained with laminar recordings showing primary involvement of middle versus upper 
layers in different spindles or parts of spindles (Hagler et al., 2018). 

In this report we combine neural and biophysical models to generate M/EEG sleep 
spindles. The neural model is based on our previous computational modeling including 
the thalamic and cortical local and distant circuits involved in spindles, including matrix 
and core (Bazhenov et al., 2000; Bonjean et al., 2012; Krishnan et al., 2018b, 2016). All 
relevant thalamic ligand- and voltage-gated currents are included. The cortical elements 
are mapped to 20,484 locations on the ~1 mm resolution cortical surface reconstructed 
from structural MRI. We have found in previous simulations that this resolution is 
necessary in order to accurately model the interactions between simultaneously active 
ECDs in producing M/EEG signals (Ahlfors et al., 2010b). In order to computationally 
model this large number of elements in cortex we use discrete-time models of neurons, 
which capture critical features of individual cell dynamics and synapses with difference 
equations (Rulkov et al., 2004; Rulkov and Bazhenov, 2008).  

Empirical sleep M/EEG were collected to provide a basis for model evaluation and 
simulated neurons were embedded in donor cortical and cranial substrates produced from 
structural MRI collected from the same subjects. Thus, in our framework, it is the neural 
activity of individual persons that is modeled, as cortical geometry, since tissues 
intervening between brain and sensors, and connections among neurons are derived from 
the reconstructed cortical geometry of the subject. Microscopic cellular currents are 
scaled to mesoscopic current dipole moment densities using factors derived from human 
laminar electrode data. The extracranial electromagnetic fields generated by these 
mesoscopic sources are derived by quasi-static electromagnetic forward modeling, which 
accounts for orientation induced summation and cancelation by utilizing high-resolution 
cortical and cranial geometry. The basic validity of the model is tested by comparing the 
topography and amplitude of simulated macroscale extracranial M/EEG fields to those 
empirically recorded in the subject used to create the structural model. 

The modeling approach employed here, an extension of our earlier work, allows for the 
currents of the coupled core and matrix networks to be isolated (Bonjean et al., 2012; 
Krishnan et al., 2018b) and then projected to the extracranial sensors (Gramfort et al., 
2010). We find that simulated spindles have similar amplitudes and topographies to those 
recorded empirically, suggesting that the basic construction of the model is sound. We 
then apply the model to test the hypothesis that spindles recorded with MEG vs EEG tend 
to represent activity in the thalamocortical core vs matrix systems. Results consistent 
with that hypothesis are found. More generally, we demonstrate a proof-of-concept for 
relating microscale neuronal parameters to macroscale M/EEG observations.  
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2. Materials and Methods 

The overall structure of the study is shown in Fig. 1. Two kinds of models were 
constructed: a Neural Model to compute sleep spindle activity during N2 sleep, based on 
the known anatomy and physiology of the thalamus and cortex; and a Biophysical Model 
to project the activity to the M/EEG sensors. Empirical Measurements were obtained and 
analyzed to produce Derived Measures, used to specify the models and validate the 
model: Structural MRI to define the location and orientation of cortical generating 
dipoles, Laminar recordings to scale the current dipole moment densities generating 
spindles, and M/EEG in the same subjects to permit validation of model predictions of 
amplitude and topography. 

2.1. Empirical Data 

2.1.1. Participants: MEG, EEG, and Structural MRI data were recorded for 6 healthy 
adults, (2 male, ages 20-35). Data for one additional subject was collected but was 
excluded from analysis due to poor EEG quality. Written informed consent approved by 
the institutional review boards of the University of California, San Diego or the Partners 
Healthcare Network, as appropriate, was obtained for all subjects. A whole-head MEG 
system with integrated EEG cap (Elekta Neuromag) was used to collect 204 planar 
gradiometers and 60 EEG channels. The position of the subjects’ head within the MEG 
helmet was monitored using head position indicator (HPI) coils (Uutela et al., 2001), 
updated every 15-20 minutes. Each subject’s headshape, HPI coil locations, and EEG 
electrode positions were digitized (Polhemus isotrak). Structural MR images were 
acquired in a separate session. 

2.1.2. M/EEG: M/EEG data were acquired during natural sleep at 1 kHz with a 300 Hz 
low-pass antialiasing filter. Epochs of stage II non-REM sleep were selected for analysis 
using standard criteria (Iber et al., 2007). Channels with poor data quality or gross 
artifacts were excluded by visual inspection. The electrocardiogram artifact was removed 
with independent component analysis (Delorme and Makeig, 2004). 

2.1.3. Structural MRI: High-resolution structural images were acquired with a 1.5 Signa 
HDx whole body scanner (General Electric). The acquisition protocol consisted of a 3-
plane localizer, calibration scan, and a high-resolution T1-weighted MP-RAGE scans 
(TR = 10.728 s, TE = 4.872 ms, TI = 1000 ms, flip angle = 8 degrees, FOV = 256, 176 
sagittal slices, 1 mm isotropic). 

2.1.4. Laminar recordings: As described in greater detail in (Hagler et al., 2018), after 
obtaining fully informed consent according to the Declaration of Helsinki guidelines as 
monitored by the local Institutional Review Boards, laminar microelectrodes arrays 
(Ulbert et al., 2001) were implanted into cortical tissue designated for resection in 5 
patients (2 male;	 15–42 years old) undergoing surgical treatment for drug resistant 
epilepsy. These arrays consisted of twenty-four 0.040 mm diameter 90%Pt/10%Ir 
contacts with 0.150 mm on-center spacing and were inserted along the surface normal of 
the cortex. Microelectrode localization within the cortical lamina was based on surgical 
procedure and electrode design and confirmed by histology in two patients. Bipolar 
referencing of reported laminar potentials yields a depth-resolved measure of potential 
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gradients within and among cortical layers to be recorded simultaneously. After 
wideband (DC 10 kHz) preamplification (gain 10x, CMRR 90db, input impedance 1012 
ohms), the laminar gradient recordings were antialiased at 0.5 kHz, gain 1000x, digitized 
at 2 kHz, 16 bit and stored continuously. Notch filters were applied to remove line noise 
and data from artifact-containing contacts were replaced by the weighted average of 
neighboring channels using an exponential decay function, λ = 0.1 channel spaces, 
(Hagler et al., 2018). Mild 1d spatial smoothing was applied with a Gaussian kernel (σ = 
0.64) channel spaces, in order to ensure gradual and continuous variation across laminar 
channels, thereby suppressing false sources and sinks due to minor signal fluctuations.  

2.2. Derived Measures 

2.2.1. Calculation of current dipole moment density scale: Periods of N2 sleep were 
isolated by the prevalence of generalized slow rhythms and spindles in simultaneously 
recoded cortical and scalp electrodes. Within these periods spindles were detected as 
described in Hagler et al. (2018). Briefly, after artifact rejection, spindles were identified 
as epochs with continuous sustained power in the 10-16 Hz spindle band (Andrillon et al., 
2011). Spindle identification was made more selective by adding power in adjacent 
frequency bands as a rejection criteria (Mak-Mccully et al., 2017). Putative spindle 
epochs were detected independently for each laminar contact and epochs with durations 
less than 200 ms were rejected. Epochs containing a spindle in a least one laminar 
channel were identified and bounded by the earliest spindle onset and latest spindle offset 
across all channels, yielding a single unified set of detected spindle epochs for the entire 
array.  

The laminar current source density (CSD), in µA/mm3, of sleep spindles was calculated 
by estimating the explicit quasi-electrostatic inverse of the laminar potential gradients 
(Pettersen et al., 2006). CSD’s were scaled by their distance from the center of the array 
to yield current dipole moments per unit volume, and then trapezoidally integrated over 
the length of the column to yield current dipole moment densities, in µAmm/mm2, or 
nAm/mm2. Microscopic transmembrane currents were scaled up to mesoscopic patch 
current dipole moment densities, a quantity corresponding to the dipole moment per unit 
area. This was accomplished by in two steps: scaling these currents by the cortical patch 
area represented by each column, then scaling these current densities to be consistent 
with empirical spindle current dipole moment densities recorded from human laminar 
microelectrode data  

 

2.2.2. M/EEG spindle topographies: Empirical and simulated M/EEG time series were 
band-passed to between 10 and 16 Hz with an 8th order zero-phase IIR filter. The spindle-
band complex analytic signal was extracted with the Hilbert transform and its envelope 
obtained by computing the elementwise modulus of the phasor time series. Spindles were 
automatically detected on empirical and simulated EEG standard criterion of sustained 
power in the 10-16 Hz spindle band (Andrillon et al., 2011). In short, the spindle band 
envelope was smoothed with a 300 ms Gaussian kernel (σ = 40 ms), and then normalized 
into units of standard deviation. Spindle occurrences were assigned to peaks of at least 2 
s.d. and their temporal extent extended from these peaks until the smooth envelope fell 
below 1 s.d. For each detected spindle, the mean (unnormalized) envelope was computed 
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and these data were interpolated over flattened sensor positions to produce topographic 
maps of spindle band envelope in a standardized head space (Oostenveld et al., 2011). 
Grand average maps (Fig. 6) were generated by averaging the mean spindle topographies 
from all subjects, or simulation runs.  

2.2.3. Core/Matrix index: The degree of core or matrix character was quantified for each 
simulated spindle. First, the 10-16 Hz envelopes were computed for the neural model 
derived current dipole moment density time series for core and matrix layers, using the 
procedure described for M/EEG analysis above. An index of core vs. matrix character 
was defined: 

𝐶𝑜𝑟𝑒/𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑑𝑒𝑥 =   
!(!,!)
!"#$!

!!!
!
!!!

!(!,!)
!"#$%&!

!!!
!
!!!

− 1                           [1] 

where T is the duration of the spindle in samples, N is the total number of cortical current 
dipole moment densities (20484), and 𝑠 is the 10-16 Hz complex analytic signal. Positive 
values indicate a stronger core character and negative values indicate a stronger matrix 
character. 

2.3. Biophysical Model  

2.3.1. Cortical reconstruction: White-gray matter surfaces were reconstructed from the 
MR volumes using FreeSurfer (Fischl, 2012). Surfaces were sampled at three resolutions 
as recursively subdivided icosahedra with 642, 10,242, and 163,842 vertices per 
hemisphere, wherein lower resolution meshes are nested subsets of higher resolution 
meshes. These are referred to as ico3, ico5, and ico7 surfaces, respectively, indicating the 
number of subdivisions. Within each hemisphere the geodesic distance between all pairs 
of vertices was computed using the Dijkstra approximation (Balasubramanian et al., 
2009) with 13 Steiner nodes.  

2.3.2. Forward Model (Cortical current dipole moment densities to M/EEG): The 
forward model, or gain matrix describing the gradiometer and EEG sensor activity 
produced by equivalent current dipoles at each ico5 vertex was then computed for each 
subject’s cortex. In addition to the white-gray matter surface, four extra-cortical boundary 
shells were reconstructed from the segmented (Fischl, 2012) images: gray-matter-
cerebral-spinal fluid (CSF), CSF-inner skull, inner skull-outer skull, and outer skull-
scalp. While the cranial boundaries consisted of triangular meshes with 5,124 vertices, 
critically, the cortical mesh was sampled at ~1 mm resolution (327,684 vertices) in order 
to capture the summation and cancelation of opposed dipoles. The position of these 
surfaces relative to the EEG sensors and HPI coils (Uutela et al., 2001) was determined 
by registering the digitized headshape to the outer-scalp surface using non-linear 
optimization (matlab’s fmincon) with manual corrections. The position of these surfaces 
relative to the gradiometers was computed using the known relative positions between 
and the surfaces and the HPI coils, and the HPI coils and the gradiometers. The 
orientation of each dipole was set to the surface normal of the white-gray interface. The 
quasi-static electromagnetic forward solution was numerically computed using a four 
shell boundary element model, or BEM as implemented with the OpenMEEG software 
suite (Gramfort et al., 2010; Kybic et al., 2005). Consistent with reported experimental 
ranges, conductivities of 0.33, 1.79, 0.022, and 0.33 S/m, were used for the brain, CSF, 
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skull, and scalp, respectively.  

Rows of the resulting gain matrices were multiplied by the approximate Voronoi area 
(Meyer et al., 2003) of the cortical patch each represents to yield a vertex by sensor 
forward operator describing the contribution of each cortical patch’s current dipole 
moment density to each gradiometer and voltmeter. Current dipole moment densities 
resulting from core and matrix system pyramidal neurons were computed independently, 
summed together, and then multiplied by the forward operator to yield simulated EEG 
and MEG gradiometer time series.  

Briefly, for the relatively low frequency of biologically relevant signals, electric and 
magnetic fields become uncoupled and the quasi-static approximations of the Maxwell 
equations can be used (Nunez and Srinivasan, 2009). Under this regime, the EEG forward 
model is a numeric solution for voltage, V, given f, the divergence of current density 
distribution, Jp, in the Poisson equation: 

𝛁 ∙ σ𝛁𝑉 =  𝑓 =  𝛁 ∙ 𝐉!                                          [2] 

where σ is the tissue conductivity, in S/m. Because the cranial tissues are modeled as 
nested, closed, and piecewise homogenous domains, the integration reduces down to 
solving a symmetric linear system (Kybic et al., 2005). For MEG, solving for the 
magnetic field B requires both the current source distribution Jp and the computed electric 
field V, and is obtained by evaluating the Biot-Savart law at the boundaries: 

𝐁 𝑟 =  !!
!!

𝐉! 𝐫′ − σ𝛁𝑉 𝐫′  ×  𝐫!𝐫!
𝐫!𝐫! ! 𝑑𝐫′     [3] 

where r and r′ are displacements of the current source and magnetometer, respectively, 
and µ0 is the vacuum permeability constant. Planar gradiometer leadfields are derived by 
differentiating virtual magnetometer, or integration point, leadfields with respect to the 
length of the gradiometer. See (Gramfort et al., 2010; Kybic et al., 2005) for these 
methods in greater detail.  

 

2.4. Neural Model 

2.4.1. Neurons: We used a computational model of a thalamocortical network (Fig 2A) 
with three layers in cortex, with each layer comprised of excitatory (PY) neurons and 
inhibitory (IN) neurons. The thalamus consisted of a network of core (specific) and 
matrix (non-specific) nuclei, each consisting of thalamic relay (TC) and reticular (RE) 
neurons. Conductance-based neural models were used to simulate thalamic neurons. A 
phenomenological model based on difference equation (map-based model) was used for 
cortical PY and IN cells. We have previously demonstrated that such map-based neurons 
are computationally efficient and able to reproduce the response characteristics of 
conductance-based neurons (Bazhenov et al., 2008; Rulkov et al., 2004; Rulkov and 
Bazhenov, 2008). Map-based models use a large discrete time step compared to the small 
integration time step used by pure conductance-based models while still capturing the 
dynamics of these models. Map-based models are capable of simulating large-scale 
network dynamics with emergent oscillatory activity (Rulkov et al., 2004) including slow 
oscillations during NREM sleep (Komarov et al., 2017).  
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The following equation describes the update of the PY neurons in time: 

x!!! = f!  x! ,   y!  +  𝛽I!"#  

𝑦!!!  =  𝑦!  − 𝜇 𝑥! + 1 + 𝜇 𝜎 + 𝜇 ∗  𝛽!𝐼!"#     [4] 

where variable x! represents the membrane potential of a biological neuron at time t and 
yt represent slow varying ion channel dynamics. The parameter µ (=0.0005) describes the 
change in the slow variable (µ less than 1 lead to slow update of y variable). The 
parameter 𝛽 scale the input synaptic currents (I!"#) for x variable, with 𝛽 =0.133. The 
parameter 𝜎 (=0.02) defines the resting potential of the model neuron. The function fα is 
given below: 

 𝑓!  𝑥! ,𝑢! =  

!
!!!!

 +  𝑢! ,                                                   𝑥 ≤ 0 
  𝛼 +  𝑢! ,               0 <  𝑥!  < 𝛼 +  𝑢!  𝑥!!! ≤ 0
−1,                             𝑥! ≥ 𝛼 +  𝑢! 𝑂𝑅 𝑥!!! >  0

    [5] 

where 𝑢! is taken as 𝑦! + 𝛽 I!"# from Eq 1, 𝛼 (=3.65) is a control parameter which was 
set to obtain tonic spiking like activity for wide range of input currents.  

The inhibitory INs were implemented using only the x variable to capture the fast spiking 
nature of inhibitory neurons and is described by the following equation:  

x!!! = f!  x! , y∗ +  𝛽 I!"#         [6] 

where, y∗=-2.90 with the same 𝑓!  function as Eq 2 with 𝛼 =3.8 and 𝛽 =0.05. 

The thalamic TC and RE cells were modeled as conductance-based neurons, described by 
the following equation:  

𝐶!
!"
!"
=–𝑔!"#$ 𝑉–𝐸!"#$ – 𝐼!"#– 𝐼!"#                            [7] 

where the membrane capacitance, 𝐶!, is equal to 1 µF/cm2, non-specific (mixed Na+ and 
Cl-) leakage conductance, 𝑔!"#$, is equal to 0.0142 mS/cm2 for TC cells and 0.05 mS/cm2 
for RE cells, and the reversal potential, 𝐸!"#$, is equal to -70 mV for TC cells and -77 mV 
for RE cells. 𝐼!"# is the sum of active intrinsic currents, and 𝐼!"# is the sum of synaptic 
currents. The area of a RE cell and a TC cell was 1.43x10-4 cm2 and 2.9x10-4 cm2, 
respectively. RE and TC cells included fast sodium current, INa, a fast potassium current, 
IK, a low-threshold Ca2+ current IT, and a potassium leak current, IKL = gKL (V - EKL), 
where EKL = -95 mV. In addition, a hyperpolarization-activated cation current, Ih, was 
also included in TC cells. For TC cells, the maximal conductances are gK = 10 mS/cm2, 
gNa= 90 mS/cm2, gT= 2.2 mS/cm2, gh = 0.017 mS/cm2, gKL = 0.0142 mS/cm2. For RE 
cells, the maximal conductances are gK = 10 mS/cm2, gNa = 100 mS/cm2, gT = 2.3 
mS/cm2, gleak = 0.005 mS/cm2. Fig. 3C shows a schematic illustration of the currents and 
synapses in our conductance-based neurons. The expressions of voltage- and Ca2+- 
dependent transition rates for all currents are given in (Bazhenov et al., 2002; Chen et al., 
2012). 

2.4.2. Synaptic currents: All the inputs to the map-based neurons were described by the  
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{𝑔!!!
!"#,𝑑!!!} =

𝛾𝑔!
!"# +  𝑔!"#𝑑!, 1− 𝜂 𝑑! , 𝑠𝑝𝑖𝑘𝑒!"#

𝛾𝑔!
!"#, 1− 1− 𝛿 (1− 𝑑!) , ,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  [8] 

where 𝑔!!!
!"# and 𝑑!!! are the synaptic conductance and depression variable for time t+1, 

𝑔!"#is the synaptic coupling strength similar to the maximal conductance. The parameter 
𝛾 = 0.99  is the decay variable to capture the first order kinetics of the synaptic 
transmission, 𝜂 = 0.00005 is the rate of decay of the depression variable (d). The 
synaptic currents that are input to all conductance-based neurons were governed by 
equations given in (Timofeev et al., 2000) and reproduced here: 

I!"# = 𝑔!"#[𝑂] 𝑉–𝐸!"#                               [9] 

where 𝑔!"#is the maximal conductance, [𝑂] is the fraction of open channels, and Esyn is 
the reversal potential. In RE and PY cells, reversal potential was 0 mV for AMPA 
receptors, and -70 mV for GABA-A receptors. For TC cells, the reversal potential was -
80 mV for GABA-A receptors, and -95 mV for GABA-B receptors. GABAA, and 
AMPA synaptic currents were modeled by the first-order activation schemes. GABA-B 
receptors were modeled by a higher-order reaction scheme that considers the activation of 
K+ channels by G-proteins. The fraction of open channels [𝑂] is calculated according to 
the kinetic equation: 
! !
!!

= α 1− 𝑂 T − 𝛽 𝑂 , 𝑇 = 𝐴Θ 𝑡! + 𝑡!"# − 𝑡 Θ 𝑡 − 𝑡!                [10] 

where Θ(x) is the Heaviside function, 𝑡! is the time instant of receptor activation. The 
parameters for the neurotransmitter pulse were amplitude A = 0.5 and duration tmax = 0.3 
ms. The rate constants, α and β, were α = 10 ms and β = 0.25 ms for GABA-A synapses 
and α = 0.94 ms and β = 0.18 ms for AMPA synapses. E was calculated according to the 
interactive scheme (Tsodyks and Markram, 1997). 

𝐸!!! = 1− 1− 𝐸! 1− 𝑈!" 𝑒!∆!/!      [11] 

where ∆t is the time interval between nth and (n+1)th spike, τ = 700 ms is the time 
constant of recovery of the synaptic resources and USE is the fractional decrease of 
synaptic resources after an action potential which was varied between 0.07 and 0.15. 
Spontaneous miniature EPSPs and IPSPs were included for the AMPA and GABA-A 
connections within cortical neurons. The arrival times of miniature EPSPs and IPSPs 
followed the Poisson process (Stevens, 1993), with time-dependent mean rate  

𝜇 = log(!!!!!!
!

)                                        [12] 

where 𝑡 is current time and 𝑡! was timing of the last presynaptic spike and 𝑇 = 50 ms.  

 

2.4.3. Synaptic conductance: The maximal conductances for various connections were 
gGABA-A(RE-TC) = 0.045 µS, gGABA-B(RE-TC) = 0.06 µS, gGABA-A(RE-RE) = 0.175 µS; 
core thalamus: gAMPA(TC-PY) = 0.03 µS, gAMPA(TC-IN) = 0.015 µS; matrix thalamus: 
gAMPA(TC-PY) = 0.045 µS, gAMPA(TC-IN) = 0.02 µS; connections within each layer 
(matrix, core and L6) pyramidal neurnons: gAMPA(PY-PY) = 2.5 nS, gNMDA(PY-PY) = 0.4 
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nS; connection from matrix to core: gAMPA(PY-PY) = 1.5 nS, gNMDA(PY-PY) = 0.1 nS; 
connection from matrix to L6 : gAMPA(PY-PY) = 2.0 nS, gNMDA(PY-PY) = 0.2 nS; 
connection from core to matrix: gAMPA (PY-PY) = 1.5 nS, gNMDA(PY-PY) = 0.1 nS; 
connection from core to L6: gAMPA(PY-PY) = 2.0 nS, gNMDA(PY-PY) = 0.2 nS; 
connection from L6 to matrix: gAMPA(PY-PY) = 2.0 nS, gNMDA(PY-PY) = 0.2 nS; 
connection from L6 to core: gAMPA(PY-PY) = 1.5 nS, gNMDA(PY-PY) = 0.1 nS; 
connection betwen PY and IN cells for all layers: gAMPA(PY-IN) = 0.05 µS, gNMDA(PY-
IN) = 0.4 nS, gGABA-A(IN-PY) = 0.05 µS and connection from core and L6 cells to 
thalamic neurons: gAMPA(PY-TC) = 0.025 µS, gAMPA(PY-RE) = 0.045 µS. 

2.4.4. Network connectivity: A schematic of network connectivity is shown in Fig 2A. 
For each subject’s donor cortex, one pyramidal neuron was simulated for each vertex in 
the ico5 mesh (10,242 vertices per hemisphere) for each of layers matrix, core, and L6. 
The ico3 mesh was populated with inhibitory and thalamic neurons at each of 642 
vertices per hemisphere. For all intra-hemispheric synapses, connectively was established 
by comparing synapse-specific fan-out radii to the geodesic distance between vertices on 
the ico7 cortex (163,842 vertices per hemisphere), see Fig. 3B. Inter-hemispheric 
synapses were threaded between homologously located cortical neurons in 85% of cases 
and the remaining connections were made between randomly located neurons. The 
probability of transmission in interhemispheric synapses was reduced to 25% and 50% in 
the core and matrix systems, respectively, in order to represent sparse collosal 
connectivity. Fig. 5B shows simulated current on an inflated cortex at a single time point 
for the core and matrix neurons.  

 

3. Results 

We designed a thalamocortical network model that combined the detailed laminar 
connectivity with the network connectivity of the whole brain based on MRI 
reconstructions. Using this approach we demonstrate the feasibility of connecting the 
cellular level activity with the macroscopic activity seen in M/EEG. We used a difference 
equation (map-based) model for cortical neurons, which has the computational efficiency 
necessary for simulating the cortex at sufficient resolution to accurately reproduce the 
cancellation and summation of cortical dipoles; we used conductance-based neuronal 
models for the thalamic network, which has the elements necessary to accurately 
reproduce the interaction of voltage-gated channels and recurrent synaptic connections 
central to spindle generation.  

In a manner similar to our previous studies, (Bazhenov et al., 2000; Bonjean et al., 2011; 
Krishnan et al., 2016), the state of the network was set to be stage 2 sleep state by 
modifying the intrinsic and synaptic currents to mimic the level of low acetylcholine, nor-
epinephrine and histamine. In this state, the network spontaneously generated electrical 
activity consisting of multiple randomly occurring spindle events involving thalamic and 
cortical neuronal populations. Spindle oscillations are driven by thalamic cell bursting as 
observed by experimental recordings (Steriade et al., 1993). Spindles spontaneously 
reappeared every 3–10s in agreement in prior intracellular data (Contreras et al., 1996) 
and computational models (Bazhenov et al., 2000; Bonjean et al., 2011; A. Destexhe et 
al., 1996; Destexhe et al., 1998). In this computational model, the initiation and 
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termination of spindle sequences critically involved corticothalamic influences (Bonjean 
et al., 2011; Contreras et al., 1996; Timofeev et al., 2001). Furthermore, the 
synchronization of spindles across cortical and thalamic regions is determined by the 
strength and fanout of thalamocortical and corticothalamic connections (Bonjean et al., 
2011; Krishnan et al., 2018b). The model consisted of two thalamocortical systems: core 
and matrix. The matrix system had broad thalamocortical and corticothalamic projections 
which is known to result in lower spindle density and increased spatial synchrony 
(Krishnan et al., 2018b). During spindles, cortical and thalamic neurons in both the core 
and matrix system had elevated and synchronized firing (Fig 3A) consistent with 
previous in-vivo experimental recordings (Steriade et al., 1993). This computational 
neural model was fed into a biophysical model: an electro- and magnetostatic forward 
model was applied to large-scale simulations of a thalamocortical network to simulate 
EEG and MEG signals.  

As described in the Methods (2.2.1), current dipole moment densities were calculated 
using linear microelectrode array recordings spanning the cortical surface scale during 
sleep spindles in stage N2 sleep. The laminar current source density (CSD), in µA/mm3, 
of sleep spindles was calculated by estimating the explicit quasi-electrostatic inverse of 
the laminar potential gradients (Pettersen et al., 2006), followed by appropriate spatial 
scaling and integration over the cortical column to yield current dipole moment densities. 
As shown in Fig. 2, we found sleep spindle surface current densities have an average 
maximum spindle-band envelope on the order of 0.1 nAm/mm2 with considerable 
variation. Therefore, the simulated neural currents (in nA) were divided by the 
approximate Voronoi area (Meyer et al., 2003) of the cortical patch each represents, then 
scaled to approximately match in amplitude this surface current dipole moment density, 
yielding corresponding current dipole moment densities in nAm/mm2. 

We found our model was able to simulate essential elements of empirical M/EEG. Grand 
average topographies of simulated and experimental data, shown in fig. 6, are 
qualitatively similar to experimental ones. The empirical MEG topography, in particular, 
is well-reproduced and shows the characteristic pattern (Dehghani et al., 2011b; 
Manshanden et al., 2002) of frontolateral gradiometer activation. The dynamic range 
across the scalp is higher in the simulated data, likely because the empirical data contains 
widespread non-spindle background activity, forming the 1/f curve of the power 
spectrum, and which was not included in the neural model. 

The simulated EEG topography, while matching the frontal position of the empirical data 
on the anterior-posterior axis, modestly differs in its lateral distribution. Whereas the 
empirical topography characteristically peaks along the midline, the two dorsal lobes of 
the simulated data only partially converge there. This may be due the model’s relatively 
crude implementation of inter-hemispheric connectivity, which consisted of low 
reliability synapses between mostly homologous cortical areas. An alternative possibility 
is that the ideal dipole model is incomplete for EEG (see below). 

The simultaneously simulated MEG and EEG are also similar in magnitude of the 
empirical M/EEG (fig. 7A) with average spindle topography maxima (mean ± s.d. across 
all subjects or model runs) of 56.8 ± 12.6 fT/cm and 49.4 ± 13.4 fT/cm, p = 0.93, for 
simulated and empirical MEG, respectively, and 8.7 ± 0.8 µV and 10.7 ± 2.0 µV, p = 
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0.96, for simulated and empirical EEG. However, despite their quantitative similarity, the 
simulated EEG and MEG spindles show opposite systematic tends, with simulated MEG 
spindles being slightly stronger and EEG spindles being weaker and less varied than 
empirical examples. This differential bias may be due insufficiently detailed or inaccurate 
cranial tissue conductivities, factors that have a much greater bearing on EEG than MEG, 
for whom these tissues are nearly transparent. Individual differences in skull conductivity 
(Akalin Acar and Makeig, 2013), in particular, may explain the increased inter-subject 
variability in empirical spindles.  Another possibility is that the biophysical generation of 
these signals, commonly thought of as absolutely unified for a given source distribution, 
are in fact partially uncoupled, perhaps by the accumulation of static charges or effective 
monopoles, here unaccounted for, which would contribute to EEG but not MEG.  

For simulated spindles, the relative contributions of the core and matrix systems to 
current dipole moment densities was quantified and, as shown in fig. 7B, we found this 
index to correlate with the ratio of derived MEG vs. EEG maxima (Pearson’s r = 0.24, p 
= 0.019). These data are consistent with the hypothesis that MEG gradiometer recordings 
are more sensitive to core system neurons when compared to EEG recordings which are 
biased towards the matrix system. However, other factors, including individual 
differences, could also explain these results, and more focused studies are needed. 

 

4. Discussion 

In this study, we developed a computationally efficient large-scale hybrid thalamocortical 
model which generated sleep spindles in cortical patches. We estimated the magnitude of 
current dipole density from empirical measures and then used a biophysical model to 
project the output of the model simulation to the EEG and MEG sensors. The patches 
were embedded in the reconstructed cortical surface based on structural MRI data, and 
sufficiently dense to accurately model the summation and cancellation that occurs as 
M/EEG signals propagate from their cortical generators to the extracranial sensors. The 
amplitude and topography of the M/EEG derived from the model were similar to those 
found in empirical recordings in healthy subjects, when using their individual brain and 
head anatomy to define the projection from cortex to M/EEG, thereby suggesting that our 
approach is basically sound. We then applied our model to test the previous hypothesis 
(Bonjean et al., 2011; Dehghani et al., 2010) that EEG activity during spindles is 
relatively more sensitive to the matrix thalamocortical system, while MEG is relatively 
more sensitive to the core thalamocortical system.  

Thus, using this approach, we demonstrate the viability of an integrated model for the 
generation of EEG and MEG, proceeding from ionic and synaptic activity, through local 
and distant networks, whose currents are then passed through a realistic biophysical 
model to generate M/EEG fields that correspond to empirical recordings, a foundational 
problem in neuroimaging. The model presented here simultaneously satisfies a 
considerable ensemble of neural and biophysical constraints including: dozens of neural 
properties, low-threshold Ca2+ current dynamics, the location and orientation of the 
cortical ribbon, empirically-backed biophysically probable maximum current dipole 
moment densities, and observed simultaneous M/EEG topographies and amplitudes. This 
multitude of constraints, embedded in each of the many scales the model traverses, 
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precludes the pitfall of evoking over-tuned parameters in order to reproduce over-
circumscribed behaviors. Given the ambitious scope of our model and the complexity of 
the system that it attempts to emulate, it is unsurprising that its limitations are numerous, 
including limited realism of the neural and biophysical models, limited application to 
M/EEG phenomena, and limited validation measures. 

Our neural model simulated 65,304 cortical neurons and 5,136 thalamic neurons. While 
the model is thus much larger than previous efforts of this kind, it is still contains about 
250,000 times fewer neurons than the actual human forebrain. Moreover, each simulated 
neuron is considerably simpler than a real neuron, especially in the number of synapses 
and number of dendritic compartments. In addition, subcortical areas other than the 
thalamus are not included in our model. While the direct contribution of these areas to 
extracranial M/EEG is minimal (Cohen et al., 2011), many, e.g. the nucleus basalis and 
hippocampus, may play critical roles in the timing, extent, amplitude and propagation of 
cortical activity during spindling. Notwithstanding these limitations, the model is 
sufficiently complex to generate sleep spindles using the same voltage-gated currents, 
within the same local thalamic and distant thalamo-cortico-thalamic synaptic circuits, as 
have been shown (Bonjean et al., 2012; Krishnan et al., 2018b) to generate sleep spindles 
in vivo. Furthermore, the model was sufficiently large to generate cortical patterns with a 
complexity that appears similar to that recorded in vivo (Frauscher et al., 2015; Mak-
McCully et al., 2015; Piantoni et al., 2016) although this needs to be further investigated. 

At its base, our study used a realistic computational model at the level of intrinsic and 
synaptic transmembrane currents to simulate MEG and EEG. It would be possible to 
increase the number of modeled neurons by using a population based neural mass model. 
Using such a model, Ritter et al. (2013) have modeled EEG signals from cortical activity 
projected to extracranial sensors. While such models could reproduce the spectrogram of 
EEG, they do not explicitly resolve activity at the level of individual neuron’s ionic or 
synaptic currents. This becomes critical when trying to leverage information from 
extensive intracellular and direct recordings of cortical and thalamic activity, to test new 
hypotheses. For example, abnormal spindling is common in schizophrenia (Wamsley et 
al., 2012) and variants of the gene CACNA1I, which encodes a T-type low-threshold 
Ca2+ channel and is expressed in the reticular nucleus of the thalamus (Manoach et al., 
2016), are implicated in schizophrenia risk (Ripke et al., 2014). The framework we 
present can be used to simulate the effects of abnormal low-threshold Ca2+ channels on 
M/EEG. Costa and colleagues (Costa et al., 2016) included some of channel details in 
their neural mass model, but their biophysical modeling of EEG only considered an 
anatomically and physiologically implausible point source.  

An important limitation of the neural model presented here is that it does not take into 
account functional specialization or cytoarchitectonic differentiation among cortical 
regions, including hemispheric lateralization. The model framework, however, can 
accommodate these distinctions. Projects using non-invasive structural, functional and 
diffusion MR imaging in large healthy populations now provide detailed cortical 
parcellations into distinct areas (Glasser et al., 2016). These can be combined with post-
mortem transcriptomes to map receptor and channel variants, as well as laminar and 
cellular properties across the cortical mantle (Burt et al., 2017; Smith et al., 2013; van 
den Heuvel and Sporns, 2013). Future work could incorporate these cortical 
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specializations into the neural model to determine if they underlie the variations in 
spindle amplitude and frequency across cortical areas which have been found with 
intracranial recordings (Frauscher et al., 2015; Mak-McCully et al., 2015; Piantoni et al., 
2016).  

Non-invasive imaging studies in humans and tracer studies in primates provide estimates 
of structural and functional connectivity between cortical areas (Glasser et al., 2016; 
Markov et al., 2014). The connections in our model did not incorporate these estimates 
but relied on the geodesic distance between cortical locations. While geodesics are a 
closer analog to anatomical and functional connectivity than conventional Euclidian 
distances, they remain a limiting simplification. A related limitation in our neural model 
is its lack of a conduction delay. Such delays are on the order of 10s of ms between lobes 
or between the thalamus and cortex (Klopp et al., 2000; Mak-Mccully et al., 2017), and 
thus, together with the strength and pattern of cortico-cortical connections could have a 
substantial effect on the propagation patterns (Muller et al., 2016), coherence, or phase 
relationships within and among spindles. These large-scale interactions are important for 
determining whether and how dipoles summate and propagate to the M/EEG sensors, and 
need to be addressed in future iterations of the model. 

An additional limitation of our neural model is that the current dipole moment density 
produced by cortical spindles was based on empirical measurements, and the model only 
provided the timing, location and relative amplitude of the spindles. Current source 
density was calculated from sleep spindles recorded by 24 microcontacts spaced every 
150 µm on center, traversing the cortical thickness from the pia to white matter (Hagler et 
al., 2018). The observed amplitude (~0.1 nAm/mm2) is consistent with physiologically 
plausible maximum current dipole moment densities (Murakami and Okada, 2015). An 
important extension of the model would be to determine if this empirically determined 
value is consistent with that calculated in a detailed model of the columnar microstructure 
such as LFPy (Lindén et al., 2014) or the blue brain project (Markram, 2006). This 
calculation requires accurate reconstruction of dendritic domains, cell-densities and 
distributions, and synaptic terminations, in multi-compartment Hodgkin-Huxley models 
(Lindén et al., 2014). Such models are obviously too computationally expensive to 
incorporate directly into the many cortical patches in our model. However, an in-depth 
analysis of a single patch could help inform how well the limited number of cells we 
simulate in each patch represents the large number of actual cortical cells in that area. 

The biophysical model used to propagate the cortical activity to the extracranial sensors 
also has limitations. We use a boundary element model which has been found to provide 
a good estimate of propagation at reasonable computational cost (Gramfort et al., 2010). 
Our model estimates four tissue-boundary ‘shells’ from each subject’s structural MRI: 
pia/CSF; CSF/skull; skull/scalp; and scalp/air. Although other models commonly omit 
the CSF layer, simulations indicate that its inclusion produces greater smearing of the 
EEG (Irimia et al., 2012; Lopes da Silva, 2013). Within the layers we use accepted tissue 
conductivities for the brain, CSF, and scalp (Hallez et al., 2007). However, the in vivo 
electroconductive properties of the skull remain controversial and may vary significantly 
across subjects (Akalin Acar and Makeig, 2013; Awada et al., 1998; Hallez et al., 2007). 
Furthermore, cranial nerve exits and other skull inhomogeneities may have significant 
effects (Akalin Acar and Makeig, 2013) which are unaccounted for in our model. Note 
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that these issues will not affect MEG as, at the precision of biomedical analyses, the 
magnetic permeability of these tissues is equivalent to that of a vacuum (Hämäläinen et 
al., 1993). 

The cortical surface used in the biophysical model is also reconstructed from each 
individual subject’s structural MRI (Dale et al., 1999). Extracranial M/EEG fields 
generated by a cortical dipole depend not only on its location and the magnitude of its 
moment, but are also highly dependent on the extent of spatial-temporal synchrony with 
other dipoles across the cortex and their relative orientations (Ahlfors et al., 2010a; 
Lutkenhoner, 2003). Dipoles are created by the post-synaptic currents of aligned 
pyramidal neurons oriented perpendicular to cortical surface (Lopes Da Silva, 2004; 
Nunez and Srinivasan, 2009). Thus, synchronous dipoles with opposed orientations, such 
as those on opposite side of the sulcal walls, will cancel each other out. In fact, the 
majority of the total cortical MEG signal is canceled before exiting the head on account 
of this phenomena (Ahlfors et al., 2010b; Lutkenhoner, 2003). Although the neural model 
contains only 20,484 cortical patches, their activity is mapped to 327,684 vertices for the 
biophysical model, which provides ~1 mm resolution. Our previous simulations indicate 
that this resolution better captures the summation and cancelation of simultaneously 
active dipoles than lower resolutions (Ahlfors et al., 2010b). The high-resolution cortical 
mesh also reduces the numerical integration errors that can be present in BEM forward 
models with small inter-shell distances. However the efficacy of even finer resolutions at 
capturing cancelation accurately and the extent of errors in cortical ribbon orientation 
reconstruction are unknown, as are their effects on modeled M/EEG. 

Despite these limitations of our neural and biophysical models, they produced reasonable 
amplitudes and topographies in both EEG and MEG. The amplitude of the M/EEG is a 
powerful constraint reflecting the interaction of many parameters and we are not aware of 
a previous study which reproduces both with realistic parameters and cortical source 
topographies. The empirical MEG topography, in particular, is well-reproduced and 
shows the characteristic pattern (Dehghani et al., 2011b; Manshanden et al., 2002) of 
frontolateral gradiometer activation. The leadfields of MEG gradiometers are smaller 
than those of EEG (Irimia et al., 2012), primarily because EEG is smeared by the skull 
and cranial tissues whereas these structures are mostly transparent to MEG (Hämäläinen 
and Ilmoniemi, 1994), especially when comparing bipolar MEG gradiometers to distantly 
referenced scalp EEG. Consequently, MEG is relatively more sensitive to focal sources 
whereas EEG to distributed (Irimia et al., 2012; Lopes da Silva, 2013). The core and 
matrix thalamo-cortical systems correspond to this pattern, with the core pathway 
terminating focally in layer 4 and the matrix more diffusely in superficial layers (Jones, 
2002, 2001), leading to the hypothesis that core spindles would be relatively more 
prominent in MEG and matrix in EEG (Dehghani et al., 2010). We modeled the 
differential projections and terminations of the core and matrix systems and found 
support for this hypothesis. 

In addition to the differing spatial extent of core and matrix spindles, their differing 
laminar distributions may also have an effect on their respective M/EEG signals. Laminar 
recordings in humans show that spindles can be dichotomized depending upon whether 
their LFP gradients are maximal in the middle versus superficial cortical layers, possibly 
corresponding to the core and matrix terminations of thalamocortical fibers (Hagler et al., 
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2018). The CSD calculated from the middle layer spindles produced a typical dipolar 
pattern with a current source and sink of approximately equal magnitude.  However the 
superficial layer spindles consisted of a concentrated current sink and distributed or 
absent sources, yielding an effectively monopolar current distribution. Apparent 
monopoles are often found when analyzing CSD but it is controversial whether these 
represent an experimental or analytic artifact or a physiological phenomenon, such as 
accumulated charge (Bedard and Destexhe, 2013; Destexhe and Bedard, 2012; Gratiy et 
al., 2013; Riera et al., 2012). Most commonly, spindles are a mixture of middle and 
superficial layer waves (Hagler et al., 2018), and we did not distinguish between them 
when calculating the current dipole moment densities, which therefore mainly reflected 
middle layer spindles. Static ion concentrations produce an EEG but no MEG signal, and 
thus accounting for them in the matrix spindles in our model would have accentuated the 
difference between MEG and EEG in the predicted direction (i.e., producing a better 
correspondence between model and empirical results). Furthermore, the EEG signal 
produced by monopolar or unbalanced dipole decreases with distance less quickly than 
that produced by ideal dipoles, and this would tend to increase the similarity of the 
modeled to the empirical EEG spindle topography at midline sites.  

Our model can be easily extended to other M/EEG phenomena such as K-complexes 
(Mak-McCully et al., 2014) and slow oscillations (Krishnan et al., 2018a; Wei et al., 
2016) by marrying their neural computational models to the biophysical model described 
here. Using the same neural model to generate multiple M/EEG phenomena would 
provide a strong constraint on model parameters. Intracranial recordings may inform 
additional constraints, especially for the distribution, synchrony, and phase of cortical 
spindles (Halgren et al., 2018). Because the average spatial distribution of all spindles is 
much broader than that of individual spindles, the large-scale folding patterns of the 
cortex have a disproportionate impact on average spindle topographies. If simultaneous 
extra- and intra-cranial recordings are obtained, then the extracranial topography of 
individual spindles can be predicted by informing the model of the (limited) intracranial 
measures. This would permit predictions from individual spindles to be tested, rather than 
their grand average as was tested in the current paper.  

A more comprehensive understanding of the relationship between neurobiology, local 
field potentials, and non-invasive M/EEG might plausibly improve the diagnostic power 
of the latter techniques. Here we have presented a framework that unifies detailed neural 
models with the measurement theory of M/EEG. Understanding the forward model that 
relates ion channel dynamics to M/EEG is the first step towards developing a principled 
inverse solution that maps M/EEG responses to clinically and physiologically relevant 
human in vivo molecular measures.  
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Tables 
 
Table 1. Method advantages and limitations 

Advantages Limitations 
Quantitatively relates neural and 

extracranial measures 
Lacks detailed modeling of the columnar 

microstructure 
Includes detailed dynamics of thalamic 
neurons including low-threshold Ca2+ 

currents 

Does not account for conduction delays in 
long distance connections 

High resolution biophysical model captures 
effects of orientation and cancellation in 

cortical manifold 

Example presented does not include areal 
diversity, but is possible within model 

framework 
Can be use to probe intermodal differences 
and individual-specific anatomy and sensor 

configurations  

Modeling of interhemispheric connectivity 
is rudimentary  

Produces empirically observed M/EEG 
amplitudes from biologically plausible 

current dipole moment densities 

White matter tractography not used to 
inform connectivity, planned for future 

iterations 
 
Figures and Legends 
 

 
Figure 1. Overall structure of experiment. Empirical Measurements are processed to 
yield Derived Measures which provide validation targets (top), basic anatomical 
constraints informing the forward solution (middle), or basic physiological constraints for 
the fundamental unit of spindle generation (bottom). The Neural Model is comprised of 
thalamic cells modelled at high resolution (to capture the channel and local network 
synaptic processes underlying spindle generation) driving cortical cells (computationally-
efficient map-based neurons), which are embedded in the cortical surface. The 

Empirical Measurements Derived Measures Neural Model Biophysical Model 

M/EEG 

Structural MRI 

Laminar  
recordings 

M/EEG scalp topographies 

Scalp, Skull, CSF 

Current dipole 
moment density 

magnitude 

Simulated M/EEG sensor 
timeseries 

Boundary Element 
Electromagnetic 
forward model 

Modeled current 
dipole moment 

densities 

Mapped to cortical 
surface  

Connected  
with inferred 

pathways  

Conductance-based
Thalamic reticular 
nucleus neurons 

Cortical 
matrix and 

core 
pyramidal 

& 
inhibitory 

map-based
neurons 

Hodgkin-Huxley thalamo-cortical 
neurons 

-+

+

+
CSD: Current source 

density 

Cortical surface 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/202606doi: bioRxiv preprint 

https://doi.org/10.1101/202606
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

Biophysical Model takes the output of the Neural Model and projects it to the M/EEG 
sensors to be compared to actual empirical measurements.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/202606doi: bioRxiv preprint 

https://doi.org/10.1101/202606
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26	

 
 
 

 
Figure 2. Dipole Magnitude of sleep spindles in humans. The current dipole moment 
density was estimated from CSD profiles as described in the text from laminar micro-
electrode array recordings (24 contacts at 150µm centers, natural sleep). Gray dots 
represent the maximum current dipole moment density for each automatically detected 
10-16 Hz spindle. Standard deviations and 95% confidence intervals are shown in blue 
and red, respectively.  
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Figure 3. Network connectivity. (A) Schematic representation of thalamocortical and 
corticocortical connections. (B) Example of cortical geodesic-based connectivity in a 
patch of cortex. Pyramidal and inhibitory cortical neurons exist at purple and cyan 
locations, respectively. The blue contour shows the fanout (11.7 mm) of a core-projecting 
thalamic neuron at the virtual position marked in red. The orange contour shows the 
fanout (45.0 mm) for a matrix-projecting thalamic neuron at the same virtual location. 
(C) Schematic representation of currents and synapses included in detailed conductance-
based thalamic neurons. Corticocortical connectivity is not shown. Please see text for 
details. 
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Figure 4. Example simulated spindle. Single-neuron and population mean membrane 
voltage traces in cortex (A) and thalamus (B) during a matrix-weighted spindle. 
Simultaneous activity is shown for the matrix and core system neurons of the reticular 
nucleus (RE) and thalamocortical (TC) subpopulations of the thalamus, as well as the 
pyramidal (PY) and inhibitory (IN) subpopulations in each of the three cortical layers. 
(B) Transcortical currents and scaled current dipole moment densities. Twelve spatially 
representative columns selected through icosahedral subsampling are shown. (C) 
Average 10-16 Hz M/EEG topographies for the duration of the spindle. In panels (A-C) 

0
50

0
10

00
15

00

1 2 3 4 5 6 7 8 9 10 11 12

0.1 nAm/mm2

Th
al

am
us

C
or

te
x

10
-1

6 
H

z 
C

ur
re

nt
 D

ip
ol

e 
M

om
en

t D
en

si
tie

s 

tim
e 

(m
s)

A
B

C
P

Y
IN

R
E

TC

-8
0

-7
0

-6
0

-5
0 0

50
0

10
00

15
00

tim
e 

(m
s)

-5
0050

-8
0

-7
0

-6
0

-5
0 0

50
0

10
00

15
00

tim
e 

(m
s)

-5
0050

average (mV) single neuron (mV)

C
or

e

average (mV) single neuron (mV)-6
6

-6
4

-6
2

-6
0

tim
e 

(m
s)

tim
e 

(m
s)

0
50

0
10

00
15

00

-5
0050-6
6

-6
4

-6
2

-6
0

0
50

0
10

00
15

00

-5
0050

L6
average (mV) -8

0

-7
0

-6
0

-5
0

single neuron (mV)

0
50

0
10

00
15

00

-5
0050

-8
0

-7
0

-6
0

-5
0 0

50
0

10
00

15
00

-5
0050

M
at

rix
tim

e 
(m

s)
tim

e 
(m

s)

-6
6

-6
4

-6
2

-6
0 0

50
0

10
00

15
00

-5
0050

-6
6

-6
4

-6
2 0

50
0

10
00

15
00

-5
0050

average (mV) single neuron (mV)

M
at

rix
tim

e 
(m

s)
tim

e 
(m

s)

-6
6

-6
4

-6
2

-6
0

0
50

0
10

00
15

00

-5
0050

average (mV) single neuron (mV)

0
50

0
10

00
15

00

-5
0050

-6
6

-6
4

-6
2

-6
0

C
or

e
tim

e 
(m

s)
tim

e 
(m

s)

D

Patch  #

E
E

G

10 8 6 4

40 30 20 10

μV

fT/cm2

M
E

G

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/202606doi: bioRxiv preprint 

https://doi.org/10.1101/202606
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 29	

the spindle duration is demarcated with vertical dashed lines. All panels display the same 
modeled spindle. 
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Figure 5. Simulated cortical sources. (A) 10 seconds of simulated spindling for one 
subject. (B) matrix and core pyramidal current dipole moment density distributed across 
the cortex at a single time point, marked in red. Data are displayed on an inflated right 
cortex.  
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Figure 6. Grand average 10-16 Hz complex envelope topographies for empirical and 
simulated M/EEG during automatically detected EEG spindles. Empirical data show 
averages for six subjects, simulated data for six simulation runs using those subjects’ 
cortical surfaces, cranial tissue boundaries, and M/EEG sensor positions. The same MEG 
and EEG scales are used for both empirical and simulated topographies. 
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Figure 7. M/EEG sensor 10-16 Hz envelope maxima during EEG spindles. (A) For 
simulated and empirical M/EEG, 10-16 Hz envelopes are averaged across the duration of 
the spindles then averaged across spindles. The envelope magnitudes of strongest sensors 
are shown. Each marker represents the average value for one subject. (B) Simulated 
individual spindle sensor maxima vs. neural model derived core/matrix index. Positive 
index values indicate a more core-weighted spindle while negative values indicate a more 
matrix-weighted spindle. Each marker represents an individual simulated spindle with 
symbols signifying the simulation run, each using a different donor subjects’ cortical 
surfaces, cranial tissue boundaries, and M/EEG sensor positions.		
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